

Defect Evolution in Structural Materials from SEAKMC Simulations: Opportunities and Challenges

Haixuan Xu

The University of Tennessee Knoxville

Roger Stoller (ORNL), Yury Osetskiy (ORNL), Malcolm Stocks (ORNL), Laurent Beland (ORNL)

Why do we study defect evolution?

- Collective effects of defects determine real materials properties
 - Strength, toughness, conductivity, etc.
 - Underpinnings of our energy technologies
- Performance limits are rarely the result of insurmountable physical principles

Structural alloys exhibit strengths that are typically only 5-10% of theoretical limits

 Increased understanding of defects will result in new materials with substantially improved properties

http://www.coloradofuelcellcenter.org/pages/projects/fundamental.html

Defect governs the microstructure evolution and materials properties

Evolution of Cascade Defects

Defect Production in Cascade Defect Diffusion and Interaction Radiation Damage **10⁻⁹ - 10⁻⁶** 10-13 - 10-11 107

Conventional Object KMC for Long-Term Defect Evolution

Processes Related

- Diffusion mechanism
 - 3D, 1D, or 1D+Rotation
- Migration energy and prefactors
 - *ab initio* or empirical potential
- Dissociation of clusters
 - **Reaction distance**

Deficiencies

- Difficult to predetermine the diffusion mechanisms and corresponding energy
- Too much simplification: no atomistic configurations of defects
- Does not account for migration mode and energy dependence on configuration
- Simplistic description of defect interactions

Object KMC is a oversimplified model

Atomistic details are crucial to accurately describe defect evolution

Self-Evolving Atomistic KMC (SEAKMC) Method

Xu et al. Phys. Rev. B 84, (2011) J. Phys.: Condens. Matter 24 (2012), Computational Materials Science 100, 135(2015) Computational Materials Science 100, 124 (2015) SEAKMC is a general framework including several techniques, particularly powerful for large systems with complex defects

Saddle Point Search Techniques

http://www.theochem.uni-stuttgart.de/kaestner/dlfind.html

Find migration barriers on-the-fly, based on harmonic transition state theory
 Only need initial configuration; find the saddle point configurations

Part I: Active Volumes-Concept and Application

Saddle point searches are only carried out within the active volumes, significantly reduce the computational cost

AV size

Computational Materials Science 100, p135(2015)

Saddle Point Searches

J. Phys.: Condens. Matter 24 (2012)

Number of Unique Saddle Points

J. Phys.: Condens. Matter 24 (2012)

For interstitial clusters (complex defects), the number of unique saddle points does not converge.

Vacancy Clustering in Iron

For vacancy clusters grow beyond 6.5 vacancies (system energy is around -7760 eV)

CDP

11

Vacancy Clustering in Iron: SEAKMC vs MD

12

Where does the difference come from?

- ABC+KMC
- One saddle point (of minimum energy barrier) is used per KMC step
- Missing low-energy reaction paths
- kART
- Topological classification of configurations based on the 2nd/3rd nearest neighbors
- Basin Filling Methods
- SEAKMC
- Active volumes are sufficiently large
- Nearly complete sampling of saddle points

Beland et al, Computational Materials Science 100, p124 (2015)

Interstitial Loops - Unique Signature of Radiation Damage

- Eyre 1962: Discovery of interstitial loops in bcc Fe
- Masters 1964: Two population of loops ¹/₂ <111> and <100> loops
- 1/2 <111> and <100> loops have very different mobility
- Eyre-Bullough Mechanism 1965
 ¹/₂[110]+¹/₂ [001]=¹/₂ [111]
 ¹/₂[110]+¹/₂ [1-10]=[010]
- Because of the high stacking fault energy, ½<110> loop was not observed experimentally and spontaneously transform into ½<111> loops in simulations. Therefore, Eyre-Bullough mechanism is not applicable.

Distication articipation in o dain after a dain 61.5 × 1019 n and fallewird in differingtion. (a) Distantions plained by brandvalla abstracted with (ft) Learn 1.0. by distantions branking, away, from plaining points with 0001.

B. Eyre Phil. Mag. (1962)

Recent Atomistic Studies

Collision cascades

• SIA clusters are formed in cascades, mainly of 1/2<111> type

Mutual interaction of dislocation loop

Marian 2002: proposed a modified Eyre-Bullough Mechanism ½[111]+½ [00-1]=½ [110] ½[110]+½ [1-10]=[010]

Terentyev 2008: MD simulations

• Only <111> loops are observed from mutual interactions

Loop Stability

Dudarev 2008: developed a model to include the temperature dependence of an anisotropic elastic self-energies of dislocations ^[110] in iron

> The <100> loop formation mechanism remains undetermined after fifty years since it was first discovered in 1962

D. Terentyev et.al., J. Nucl. Mater. (2008)

Simulation Setup

- Simulation methods: SEAKMC and molecular dynamics
- Interatomic potentials: A97, A04, M07
- System size: 27a₀x27a₀x27a₀
- Temperature: From 0 K to 1200K
- Interaction angle: acute and obtuse
- Interstitial cluster(IC) size: 19,37,61
- Active volume size: 4.5-7.5 a₀

Illustration of <111> type interstitial clusters moving in a {110} plane with their angle of intersection projected onto the corresponding base plane

[100] Loop Formation Process from SEAKMC

Different from all previous proposed mechanisms

Stochastic Process in Nature

Different configurations may form from the same initial structure

Energetics of the Evolution Process

Evolution Sequence

MD employs high temperature to speed up the process, significantly increasing the
stability of <111> loop due to the its larger entropy19

Cascade Annealing-Comparison of OKMC and SEAKMC

- Initial structure from MD cascade simulations
- Cascade energy is 10 keV and 25 keV
- System size: 128,000 and 250,000, with an absorbing boundary condition
- Annealing temperature : 650 K

20

Comparison of OKMC and SEAKMC-Continued

Simulation were perform under the same condition using both methods

Parameter-free SEAKMC provides different defect survival fractions SEAKMC can help OKMC to increase the accuracy of the simulations

Center for Defect Physics in Structural Materials an Office of Basic Energy Sciences Energy Frontier Research Center (EFRC)

Challenges

On-the-fly KMC methods have made significant progresses.

- How to efficiently determine saddle points if a large number of atoms is involved in the transition states
- How to ensure sufficient sampling of saddle points for complex defects?
- How to validate the accuracy of on-the-fly KMC methods?

Thank you very much for your attention!

OHIO SIATE

