Double-Diffusive Sedimentation

Peter Burns and Eckart Meiburg UC Santa Barbara

- Motivation
- Governing equations
- *Results: buoyant river outflows:*
 - double-diffusive sedimentation
 - 'fingering' vs. 'leaking' modes
- Scaling analysis and physical interpretation
- Summary and outlook

Coastal margin processes

Sedimentation from river plumes: Motivation

• 10^{10} tons of sediment are transported by rivers into the world's oceans every year \rightarrow important to understand sedimentation in river plumes

Mississippi river plume drainage basin size: 3.3 x 10⁶ km² annual sediment yield: 1.2 x 10² t/km² Santa Clara river plume drainage basin size: 4.2 x 10³ km² annual sediment yield: 1.4 x 10³ t/km²

 \rightarrow a large fraction of the sediment supply into the oceans is due to small, mountainous streams Sedimentation from river plumes: Configuration

Hypopycnal river plumes:

density of the river (fresh water + sediment) < density of ocean (water + salinity)

 \rightarrow river outflow propagates along the ocean surface

• focus on the downstream density stratification

Sedimentation from river plumes: Double-diffusion

Base density profile:

consider local downward perturbation of fluid element across opposing gradients Sedimentation from river plumes: Double-diffusion

Base density profile:

salinity diffuses inward more rapidly than particles diffuse outward

Sedimentation from river plumes: Double-diffusion

Base density profile:

• potential for double-diffusive instability

Traditional case: Salt fingers

• warm, salty water above cold, fresh water:

Huppert and Turner (1981)

- dominant process for the vertical flux of salt in the ocean
- robust against shear
- believed to be responsible for the formation of the thermohaline staircase

 \rightarrow for salt/sediment system, how does double-diffusion affect sedimentation?

Sedimentation from river plumes: Experiments

• previous experimental work by Parsons et al. (2001):

convective 'fingering' mode space filling

'leaking' mode localized, structures move along interface

 \rightarrow goal: understand mechanisms driving these modes, and their influence on the effective particle settling velocity

Sedimentation from river plumes

Effect of settling velocity:

density profile

• settling process creates potential for Rayleigh-Taylor instability

Framework: Dilute flows

Assumptions:

- volume fraction of particles $< O(10^{-3})$
- particle radius « particle separation
- small particles with negligible inertia

Dynamics:

- effects of particles on fluid continuity equation negligible
- coupling of fluid and particle motion primarily through momentum exchange, not through volumetric effects
- particle loading modifies effective fluid density
- particles follow fluid motion, with superimposed settling velocity

Moderately dilute flows: Two-way coupling (cont'd)Governing dimensionless eqns: $\rho - 1 = \alpha S + \gamma C$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = \nabla^2 \mathbf{u} - \nabla \mathcal{P} + \rho' \frac{\mathbf{g}}{g'}$$
$$\frac{\partial S}{\partial t} + \mathbf{u} \cdot \nabla S = \frac{1}{Sc} \nabla^2 S$$
$$\frac{\partial C}{\partial t} - V_p \frac{\partial C}{\partial z} + \mathbf{u} \cdot \nabla C = \frac{1}{\tau Sc} \nabla^2 C$$

 $\nabla \cdot \mathbf{u} = 0$

Characteristic quantities:
$$L^{c} = (\nu^{2}/g')^{1/3}$$
, $T^{c} = (L^{c2}/\nu)$,
 $U^{c} = (\nu g')^{1/3}$, $g' = \frac{\Delta \rho_{c}}{\rho_{0}}g$,
 $V_{st} = \frac{g d_{p}^{2} (\rho_{p} - \rho_{f})}{18 \mu_{f}}$

Dimensionless parameters:

settling velocity
$$V_p = \frac{V_{st}}{(\nu g')^{1/3}}$$
stability ratio $R_s = \frac{\alpha}{\gamma}$

Schmidt number
$$Sc = \frac{\nu}{\kappa_s}$$
diffusivity ratio $\tau = \frac{\kappa_s}{\kappa_c}$

Sedimentation from river plumes: Numerical simulations

- *Two dimensions:*
 - streamfunction, vorticity-formulation of Navier-Stokes equations
 - Boussinesq approximation
 - spectral/compact finite differences
- Three dimensions:
 - IMPACT code (Henniger and Kleiser 2011)
 - primitive variable formulation of Navier-Stokes equations
 - Boussinesq approximation
 - staggered grid
 - 6th order compact finite differences
 - massively parallel

Sedimentation from river plumes: Numerical simulations

Sedimentation from river plumes: Numerical simulations

Mammatus clouds

Volcanic ash plume

- thickening of the plume-dominated region ~ time \rightarrow convectively dominated
- vigorous convective motion
- 'streaks' due to the release of buoyant plumes

fit concentration profiles with $erf \rightarrow determine$ interface location, thickness

sediment concentration

- both interface thicknesses grow diffusively
- sediment interface thickness grows faster, in spite of smaller molecular diffusivity!
- sediment interface moves downward, but more slowly than Stokes settling velocity
- salinity interface moves upward

Why does the salinity interface move upward?

- the instability is centered around the unstable sediment interface, which moves downward into the region of high salinity
- the region of high salinity gets mixed more strongly \rightarrow the s=0.5 contour is displaced upwards

Turbulent diffusivities:

• turbulent sediment diffusivity is about twice as high as turbulent salinity diffusivity, even though the molecular salinity diffusivity is 25 times larger than 'molecular' sediment diffusivity \rightarrow consistent with numerical observations

Quasisteady measures of sedimentation dynamics

• ratio of turbulent diffusivities, ratio of interface thicknesses and ratio of turbulent fluxes all approach quasisteady values \rightarrow will be important for scaling analysis

Sedimentation from river plumes: Mean fields Ratio of nose height to salinity interface thickness:

- ratio of nose height to salinity interface thickness approaches quasisteady state, and remains «1
 - \rightarrow sediment interface remains embedded in the region of strong salinity gradient
 - \rightarrow double diffusion remains important

Sedimentation from river plumes: Effective settling velocity

Settling velocity enhancement:

• in the region z < 0, the effective settling velocity is O(1), rather than $V_{st}=0.04$, i.e., it scales with the buoyancy velocity of the system, not the Stokes velocity

Sedimentation from river plumes: Leaking mode (higher Sc)

Sedimentation from river plumes: Leaking mode

horizontal cross-cuts through sediment concentration field:

 \rightarrow time increases

- nonlinear evolution of initial, localized plumes results in web-like structure
- characterized by sheets, rather than plumes

Sedimentation from river plumes: fingering vs. leaking

x,*t*-diagrams of sediment concentration at fixed vertical location:

weak horizontal motion

strong horizontal motion and merging

• explains different modes observed by Parsons et al. (2001)

Sedimentation from river plumes: Scaling

Scaling of nose height with in-/outflow ratio:

 \rightarrow quasisteady ratio of nose height to salinity interface thickness scales with ratio of sediment inflow into nose region to sediment outflow from nose region

Sedimentation from river plumes: Parametric study Physical interpretation:

 for small settling velocity, the rate of sediment inflow from above is low → this low rate of sediment inflow can be balanced by conventional doublediffusive outflow of sediment below → there is little accumulation of sediment in the nose region → height of nose region remains small

 for large settling velocity, the rate of sediment inflow from above is high → this high rate of sediment inflow cannot be balanced by traditional doublediffusive sediment outflow below → sediment accumulates in the nose region → height of nose region increases until it is thick enough for Rayleigh-Taylor instability to form, which leads to increased sediment outflow below → new balance between in- and outflow into the nose region is established Double-diffusive sedimentation: Open questions

Currently under investigation::

- linear concentration gradients vs. initial step profiles
- *influence of shear:*
 - Kelvin-Helmholtz vs. double-diffusive instabilities
 - does Holmboe instability form?
- based on recent findings for thermohaline double-diffusive instabilities:
 - diffusive vs. convective mode
 - do collective instability modes form?
 - do horizontal intrusions form?
 - do "gamma-instability" and "staircases" form?

Summary

- *double-diffusive sedimentation in river outflows dramatically enhances the effective settling velocity*
- settling velocity scales with buoyancy velocity, not with Stokes velocity
- two mechanisms drive the process:
 - double-diffusive instability of salt vs. sediment
 - settling of sediment creates 'nose region,' Rayleigh-Taylor instability
- ratio of nose height/salinity interface thickness H/l_s determines regime
- for low Schmidt numbers, low stability ratios and small Stokes settling velocities, traditional double-diffusive instability causes convective 'fingering' mode
- for high Schmidt numbers, large stability ratios and large Stokes settling velocities, settling of sediment causes 'leaking' mode, via interaction of Rayleigh-Taylor and double-diffusive instability modes through 'phase-locking'
- overall dynamics is governed by the in-/outflow of sediment into/from the nose region