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Quantum chaos

Main conjecture: Energy spectrum of a quantum system with underlying chaotic
classical dynamics has the same statistical properties as spectrum of the random
matrix (of the same universality class).

Distribution of normalized distances between the nearest levels

s = (Ej+1 − Ej)ρ(Ej) – normalized distances

P(s) = π

2 s exp
(
−π

4 s2
)

– chaotic systems

P(s) = e−s – regular (integrable) systems

Integrated distribution I (s) =
∫ s

0 P(s ′)ds ′
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Bose-Hubbard model
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Figure: Cold atoms (open circles) in an optical lattice. Green line is the
single-particle Wannier function.
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Bose-Hubbard model
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Transition to chaos
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Figure: Density of states (upper panels) and integrated level spacing distribution
(lower panel) as compared to the Poisson and Wigner-Dyson distributions.
Parameters are N = 7, L = 9, J = 1, ǫ = 0.2, U = 0.02 (a) and U = 0.2 (b).
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Classical limit

H = −J
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Coherent SU(L) states: |a〉 = 1√
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Equation on the Husimi function f (a, t) = |〈a|Ψ(t)〉|2
∂f

∂t
= {H , f } + O

(
1

N

)

If the initial distribution f (a, t = 0) is a δ-function then the above equation is
equivalent to DNLSE equation:

i
∂al

∂t
= −J

2
(al+1 + al−1) + g |al |2al

[3] F. Trimborn, D. Witthaut, and H. J. Korsch, Exact number conserving phase-space dynamics of the L-site Bose-Hubbard

model, Phys. Rev. A 77, 043631 (2008)
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Phase space and semiclassical quantization
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Density of states
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Figure: Density of states of the 5-site BH model for N = 20, panels (a-c), as
compared to the classical ‘density of states’, panels (d-f). The energy is measured
with respect to the mean interaction energy Eint = gN .
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Low-energy stability islands

Relative volumes of the regular and chaotic components?

vreg = vreg (E ) → 1 if E → Emin ≈ −J

Effective Hamiltonians:

Heff = (δk + g)I + g
√

I 2 − 4M2 cos(2θ) , |M | ≤ I/2 , δk = J[1 − cos(2πk/L)]

Quantizing these effective Hamiltonians we have

E (k) = E
(k)
0 + ~Ω(k)(n + 1/2) , Ω(k) ∼ √

gk

which is nothing else as the Bogoliubov spectrum for low-energy excitations of a
BEC.

[4] A.R.Kolovsky, Semiclassical quantization of the Bogoliubov spectrum, Phys. Rev. Lett. 99, 020401 (2007); Phys. Rev. E

76, 026207 (2007)
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Bogoliubov spectrum
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Figure: Energy spectrum of the 3-site BH model for N = 20 (left) and N = 40
(right) as the function of macroscopic interaction constant g = UN/L. The
energy is measured with respect to the ground energy and is scaled according to
the Bogoliubov frequency Ω(g).
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Bloch oscillations
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Ĥ(t) = −J

2

∑

l

(
â
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Semiclassical approach
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al(t) =
1√
L

exp

(
i
J

F
sin(ωBt) − igt

)
, p(t) = p0 sin(ωBt)

−1

0

1

−1

0

1
−1

0

1

a
1

a
2

a 3

−1

0

1

−1

0

1
−1

0

1

a
1

a
2

a 3

Andrey R. Kolovsky (Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia Siberian Federal University, 660041 Krasnoyarsk, Russia)Treating Bose-Hubbard model by means of classical mechanicsor Quantum-classical transitionDresden, February 2016 12 / 19



Stability analysis

Fcr ≈
{

3g , F < 2J√
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Figure: Increment of the dynamical instability (sum of the positive Lyapunov
exponents) for L = 3 (left) and L = 15 (right).
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Strong vs. weak field regime

p(t) =

{
exp(−γt) sin(ωBt) , F ≪ Fcr
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Figure: Numerical simulations of Bloch oscillations of interacting atoms for
F < Fcr (upper panel) and F > Fcr (lower panel).
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Strong field – quasiperiodic Bloch oscillations

p(t) = exp (−2n̄[1 − cos(Ut/~)]) sin(ωBt)

Figure: Dynamics of the mean momentum for F > Fcr according to Ref. [11].
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Weak field – decaying Bloch oscillations

p(t) = exp(−γt) sin(ωBt) , γ ∼ n̄2U2

Figure: Dynamics of the mean momentum for F < Fcr according to Ref. [11].
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Quantum ensemble
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Figure: Ensemble of classical trajectories in the Bloch (amplitudes bk 6=0) and
Wannier (amplitudes al ) representations. Parameters are L = 5 and N = 20.

[8] A.R.K., H.J.Korsch, and E.M.Graefe, Bloch oscillations of Bose-Einstein condensates: Quantum counterpart of dynamical

instability, Phys. Rev. A 80, 023617 (2009).

Andrey R. Kolovsky (Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia Siberian Federal University, 660041 Krasnoyarsk, Russia)Treating Bose-Hubbard model by means of classical mechanicsor Quantum-classical transitionDresden, February 2016 17 / 19



Classical vs. quantum dynamics: internal decoherence
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Figure: Dynamics of the mean momentum for dF/J = 0.1 and dF/J = 10,
calculated by using the classical (left) and quantum (right) approaches.
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Conclusions

We addressed the energy spectrum of the Bose-Hubbard model by using
”semiclassical” approach based on classical Hamiltonian.

In particular, we obtained the Bogoliubov spectrum for low-energy
excitations of a BEC by quantizing classical tori where ~eff = 1/N .

We addressed dynamics of the Bose-Hubbard system induced by a static
field (Bloch oscillations).

Using classical analysis we predicted two qualitatively different regimes of
Bloch oscillations which have been observed in the laboratory experiment.

Remarkably, regime of decaying Bloch oscillations is perfectly reproduced by
pure classical dynamics. Here we have a loop: underlying classical chaos →
quantum chaos → internal decoherence → classical dynamics.

[12] A.R.Kolovsky, Bose-Hubbard Hamiltonian: Quantum Chaos approach , Int. J. of Modern Physics B 30 (2016), 1630009
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