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Symmetry, topology, and information

The capacity of topologically robust quantities to distinguish different phases even

in absence of local order parameters is the central subject of this book. The topolog-

ical degeneracy in the fractional quantum Hall effect thus reflects the topological

order present there, which does not require the breaking of any local symmetry.

This has supplemented the idea of the symmetry distinction of different phases,

the bedrock of the Landau-Ginzburg–Wilson paradigm of phases and transitions

between them, as outlined in the opening chapters.

What then about the interplay between those ideas? On one hand, there is the

question of their compatibility, e.g. can topologically ordered phases also exhibit

conventional symmetry breaking? This item we have already touched upon in the

context of quantum Hall ferromagnets in Chapter 3.7. On the other hand, one can

ask whether there exist any phenomena which constitutively rely on a combination

of ingredients from symmetry and topology. The first part of this chapter is devoted

to taking a closer look at that question.

The second part addresses how quantum information concepts are useful to un-

derstand quantum wavefunctions, particularly those arising in topological states.

A major impetus for work on non-Abelian states is the goal of quantum memories

and computers, as described in Chapter 9. There has also been a useful flow in

the opposite direction, and we sketch one way to quantify information in a single

quantum wavefunction: the entanglement entropy with respect to a bipartition of

Hilbert space. This turns out to help place topological states, particularly those

with fractional particles, in a broader context, and has also led to a number of

revolutionary numerical techniques. This chapter is of necessity more of a survey of

an actively evolving area than the preceding ones, and we encourage readers who

wish to delve more deeply to consult the reviews cited. We close with a few general

comments on the continuing search for topological phases, both in real materials

and in the mind’s eye.
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11.1 Symmetry-protected topological phases

One of the central phenomena in topological condensed matter physics – the topo-

logical insulator – requires a helping of symmetry to exhibit its topology: as ex-

plained in Chapter 3, it is the presence of time reversal symmetry that eliminates

the scattering between the counterpropagating edge states, and hence leads to the

quantised transport coefficient.

In one dimension, we have so far encountered a variety of different topological

systems hosting a number of interesting phenomena. These include the chains in-

volving the names Peierls, Su-Schrieffer-Heeger, Majumdar-Ghosh, Haldane/AKLT

and Kitaev. Going beyond their individual properties, this discussion is devoted to

identifying the more formal structure underpinning their existence, with a focus on

genesis, distinctiveness and stability of their topological properties. Indeed, it turns

out that non-trivial topological properties in d = 1 can essentially only occur in the

presence of symmetries; in their absence, all states are topologically identical. In the

following, we outline the theory underpinning this symmetry protected topology.

The notion of symmetry-protected topological phases in one dimension was ad-

vanced in particular in the context of studying the S = 1 Heisenberg chain with

nearest-neighbour interactions, also known as the Haldane chain (Pollmann et al.,

2012). A soluble relative of this model, the S = 1 AKLT chain, was introduced

in the context of Klein models in Chapter 5.2.4. There, its basic phenomenology

was discussed – a non-degenerate, short-range entangled state exhibiting fractional

spin S = 1/2 edge states exponentially localised on a lengthscale set by the bulk

gap. It had been noted early on that there existed deformations of this model

which connected it to a trivial band insulator without encountering a gap closing

en route (Anfuso and Rosch, 2007). An account placing this material in a broad

information-theoretic context is available in (Zeng et al., 2015)

11.1.1 Symmetry fractionalisation

The central observation for the notion of symmetry protected topology in d = 1 is

that a restriction on the paths through the space of Hamiltonians to ones respecting

certain symmetries does provide a notion of topological stability to the Haldane

phase. The mathematical framework for capturing the underlying idea, which now

goes by the name of symmetry fractionalisation, involves representation theory, in

particular the projective representations of the appropriate symmetry groups.

The central ingredient is simply stated: the action of a symmetry can act inde-

pendently on the two edges of the chain, provided the bulk is gapped. This allows

for the representations of the symmetry at the edge to acquire a relative phase,

which under certain conditions there may take on only a discrete set of possible

values. These discrete possibilities can then not be continuously deformed into one
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another, and they are hence topologically stable. When the underlying symmetry

is removed, however, this structure disappears entirely.

The remainder of this section fleshes out these statements following the account

of Verresen et al. (2017); it applies these insights to a family of Kitaev chains,

christened α-chains, to provide a concrete unifying framework for a number of

previously encountered models, and to generate insights into the overall richness

of the resulting classification. We start by explaining the simplest setting before

adding various generalisations until we are in a position to discuss the α-chains in

general.

We consider a chain of length L with open boundary conditions and a local

Hilbert space, Hi, of dimension d, such that the total Hilbert space, H = ⊗iHi, has

dimension dL

Let the system Hamiltonian H be symmetric with respect with a global symmetry

group G. The action of this group on states in Hilbert space is encoded by a set of

unitary matrices U ; we identify the set of representations provided by these unitary

matrices with the group itself, allowing us to write U ∈ G as a shorthand.

Next, assume that we are dealing with a so-called on-site symmetry, i.e. one whose

members can be written as a tensor product over unitaries acting on individial sites

i:

U = ⊗iUi . (11.1)

We restrict our attention to the case of the symmetry G not being broken, so

that the ground state in the presence of periodic boundary conditions is unique;

the action of G must therefore be trivial in the bulk as it cannot convert different

ground states into one another. This still leaves the possibility of its action being

non-trivial at the edges, provided that there is (as is the case in the AKLT chain)

an edge state degeneracy.

We thus define two operators, UL,R to act on the left and right edges of the

system, respectively, such that U = ULUR. Again, as noted for the edge states of

the AKLT chain, the support of UL,R will extend into the bulk by a distance set by

the (inverse) bulk gap, so that in the limit of a long chain, L → ∞, their support

will be disjoint.

The essence of symmetry fractionalisation is that UL,R are, individually, sym-

metries of H, i.e. that [UL, H] = [UR, H] = 0. This can be seen by decomposing

H = HL +HR with the support of HL chosen such that it is disjoint with that of

UR, and similarly for HR and UL. Then, 0 = [U,HL] = [ULUR, HL] = [UL, HL]UR.

Since U(R) is invertible, it follows that

[UL, HL] = [UL, HL +HR] = [UL, H] = 0 , (11.2)

as desired.

To extract the projective nature of the resulting edge representations, we con-

tinue to restrict ourselves to the simplest setting, namely a ‘bosonic’ system, i.e.
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one in which operators acting with disjoint support commute; and we consider a

commutative pair of symmetry operations U, V ∈ G, i.e. [U, V ] = 0, such that

UV U−1V −1 = I. Then

I = (ULUR)(VLVR)(U−1
L U−1

R )(V −1
L V −1

R ) = (ULVLU
−1
L V −1

L )(URVRU
−1
R V −1

R ) .(11.3)

Since the sole action of one of these factors must be proportional to the identity in

its region of support, it follows that

(ULVLU
−1
L V −1

L ) = exp(iα); (URVRU
−1
R V −1

R ) = exp(−iα) . (11.4)

A nontrivial value of exp(iα) 6= 1 implies that the symmetry operations are repre-

sented projectively at the edges.

The dimension of such a projective representation has an immediate physical

interpretation. A d-dimensional projective representation is associated with a d-

dimensional edge mode. The AKLT chain should thus go along with a d = 2-

dimensional projective representation of the appropriate protecting symmetry.

This also means that a d = 1-dimensional representation is trivial in that it does

not host a protected edge state. This is reflected in the twin facts that, firstly,

such a situation does not permit non-trivial values of α and, secondly, that the

accompanying phase factor in the projective representation case can be gauged

away, leaving behind a trivial non-projective symmetry representation via ŨL =

exp(iα)UL.

Thus, the values of α for products in Eq. 11.1.1 do not fix the phases of the rep-

resentation of the UL,R entirely. Like the magnetic field corresponding to different

gauge choices of vector potential, there is a gauge-invariant content to these phases,

and it is this which is used to group SPT phases into classes.

To use this as a basis for a topological classification scheme, one needs to deter-

mine which values of α can be deformed into one another continuously, and which

cannot – the latter can then be said to have topological stability. Clearly, this is

the case if the values are discrete, as this forbids a continuous deformation between

them.

Perhaps the simplest instance is provided for a group consisting of a pair U, V

of Z2 symmetries, i.e. G = Z2 × Z2. As U2 is just the identity, U2
L,R can only be

simple phase factors, which therefore commute with VL,R. As V 2
LU

2
L = VLU

2
LVL =

exp(iα)VLULVLUL = exp(2iα)V 2
LU

2
L, it follows that exp(2iα) = 1, so that α can

only take on two values, α = 0 or π.

The object encoding a general classification scheme of SPT phases is then supplied

by algebraic topology. The quantity in question is the second group cohomology

group with coefficients in U(1), denoted by H2(G,U(1)). (Group cohomology is an

abstract mathematical structure analogous to the cohomology of differential forms

in Chapter 2.) For the example above,H2(Z2×Z2, U(1)) = Z2. The symmetry group

SO(3) turns out to have the same property, H2(SO(3), U(1)) = Z2, identifying half-

integer and integer spins as topologically distinct. In particular, this implies that
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the subgroup of π-rotations also protects the Haldane phase. We note that the case

of the Floquet 0π paramagnet, discussed in Section 10.5.2 only has a single Z2

symmetry; there, it is the temporal aspect of the drive – which also underpins the

possibility of period doubling – which supplies the remaining ingredient.

At the same time, in the absence of a non-trivial symmetry group G, it is clear

that this classification scheme yields only one, the topologically trivial, outcome.

This observation underpins the the statement that topological stability in one spa-

tial dimension is predicated on symmetry protection.

An instance which does not yield a discrete set of outcomes is provided by H2(Z×
Z, U(1)) = U(1). This amounts to the possibility of a continuous set of phases: any

given value would therefore not correspond to a topologically stable class. However,

if one is considering a periodic system with a unit cell containing degrees of freedom

with a finite-dimensional Hilbert space, the corresponding symmetry group will be

finite dimensional, or a compact Lie group, both of which yield discrete outcomes

and thence permit a topologically stable outcome.

The discussion of the previous paragraphs applies to unitary on-site symmetries

(in particular excluding spatial symmetries such as translations) for ‘bosonic’ sys-

tems. The word bosonic refers to systems where operators acting on different edges

of the system commute. Both of these conditions are restrictive in the sense that

there are generic physical situations which violate them. The first is provided by

the case of anti-unitary symmetries; and the second for fermionic systems, discussed

in the following section, where operators with support on spatially disjoint regions

need not commute on account of the anticommutation properties of Fermions: the

phases arising due to quantum statistics can be probed non-locally.

The case of anti-unitary symmetries, T , such as the time-reversal symmetry dis-

cussed in Section 3.3, is quite analogous to the above discussion. The symmetry

again fractionalises over the left and the right edge, where it thus acts indepen-

dently.

Considering the case where T = UK, where U is an on-site symmetry and K

is complex conjugation, and restricting ourselves to the case T 2 = 1, the ensuing

treatment then makes use of the operator U = TUT , to obtain I = (ULUL)(URUR).

Thence, ULUL = exp(iκ), which in particular implies that UL is proportional to

the inverse of UL, and hence commutes with it. It follows from complex conjugation

that exp(iκ) = exp(−iκ), so that κ = 0 or π. It follows that there are only two –

hence topologically distinct – possibilities, ULUL = ±1.

11.1.2 Fermionic symmetry fractionalisation

The above exposition has explicitly relied on the possibility of defining sets of

operators on two ends of a chain which commute with each other, the gap of the bulk

acting as an effective barrier, keeping the gapless modes localised at the edge. The

issue is that quantum statistics is not strictly local in this sense, and single fermion


