
Operator spreading in classical and quantum dynamics

In this project we want to constrast and compare information spreading in classical cellular au-
tomata with operator spreading in quantum circuits. This project is based on the papers Butterfly
effect and spatial structure of information spreading in a chaotic cellular automaton, Liu et al., Phys.
Rev. B 103, 094109 (2021) and Information scrambling in quantum circuits, Google Quantum AI,
Science 374, 1479–1483 (2021). This project combines analytical and numerical approaches.

• Classical cellular automata: In cellular automata we consider a lattice of sites, where each
site can take a discrete value 0 or 1. We can consider discrete time dynamics where the values
on all sites are updated according to classical (possibly probabilistic) local update rules. A
classical OTOC can then be defined as the local distance between two copies of the same
system which differ by only a local perturbation of the initial conditions. Reproduce Fig. 1
of the first paper, illustrating how information spreads with a finite (butterfly) velocity in
lattice systems.

Figure 1: Classical OTOC for a Kauffman cellular automaton. The information spreads with a butterfly
velocity vb that is smaller than the maximal allowed butterfly velocity. See reference for details.

• Quantum circuits: In the second paper the OTOC is experimentally measured and contrasted
for two classes of circuit dynamics in Fig. 2, namely for iSWAP dynamics and
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dynamics. The former leads to a maximal butterfly velocity, whereas the latter results in
a slower spreading of information and a nonmaximal butterfly velocity. It is possible to
construct cellular automata that exhibit the same qualitative dynamics. Numerically calculate
the classical OTOC for a circuit model where every gate is a randomly selected injective
classical cellular automaton, i.e. the local update rules map {00, 01, 10, 11} to a random
permutation of {00, 01, 10, 11}. Derive the classical Markov process that corresponds to this
update rules and show that it has a nonmaximal butterfly velocity, as for the
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dynamics. Restrict the classical cellular automata to be randomly sampled from

{00, 01, 10, 11} → {00, 10, 01, 11}, {00, 10, 11, 01}, {00, 11, 01, 10}, {01, 10, 00, 11},
{01, 11, 00, 10}, {01, 11, 10, 00}, {10, 00, 01, 11}, {10, 00, 11, 01},
{10, 01, 11, 00}, {11, 00, 10, 01}, {11, 01, 00, 10}, {11, 01, 10, 00} (1)

Compare the corresponding OTOC dynamics and Markov dynamics, showing that these mod-
els behave qualitatively similar to the iSWAP dynamics.
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• Optional goals: Compare the dynamics on a 2D lattice similar to Google’s Sycamore chip.
Consider different random realization of the cellular automata and derive the corresponding
butterfly velocity. More advanced: Consider Sec. IV. on Markov population dynamics from
the supplementary material to the second reference and implement these Markovian dynamics
on a one-dimensional lattice. How do these differ from the simplified dynamics for the cellular
automata?
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