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Abstract

Reinforcement Learning (RL) is a branch of Machine Learning that has made rapid
inroads into various fields of science in recent years. It finds a natural application in the
control of dynamical systems. If an RL agent possesses the knowledge of the state of a
system and is given a reward, which is maximized when the system is in a given target
state, the agent finds increasingly better control policies on its own. If the dynamics of
the system change over time, but the changes are adiabatic (sufficiently slow), the RL
agent can gradually adapt to the changed system. On the other hand, if the system
dynamics change too quickly – within the training episode, traditional RL agents could
fail. Their decisions would have to depend not only on the state of the environment but
also on time.

In this thesis, we first review selected concepts of Hamiltonian Mechanics, which is the
framework in which we will later consider some classical dynamical systems. We then
look at the basics of Quantum mechanics, with an emphasis on two-level systems (qubits).
After that, we introduce the most important concepts in Reinforcement Learning (RL),
as well as the basic algorithm Policy Gradient (PG), which we will use thereafter.

In the next part of the thesis, we propose a way in which the framework of Reinforcement
Learning can be extended, as the RL agent will also possess information about the time
at which it acts on the system. We consider 3 particular classical systems – a particle
contained in different time-dependent potentials which are not known by the agent in
advance. The agent controls the particle by applying a small external force. Finally, we
consider a quantum two-level system with time-dependent decay of the state. There, the
agent can act on the quantum state with unitary transformations (quantum gates). We
demonstrate that the RL agent learns a better strategy when it has information about
time.
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Абстракт

Обучението с утвърждение – Reinforcement Learning (RL) – е дял на машинното обу-
чение, който през последните години бурно навлезе в различни области на науката.
То намира естествено приложение е в контрола на динамични системи. Ако RL-агент
притежава знанието за състоянието на една система и му бъде зададена награда, ко-
ято е максимална в дадено целево състояние на системата, той самостоятелно намира
все по-добри стратегии за контрол на системата. Ако динамиката на системата се
променя с времето, но промените са достатъчно бавни (адиабатични), RL-агентът
може постепенно да се адаптира към променената система. Но ако динамиката на
системата се променя много бързо – в рамките на епизода на тренирането, то тра-
диционните RL-агенти биха могли да се провалят. Техните действия ще трябва да
зависят освен от състоянието на средата, и от времето.

В тази дипломна работа първо правим обзор на избрани части от хамилтоновата ме-
ханика, в рамките на която ще разглеждаме класически динамични системи. След
това разглеждаме основите на квантовата механика, с акцент върху системите от две
нива (кюбити). После въвеждаме и най-важните понятия от обучението с утвържде-
ние (RL), както и основният алгоритъм Policy Gradient (PG), който ще използваме
по-нататък.

В следващата част от дипломната работа предлагаме начин, по който може да се
разшири рамката на обучението с утвърждение, при което RL-агентът разполага и с
информация за момента от време, в който трябва да вземе решението си. Разглежда-
ме с 3 конкретни класически системи – материална точка, намираща се в различни
потенциали, зависещи от времето по закон, който не е предварително известен на
агента. Агентът контролира частицата чрез прилагане на малка външна сила. Освен
това разглеждаме и една квантова система с 2 нива, в която е наличен времезависим
разпад на състоянието. В нея агентът може да действа върху състоянието с унитар-
ни трансформации (гейтове). Демонстрираме, че RL-агентът се научава на по-добра
стратегия, когато разполага с информация за времето.
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Chapter 1

Introduction

1.1 Dynamical Systems

Consider a system of particles. We can describe its state with a set of coordinates. A
dynamical system is one whose state evolution is given by ordinary differential equations.
These equations contain the coordinates, their time derivatives, and in some cases, time
explicitly.

In classical mechanics, dynamical systems are deterministic – by knowing the initial state
of the system and its equations of motion, in theory, we can deduce its evolution as the
equations of motion have a unique solution. In practice, for simpler systems, it is indeed
possible to solve the equations of motion analytically. However, more complicated sys-
tems cannot be analytically solved. In this case, we could at best obtain approximate
solutions with various methods, including computer simulations. There are some dynam-
ical systems that exhibit chaos – even our computer simulations can fail to predict the
long-term behavior of such systems, since small differences in the initial state can result
in exponentially growing differences in the subsequent dynamics.

As various dynamical systems can be directly applied in engineering, they need to behave
predictably. There should be mechanisms in place to alter their evolution in a desired
way. That is why, in the 19th century naturally emerged Control theory, the field that
studies how we can create models that govern the behavior of the dynamical system. One
valuable approach for the control of dynamical systems, which we will use in this thesis,
is Reinforcement Learning.

1.2 Machine Learning

In the last decade, our technological progress reached the tipping point which allowed
Machine learning to succeed in various tasks with the potential of changing our life.

Machine learning is a subfield of Artificial Intelligence (AI). AI is the science and engi-
neering of making intelligent computer programs [1]. “Intelligent” means that they do
not simply follow hard-wired instructions in order to achieve a certain task. Instead,
the program should possess some kind of understanding of the task and act in such a
way as to reach a certain goal which was set by programmers. The purpose of Machine
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Figure 1.1: Moore’s law-like exponential increase of the computational capacity over time (com-
putations/second per computer). Figure from Ref. [2]

learning is to develop algorithms which use “training” data in order to “learn” how to act.
“Learning” means that they are improving their performance by receiving data.

Machine learning has yielded impressive results due to two main factors. Firstly, the
computational power of machines is increasing exponentially. According to Moore’s law,
the number of transistors per integrated circuit doubles every two years, in turn resulting
in exponential increase of the computational capacity of supercomputers (see Fig. 1.1).
Secondly, the Internet provided us with large amounts of information. “Big data” are
large datasets containing petabytes of information on a certain topic. They are difficult
for traditional analysis, but required for building intelligent systems.

Machine learning can be divided in three main paradigms – Supervised learning, Unsu-
pervised learning and Reinforcement learning.

In Supervised Learning, the algorithm is trained using a set of training examples,
consisting of inputs (“features”) and desired outputs (“labels”). The algorithm has to
infer a function that matches each input to the output by maximizing a “reward” function
/alternatively, minimizing a “cost” function/ that depends on the deviation between the
correct output and the one produced by the algorithm.

For example, to train an algorithm to recognize handwritten digits, each training example
will consist of an image containing a handwritten digit and a label – the digit correspond-
ing to the image. The program, during training, gradually learns the dependence between
images and digits.

In Unsupervised Learning, the program receives unlabelled input data. The goal of such
a program could be to find similarities between the data points it encounters. It would
either try to cluster or order the data, or it would have a goal to produce new data that
mimics the one it was trained on.

In Reinforcement Learning, the program functions as an “agent” which interacts with the
environment. Its actions affect the environment. We do not input pre-labeled desired

2



actions to the agent. Instead, a reward is given to the agent, in the form of a number
which should be maximized, depending on the state of the environment and its action.
The reward function is set in such a way as to be higher when a certain objective is
accomplished.

This training is similar to classical conditioning of intelligent animals. For example, if
we want to teach a dog to perform a certain trick, we could give it an award (e.g. food
or praise) each time the dog moves the right way. Over time, the dog will associate its
behavior with the positive “reinforcement”, performing the trick better with time.

1.2.1 Machine Learning Milestones

Although we have not yet developed artificial general intelligence, AI has outperformed
human intelligence in various tasks where it would be very difficult to program specific
instructions. In 1997, Deep Blue surpassed human-level chess by using a combination of
large databases of grandmasters’ openings and endgames, as well as brute force allowed
by its high computing power. The currently best playing chess systems, Stockfish and
Leela Chess Zero are using neural networks, which gives them additional improvement in
performance compared to Deep Blue, achieving an estimated ELO-rating of above 35001,
compared to below 2900 for the current best human player2.

As there is an average of 35 possible moves in Chess and the average length of a game
is 80 moves [3], algorithms based on brute force only are inefficient. However, there is a
game with even more possibilities which survived 18 years longer as a fortress of human
intelligence. In the game Go, there are around 250 legal moves and the game lasts about
150 moves, making it impossible for any brute force-based algorithm. Humans navigate
through this vast number of possibilities not only usng logic, but also creativity and
intuition, which are difficult concepts for a computer. However, in 2015, the program
AlphaGo won against the best human Go player. It uses a combination of tree search
and deep neural networks, which were trained using a combination of supervised learning,
using information from expert human players and Reinforcement Learning, by playing on
its own [4]. The current best Go engines, KataGo and Leela Zero, reached even higher
level of performance, with Leela Zero not requiring any human player input, and KataGo
requiring human games only for rating evaluation.

In the last years, we have witnessed major progress in even more human tasks such as
image and text analysis and generation. China actively uses facial recognition software in
many areas of life such as digital payments, hospital waiting rooms, housing complexes,
transportation systems and urban policing [5]. Image generation is currently in a state
where unsuspecting humans cannot differentiate between real and “deepfake” images [6].
Text generation programs can pass exams in various fields of study, producing sensible
natural human-like text and following instructions written in natural text [7].

Machine Learning is not only an interesting game-playing or text-writing tool. It has a
real impact on scientific and technological progress. Recently, a new sorting algorithm
was discovered by a self-learning RL agent, leading to an update to the standard C++
sort library, which is estimated to be used trillions of times a day [8]. In our quest for
using nuclear fusion as a renewable energy source, it could prove beneficial to use RL to

1
The ratings of the current best chess engines are listed at https://ssdf.bosjo.net/

2
The ratings of the best human chess players are available on the International Chess Federation site: https:

//ratings.fide.com/id.phtml?event=1503014
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control tokamak plasmas [9].

1.3 Reinforcement Learning in Physics

We will now take a look at some of the contemporary applications of Reinforcement
Learning in Physics.

1.3.1 Reinforcement Learning in Quantum Mechanics

The scope of AI applications in quantum technologies spans from interpreting measure-
ment data, estimating the properties of quantum systems, discovering quantum control
algorithms and discovering new quantum circuits and algorithms for error correction [10].

Preparation of ground states with Reinforcement Learning

In Quantum Mechanics, an important task we should learn to achieve is the preparation of
a many-body system in its ground state. This is required in various quantum computing
algorithms, as well as in quantum simulators, in order to study the fundamental properties
of many-body quantum systems. Reinforcement Learning can help in this area.

In the last years, researchers have used RL to prepare ground states of the quantum
Ising chain, whose state is represented as Matrix product state [11], search for the correct
parameters of the Quantum Approximate Optimization Algorithm (QAQA) [12], as well
as generalizing the algorithm (CD-QAQA) [13], optimizing it via RL for preparation of
spin chains.

In Ref. [14], a near-optimal driving protocol in a system of interacting qubits was found
using RL even in a state manipulation phase where this process is exponentially harder.
In Ref. [15], various quantum states were prepared using RL in a system of a quantum
harmonic oscillator coupled to an ancilla qubit. Their research can be experimentally
applied in trapped ions platforms. RL algorithms have been demonstrated to outperform
non-Machine Learning methods in preparing a desired quantum state when the problem
is discretized and scaled up [16].

RL was also used in the area of coherent transport, where it discovered a control sequence
that outperforms the “counterintuitive control sequence” [17]. Also, in Floquet systems,
RL has shown to take advantage of the micromotion dynamics which in the traditional
analysis remain neglected [18].

Reinforcement learning in Quantum Computing

We are approaching the inevitable end of Moore’s law for classical computers, as the sizes
of transistors approach the size of individual atoms. The next step of our technological
development is the construction of quantum computers. Currently, the greatest setback
of quantum computers is quantum decoherence, which causes unpredictable errors in
quantum computations. RL looks promising in this area as well, with numerous research
showing considerable progress. For instance, in Ref. [19], RL simultaneously optimizes the
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speed and fidelity of quantum computation against both leakage and stochastic control
error.

The development of error correction systems needs to take into account that we do not
possess the full information about errors. If we try to measure errors completely, this
would destroy the quantum information. Instead, we have access to so called “syndromes”
– partial error information, which is more difficult to interpret. In Ref. [20], an RL-based
decoder can suggest the best error correction to perform for any given syndrome, matching
the performance of hand-made algorithms. In simplified settings, RL-based decoders for
topological error-correcting codes were developed in Ref. [21].

However, quantum error correction generates new errors itself, which may make it un-
practical. This year, by implementing multiple innovations including RL, a real-time
quantum error correction was achieved at a level that the speed of error corrections is
now faster than the speed of new error generation [22].

Another area with active development in quantum computing is the design of new sets of
gates. The gate design can help minimize quantum errors. In Ref. [23], RL agents design
qubit gates which outperform hardware default gates and exhibit superior calibration-free
performance. In Ref. [24], researchers use RL to limit the number of required quantum
gates, which improves accuracy and simulation times in the presence of experimental
imperfections.

1.3.2 Reinforcement Learning in Dynamical Systems

Reinforcement Learning is generally well-suited for control of dynamical systems. Its
framework gives a natural way to frame control problems as RL problems. In control
problems, we need an external mechanism to act on a physical system. In Reinforcement
Learning, an RL agent produces actions on an environment [25]. This means that we can
directly identify the external machinery with an RL agent, and the physical system as an
environment.

However, for the traditional training of RL agents to control a dynamic system, there is a
requirement that the system itself does not change with time – the evolution of the system
state should depend on its current state only. If the environment changes with time, i.e.,
its evolution has explicit time dependence, we may need to generalize the current RL
algorithms, as will be discussed in this thesis.

In Ref. [26] there are shown the various ways current RL algorithms have difficulties in
time-dependent environments. Typically, time-dependent environments tackled by RL
depend on time adiabatically. That means that the time dependence is slow enough,
much slower than the time of one training episode, making the agent gradually adapt to
the newer environment. In Ref. [27], for example, a clever way of designing an “optimistic”
agent is suggested. It tries to predict the direction of change in the environment in future
training episodes. Similarly, Ref. [28] suggest a “prognosticator” – an RL agent that
optimizes its future performance. In Ref. [29], non-stationary Markov decision processes
are discussed, with the hypothesis of slowly changing environments. There are other
efforts in the theoretical development of "-Markov decision process models, which rely on
the hypothesis that the environments have small variations from being static [30].

Apart from these examples, in this thesis, we are interested in generalizing Reinforcement

5



Learning to systems with intrinsic nonadiabatic time dependence. This time depen-
dence manifests itself in the scope of a single episode, making it impossible for the agent
to adapt to a “modified environment” slowly. Instead, it has to learn the intrinsic time
dependence of the environment and produce optimal policies, taking into account both
the state of the system and time.

This thesis is organized as follows. In Chapter 2, we outline the foundations of Hamil-
tonian mechanics, starting from Newtonian mechanics, then introducing the Lagrangian
formalism, and finally, the Hamiltonian formalism. In Chapter 3, we introduce some
elements of quantum mechanics, starting from the foundations – states, observables, and
measurement, and lay down the notion of a two-level system. In Chapter 4, we introduce
Reinforcement Learning (RL) and the Policy Gradient algorithm in particular. In Chap-
ter 5, we apply RL to control four dynamical systems. The problems in 5.1 are about
controlling Hamiltonian systems, and the problem in 5.2 is a quantum problem, namely
to prepare a two-level system in a desired state.
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Chapter 2

Overview of Classical Mechanics

This chapter introduces the Lagrangian and Hamiltonian formalism in classical mechan-
ics, as we will be trying to control Hamiltonian systems in Chap. 5.1 and we will need
different coordinate systems and coordinate transformations.

2.1 Newtonian Dynamics

To describe the motion of a classical particle in 3D Euclidean space, we need a frame of
reference containing an origin we consider stationary, a coordinate system attached to it,
and a clock measuring time t. The simplest coordinate system is the Cartesian (x, y, z).

Then, the position vector of a particle is ~r = (x, y, z). The velocity of the particle is
defined as ~v = ~̇r = (ẋ, ẏ, ż), and the acceleration is ~a = ~̇v = (ẍ, ÿ, z̈). The “dot” means
derivative with respect to time.

In Newtonian mechanics, all particles in the Universe interact with forces ~F , which follow
Newton’s laws of motion:

1. In an inertial frame of reference, if no forces are acting on a particle, its velocity
vector is constant.

2. A force ~F acting on a particle causes acceleration ~a = ~F/m, where m is the mass
of the particle.

3. All pairs of particles (i, j) interact with forces of equal magnitude and opposite
directions.

We can define the momentum of the particle as ~p = m~v. In this way, m~a = ~̇p. Therefore,
Newton’s second law can be reformulated in this way: forces cause a change in the particle
momentum. Also, Newton’s third law implies that any interaction between particles does
not change the total momentum of the system of particles.

We define the kinetic energy of the particle as

T =
m~v

2

2
. (2.1)
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Using this definition, the change of the kinetic energy is

�T = m~v · d~v = m~a · ~vdt =
nX

i=1

~Fi · d~r = �W, (2.2)

which is the work done on the particle by all forces ~Fi acting on it.

A force ~F is conservative if the work W done on the particle by the force ~F is a function of
the initial ~r1 and final ~r2 positions of the particle, and does not depend on the intermediate
trajectory. For all conservative forces, we can define the potential energy V (~r), such
that W (~r1,~r2) = V (~r1) � V (~r2). In this way, if we only exert conservative forces on a
particle, its total energy E = T + V will be constant:

T2 � T1 = W12 = V1 � V2 ) T1 + V1 = T2 + V2. (2.3)

2.2 Lagrangian Mechanics

As �W = �dV = ~F ·d~r, the force can be expressed as a gradient of the potential energy:

~F = �~rV, (2.4)

Fx = �@V
@x

, Fy = �@V
@y

, Fz = �@V
@z

. (2.5)

The momentum can be expressed as the derivative of the kinetic energy with respect to
the components of the velocity:

@T

@ẋ
= mẋ = px;

@T

@ẏ
= py;

@T

@ż
= pz. (2.6)

Since the V depends only on the coordinates and T – only on the derivatives of the
coordinates, we can see that the equation of motion ~F = m~a of the particle is equivalent
to the Euler-Lagrange equation:

@L

@xi

=
d

dt

@L

@ẋi

, i = 1, 2, 3, (2.7)

where
L(~r, ~̇r, t) = T (~̇r)� V (~r) (2.8)

is called Lagrangian of the particle and (x1, x2, x3) = (x, y, z).

This equation has a new physical meaning – the particle follows the trajectory minimizing
the action functional

S(~r(t)) =

Z
t2

t1

L(~r, ~̇r, t)dt (2.9)

8



with fixed ends t1, t2. Indeed, if we vary the functional S, we will get

�S =

Z
t2

t1

�Ldt =

Z
t2

t1

3X

i=1

✓
@L

@xi

�xi +
@L

@ẋi

�ẋi

◆
dt

=

Z
t2

t1

3X

i=1

@L

@xi

�xidt +

Z
t2

t1

3X

i=1

@L

@ẋi

d�xi

=

Z
t2

t1

3X

i=1

@L

@xi

�xidt +
3X

i=1

@L

@ẋi

�xi

����
t2

t1

�
Z

t2

t1

3X

i=1

�xid

✓
@L

@ẋi

◆

=

Z
t2

t1

3X

i=1

✓
@L

@xi

� d

dt

@L

@ẋi

◆
�xidt,

(2.10)

which is zero for any variation of xi(t) iff all three terms in the integrand are zero, leading
to the Euler-Lagrange equations.

The particle chooses the trajectory with minimal action, but the action depends only on
the trajectory, not on the specific parametrization of the trajectory. This means that the
Euler-Lagrange equation is valid not only for the Cartesian coordinates (x1, x2, x3), but
for any generalized coordinates qi:

@L

@qi
=

d

dt

@L

@q̇i
. (2.11)

2.3 Hamiltonian Mechanics

Using the generalized coordinates, we can also define generalized momenta:

pi =
@L

@q̇i
. (2.12)

Considering that due to Lagrange-Euler equation,

ṗi =
@L

@qi
, (2.13)

the total differential of the Lagrangian can be written as

dL =
nX

i=1

✓
@L

@qi
dqi +

@L

@q̇i
dq̇i

◆
=

nX

i=1

(ṗidqi + pidq̇i). (2.14)

The Lagrangian is a function of qi and q̇i. However, we could apply a Legendre transfor-
mation to acquire a new function H = H(pi, qi). Notice that d(piq̇i) = q̇idpi + pidq̇i.

We define the Hamiltonian as

H(pi, qi) =
NX

i=1

piq̇i � L. (2.15)

This way,

dH =
nX

i=1

(q̇idpi � ṗidqi), (2.16)
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Figure 2.1: Polar coordinates

leading to the following Hamilton’s equations:

ṗi = �@H
@qi

,

q̇i =
@H

@pi
.

(2.17)

These equations are equivalent to the original equations of motion. However, they are
first-order differential equations, which means they are easier to solve numerically. We
will be using these equations in our simulations. Any system, which obeys Hamilton’s
equation, is called a Hamiltonian system.

Suppose the particle is only subject to a constant force ~F . Then, its potential energy can
be defined as V = �~F ·~r, since its work from any position ~r1 to ~r2 is W = ~F ·(~r2�~r1), not
depending on the exact path of the particle. If the particle is subject both to a potential
V (~r) and an external constant force ~F , the total Hamiltonian would be

H =
~p
2

2m
+ V (~r)� ~F · ~r. (2.18)

2.3.1 Polar coordinates

Consider a 2D space with Cartesian coordinates (x, y). The polar coordinates (⇢, ✓) of a
particle are defined as the distance to the origin of the coordinate system and the angle
between the direction of the x-axis and the direction to the particle. We can transition
from (x, y) to (⇢, ✓) using

x = ⇢ cos ✓,

y = ⇢ sin ✓.
(2.19)

The square of the velocity in polar coordinates becomes

~v
2 = ẋ

2 + ẏ
2 = (⇢̇ cos ✓ + ⇢(� sin ✓)✓̇)2 + (⇢̇ sin ✓ + ⇢(cos ✓)✓̇)2 =

= ⇢̇
2(cos2 ✓ + sin2

✓) + 2⇢̇⇢✓̇(sin ✓ cos ✓ � sin ✓ cos ✓) + ⇢
2
✓̇
2(sin2

✓ + cos2 ✓) =

= ⇢̇
2 + ⇢

2
✓̇
2

(2.20)
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This means that the Lagrangian has the form

L =
m⇢̇

2

2
+

m⇢
2
✓̇
2

2
� V (⇢, ✓). (2.21)

The radial and angular momentum of the particle are defined using the standard proce-
dure for generalized momenta (eq. (2.12)):

p✓ =
@L

@✓̇
= m⇢

2
✓̇,

p⇢ =
@L

@⇢̇
= m⇢̇.

(2.22)

The Hamiltonian we acquire in polar coordinates has the form

H =
p
2
⇢

2m
+

p
2
✓

2m⇢2
+ V (⇢, ✓) (2.23)

Hamilton’s equations in 2D polar coordinates. Now, an external force can again be added
to the Hamiltonian as an �~F .~r term. Let ~F = F⇢~e⇢ + F✓~e✓, where F⇢ and F✓ are the
components of the force in the ⇢ and ✓-directions respectively, and ~e⇢ and ~e✓ are basis
vectors with length 1. Then,

H =
p
2
⇢

2m
+

p
2
✓

2m⇢2
+ V (⇢, ✓)� F⇢⇢� F✓⇢✓, (2.24)

ṗ⇢(t) =
p
2
✓

m⇢3
� @V

@⇢
+ F⇢,

ṗ✓(t) = �@V
@✓

+ ⇢F✓,

⇢̇(t) =
p⇢

m
,

✓̇(t) =
p✓

mr2
.

(2.25)
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Chapter 3

Overview of Quantum Mechanics

This chapter introduces the foundational notions in quantum mechanics. It is also an
introduction to the ideas related to the two-level systems, which we will need in Chap-
ter 5.2

Unlike classical mechanics, in quantum mechanics, we cannot know the precise positions
and momenta of the particles simultaneously. Instead, we may know the probability �P

of a particle being in a region of space �V .

The probability density function is defined as

f(~r) = lim
�V!0

�P

�V
, (3.1)

the ratio between the probability of the particle being in the neighborhood of ~r to the
volume of that neighborhood.

It is experimentally established that quantum particles on small lengthscales exhibit wave-
like properties. A free particle with momentum p behaves like a wave with wavelength
� = h/p, where h = 6.626 ⇥ 10�34 J · s. Waves with frequencies ⌫ propagate in quanta
of energy E = h⌫. Supposing that we could determine the momentum of a particle
exactly, it would end up having an equal probability of being everywhere in the Universe,
behaving like a plane wave.

In the general case, we could know only the probabilities (or probability densities) of the
different possible values of observables (the measurable physical quantities). The whole
information we can know about a quantum system is given by its quantum state | i,
which, for one quantum particle can be represented as a wave function  (~r, t) evolving
with time according to a partial differential equation making  propagate as a wave.

3.1 Hilbert space

All quantum states are elements of a vector space H, equipped with an inner product,
making it a Hilbert space. In the Dirac notation, vectors in H are designated as |ai
(“ket” vector) and ha| (“bra” vector) designates the linear map from any vector |bi to the
inner product between |ai and |bi. The inner product is written as ha|bi (“bra-ket”) and
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obeys the following axioms:

8 |ai , |bi 2 H, 8� 2 C)
hb|ai = ha|bi⇤,
ha + b|ci = ha|ci+ hb|ci,
ha|�bi = �ha|bi,
ha|ai � 0, ha|ai = 0 () |ai ⌘ |0i .

(3.2)

Here, the symbol * stands for complex conjugation. The result of the inner multiplication
is a scalar, meaning that it does not depend on the representation of the vectors in the
Hilbert space. The norm of a vector in H is |a| =

p
ha|ai.

In the coordinate representation, the state is represented by a complex function  (~r, t)
called a wave function. The set of these wave functions can become a Hilbert space if we
define the inner product between two wave functions as h�1|�2i =

R
V
�
⇤
1(~r)�2(~r)d3

r.

The probability density of a particle with wave function  to be found in a point ~r is
| (~r)|2. A plane wave with frequency ⌫ and wavelength � moving in the ~n-direction has
the form

 (~r, t) = Ce
�i2⇡⌫t+i

2⇡
� ~n·~r

, (3.3)

where C is a normalization constant. If we substitute 2⇡⌫ = 2⇡E/h = E/~ and 2⇡/�~n =
2⇡|~p|~n/h = ~p/~ in the above equation, we get

 (~r, t) = Ce
� i

~Et+ i
~ ~p.~r, (3.4)

where ~ = h/2⇡ is called the reduced Planck constant.

This is the wave function of a free particle with energy E and momentum ~p, having an
infinite uncertainty of the coordinates, as | |2 = const.

3.1.1 Operators and states

From this wave function, we could extract the energy and momentum by taking its
derivatives with respect to time and coordinates:

i~ @
@t
 (~r, t) = i~

✓
� i

~E

◆
Ce

� i
~Et+ i

~ ~p.~r = E (~r, t),

�i~~r (~r, t) = �i~
✓

i

~~p
◆

Ce
� i

~Et+ i
~ ~p.~r = ~p (~r, t).

(3.5)

This means that the plane waves are eigenvectors of the linear operators i~ @

@t
and �i~~r

with eigenvalues E and ~p. These operators are respectively called energy and momentum
operators. In the coordinate basis,

Ê = i~ @
@t

, ~̂p = �i~~r. (3.6)

Analogously to Ê and ~̂p, for any observable A, there is a corresponding operator Â. The
eigenfunctions of Â are states |ai where the physical quantity has a definite value. The
eigenvalue of Â corresponding to state |ai is the value ↵ of the physical quantity.
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The operator ~̂r corresponding to the coordinates is simply multiplication by the coordi-
nate. Indeed, if we knew the exact coordinates ~r0 of a particle, its probability density
of being in ~r0 would be infinite, and outside of ~r0, the probability density is 0. Then,
the wave function corresponding to |~r0i in coordinate representation is �3(~r�~r0) and the
action of the operator on |r0i would be

~r�(~r � ~r0) = ~r0�(~r � ~r0)) ~̂r |~r0i = ~r0 |~r0i . (3.7)
The expectation value of a random variable with probability density function f(x), is
E[X] =

R1
�1 xf(x)dx. Therefore, the expected position of a particle in a quantum state

| i is

E[~r] =

Z

V

~r| |2d3
~r =

Z

V

 
⇤
~r d

3
~r = h |~̂r| i. (3.8)

In this notation, ~̂r acts on | i, and h | acts on the result. Note that by using the bra-ket
notation, we get a formula that will be valid in any basis.

The wave function itself can be derived from the ket-vector as  (~r) = h~r| i. Indeed,
in coordinate representation, h~r| i =

R
V
�
3(~r 0 � ~r) (~r 0)d3

r
0 =  (~r). Therefore, the

probability density of the particle being in ~r is |h~r| i|2.

All quantum states are normalized, meaning that h | i = 1. That is because the total
probability to observe a particle somewhere is 1 =

R
V

| (~r)|2d3
r = h | i.

All operators in quantum mechanics which correspond to observables are self-adjoint.
The adjoint of the operator A is an operator A

† such that 8 |�1i , |�2i 2 H ) h�1|Â†|�2i =
hÂ�1|�2i. If the Hilbert space is finite-dimensional, the operator can be represented as
a matrix, and A

†
ij

= A
⇤
ji

– the adjoint is the transposed and complex conjugated matrix.
An operator is self-adjoint if Â

† = Â.

It can be proven that all self-adjoint operators have real eigenvalues, which is important
because all physical quantities must have real values. It can also be proven that eigen-
vectors corresponding to different eigenvalues are orthogonal and for every self-adjoint
operator, we can use its eigenvectors to construct an orthonormal basis of the Hilbert
space. This result is known as the spectral theorem [31]. This is important for the
measurement in quantum mechanics to work properly, as described in the next section.

Another group of important operators in quantum mechanics are unitary operators. An
operator Û is unitary if Û

†
Û = Û Û

† = 1, where 1 is the identity operator: 1 | i =
| i. In the finite-dimensional case, it is represented as a unitary matrix, U

�1
ij

= U
⇤
ji
.

Unitary operators have the property of preserving the inner products between vectors
(and respectively, the norm of the vectors: hÛa|Ûbi = ha|bi). For example, if the Hilbert
space is R3 (the space of the usual 3-dimensional vectors with real components), the
unitary operators are the matrices of rotations and reflections.

In quantum mechanics, unitary operators can be used either for transformations between
coordinate systems or as evolution operators. If we “rotate” the coordinate system using
a unitary transformation, the new wave functions take the form | ̃i = Û | i and h ̃| =

h | Û †, and the operators are transformed as ˆ̃
A = ÛÂÛ

†, preserving all inner products
and physical quantities.

The evolution of a quantum system obeys the Schrödinger equation:

�i~ @
@t

| i = Ĥ | i , (3.9)
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where Ĥ is a self-adjoint operator called the Hamiltonian. We can evolve the wave
function from an initial state | (t0)i to a state | (t)i using the evolution operator
Û(t, t0):

| (t)i = Û(t, t0) | (t0)i . (3.10)

The Schrödinger equation will be satisfied if the evolution operator obeys the equation

�i~ @
@t

Û = ĤÛ , (3.11)

with the initial condition
Û(t0, t0) = 1. (3.12)

If the Hamiltonian does not depend on time, this equation can be formally solved as

Û = e
� i

~ Ĥt
, (3.13)

which means that the evolution operator is indeed unitary, as Û
�1 = e

iĤt/~ = U
†. In the

time-dependent case, one can arrive at a formal solution as a time-ordered exponential,
which is again unitary [32].

3.1.2 Fidelities and measurement

In classical mechanics, if two waves interfere, the new wave will be the superposition of
the two original waves. Let the displacements of the original waves at a certain point
be u1 = A1 cos(!t + �1) and u2 = A2 cos(!t + �2). The intensity of the original waves
is proportional to ū

2
1 ⇠ A

2
1 and ū

2
2 ⇠ A

2
2 respectively. However, the resulting wave has

intensity, proportional to ū
2 = A

2
1 + A

2
2 + 2A1A2 cos(�1 � �2) – instead of simply adding

the two intensities, there also appears an interference term.

Similarly, quantum interference is experimentally observed. A quantum state | i can be
a superposition of some orthonormal quantum states |�1i and |�2i: | i = c1 |�1i+c2 |�2i,
c1, c2 2 C. For the new state to be normalized, 1 = h | i = hc1�1 + c2�2|c1�1 + c2�2i =
|c1|2 + |c2|2. However, if a particle is in a superposition of two such states, the probability
of observing the particle in a certain position will be

| (~r)|2 = (c⇤1�
⇤
1+c

⇤
2�

⇤
2)(c1�1+c2�2) = |c1|2|�1|2+ |c2|2|�2|2+2Re(c1c

⇤
2�1(~r)�

⇤
2(~r)), (3.14)

containing a sum of the probabilities of the old states with coefficients |c1|2 and |c2|2,
which one may intuitively expect, as well as an interference term.

The probabilities of observing all other physical quantities follow a similar pattern. We
saw that the probability density of the particle being in ~r is |h~r| i|2, where |~ri is the
eigenvector corresponding to the eigenvalue ~r. For all observables A with operator Â, the
probability to measure a value ↵ for a quantum system in state | i, is |ha| i|2, where
Â |ai = ↵ |ai (if Â has a discrete spectrum, for operators with continuous spectrum such
as ~̂r, this would be the probability density). As Â is self-adjoint, this rule is consistent
with the fact that if a system is in a state with eigenvalue ↵1, there is no probability
to observe another eigenvalue ↵2 (its eigenvectors are orthonormal to the eigenvectors of
↵1). Also, for all normalized states, the sum of all probabilities adds up to 1.

Similar to the coordinates of a particle, the expectation value of any observable Â of the
quantum system in a state | i is h |Â| i.
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The quantity |h 1| 2i|2 is called fidelity of the states | 1i and | 2i. The fidelity can
be thought of as the degree of overlap or similarity between the two states. As the
quantum states are normalized, the fidelity can range from 0 to 1. If the two states are
orthogonal, h 1| 2i = 0. If the states are identical, h 1| 1i = 1. In the general case,
| 2i = c1 | 1i + c? | ?i ) |c1|2 + |c?|2 = 1)|h 1| 2i|2 = |c1|2  1. If one of the states
is an eigenstate of a certain observable, the fidelity gives us exactly the probability of
measuring the corresponding eigenvalue of the observable.

After measuring an observable A, we have |ha| i|2 probability of measuring ↵, where
Â |ai = ↵ |ai. If the result of the measurement is ↵, the quantum system will collapse
from | i to the state |ai. Then, any subsequent measurement of A will yield the same
value ↵.

The measurement and collapse of the wave function are important concepts in quantum
mechanics. We should note that performing a measurement in quantum mechanics means
that the quantum system interacts with the outside world. This means that firstly, if we
just think of a value of A and pretend that we measured the system to get this value, this
would not constitute a measurement and will not cause a collapse of the wave function.
Secondly, any interactions with the environment can lead to collapses if they are not part
of an experimental setup created with the purpose of measuring the system.

3.2 Two-level system

The simplest possible quantum system is the two-level system (qubit). Its states are
elements of a 2-dimensional complex Hilbert space. The “two levels” are an orthonormal
basis containing two elements, which we will call |0i and |1i. All other physical states
can be represented as

| i = c0 |0i+ c1 |1i , (3.15)
where c0, c1 2 C, and h | i = 1)|c0|2 + |c1|2 = 1.

Multiplying all kets by a global phase e
i↵ does not impact any physical quantities.

Starting from the space of all complex tuples C2 and considering the restrictions that
|c0|2 + |c1|2 = 1 and that (c0, c1) is identical to (c0ei↵, c1ei↵), the space of all distinct
quantum states ends up being the complex projective space CP2.

Two-level systems describe vastly different cases. The spin of all spin-1/2 fermions is
a two-level system with basis |"i, |#i – “spin up” and “spin down”. The polarization of
light can be decomposed to basis states |xi and |yi – horizontal and vertical polarization.
Qubits are the building blocks of quantum computers. Some quantum systems which are
commonly used in quantum computers are trapped ions and superconducting qubits. We
should note that such systems are not naturally occurring two-level systems. On their
own, they would have multiple states, but pair of states is isolated artificially to form a
two-level system.

3.2.1 Bloch sphere representation

There is a one-to-one correspondence between the complex projective space of the qubit
states CP2 and the points on a sphere S

2. Consider a sphere with a center in the origin
of the coordinate system. A point on the sphere is defined by its position vector ~n. It can
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Figure 3.1: Bloch sphere used for representation of a two-level quantum system. The north and
south pole of the Bloch sphere are the states |0i and |1i of the system, the rest of the points are
superposions of these states. ✓ is measured with respect to the north pole, and � - along the
equator, starting from x and moving anticlockwise.

be described using two spherical coordinates (✓,�). The polar angle ✓ is defined as the
angle between the “north pole” (the z-axis) and P . The azimuthal angle � is the angle
between the x-axis and the projection of P on the “equator” (the circle in the xy-plane).
With these coordinates,

~n =

0

@
sin ✓ cos�
sin ✓ sin�

cos ✓

1

A . (3.16)

The tuple (c1, c2) = (cos(✓/2), ei� sin(✓/2)) satisfies the condition |c1|2+ |c2|2 = 1, making
it a unique element of CP2. Moreover, every tuple (c1, c2) 2 CP2 is equivalent to a tuple
(c̃1, c̃2) = e

i↵(c1, c2) where ↵ can be chosen in such a way as to make c̃1 a real number.
Then, c̃2 is a complex number with a certain polar form c̃2 = ˜̃c2ei� and c̃

2
1 + ˜̃c22 = 1, which

means that we can write them in the form c̃1 = sin(✓/2) and ˜̃c2 = sin(✓/2). This way we
proved there is a one-to-one correspondence between CP2 and S

2.

The sphere S
2 which we can represent the qubit states on, is called a Bloch sphere. Using

the above parametrization,

| i = e
i↵ cos

✓
✓

2

◆
|0i+ e

i(↵+�) sin

✓
✓

2

◆
|1i = e

i↵

✓
cos(✓/2)

ei� sin(✓/2)

◆
. (3.17)

Here, we represented | i as a column vector, where the basis vectors take the form

|0i =

✓
1

0

◆
, |1i =

✓
0

1

◆
. (3.18)

On the Bloch sphere, |0i and |1i are positioned on the north and south pole, respectively.
Note that although they look like they are pointing in “opposite” directions on the Bloch
sphere, they are in fact orthogonal in the Hilbert space – their fidelity is |h0|1i|2 = 0.
The point on the x-axis, having state |xi, looks like it is in the “perpendicular” direction
with respect to |0i, but its state is |xi = (|0i + |1i)/

p
2, having fidelity |hx|0i|2 = 1/2

with |0i.
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3.2.2 Pauli matrices

Suppose our qubit is the spin state of a spin-1/2 particle. In this case, the points on the
Bloch sphere are pointing in the “direction” of the spin of the particle. |0i = |"i and
|1i = |#i are the “spin up” and “spin down” states. Each spin component sx, sy, sz has
an operator ŝx, ŝy, ŝz. The eigenvectors of ŝx, ŝy, ŝz should be the states where the spin
is pointing in the ±x, ±y, and ±z directions respectively. Their eigenvalues should be
±1/2 depending on the direction of the spin. In the basis of |"i and |#i, these spin states
have the form

|+xi =

p
2

2

✓
1

1

◆
, |�xi =

p
2

2

✓
1

�1

◆
,

|+yi =

p
2

2

✓
1

i

◆
, |�yi =

p
2

2

✓
1

�i

◆
,

|+zi =

✓
1

0

◆
, |�zi =

✓
0

1

◆
.

(3.19)

Therefore the operators of the spin components in this basis will be the matrices

ŝx =
1

2

✓
0 1
1 0

◆
, ŝy =

1

2

✓
0 �i

i 0

◆
, ŝz =

1

2

✓
1 0
0 �1

◆
, (3.20)

where the matrices

�̂x =

✓
0 1
1 0

◆
, �̂y =

✓
0 �i

i 0

◆
, �̂z =

✓
1 0
0 �1

◆
, (3.21)

are called Pauli matrices. We could combine the operators of the three spin components
to a vector operator ~̂s, and we could combine the Pauli matrices into a Pauli vector ~̂�.

The spin operators are self-adjoint: ~̂s † = ~̂s and ~̂�
† = ~̂�. The Pauli matrices are also

unitary: �̂x�†
x

= �̂y�
†
y

= �̂z�
†
z

= 1.

Spin magnitude and “direction”

Let us have an arbitrary spin state | i, whose Bloch sphere representation has spherical
coordinates ✓ and � and position vector ~n. The component of the Pauli vector ~̂� in the
direction of ~n is �̂n = ~̂� · ~n. If we act with this operator on | i in the |"i , |#i basis (see
Eqs. (3.21),(3.16),(3.17)), we get

~̂� · ~n | i =

✓✓
0 1
1 0

◆
,

✓
0 �i

i 0

◆
,

✓
1 0
0 �1

◆◆
·

0

@
sin ✓ cos�
sin ✓ sin�

cos ✓

1

A
✓

cos ✓

2
e
i� sin ✓

2

◆
=

=

✓
cos ✓ sin ✓(cos�� i sin�)

sin ✓(cos�+ i sin�) � cos ✓

◆✓
cos ✓

2
e
i� sin ✓

2

◆
=

=

✓
cos ✓ sin ✓e�i�

sin ✓ei� � cos ✓

◆✓
cos ✓

2
e
i� sin ✓

2

◆
=

=

✓
cos ✓ cos ✓

2 + sin ✓ sin ✓

2
sin ✓ cos ✓

2e
i� � cos ✓ sin ✓

2e
i�

◆
= | i .

(3.22)

This spin state is an eigenstate to the �̂n operator, so the component of the spin in the
direction of ~n has an exact value of 1/2. By illustrating the quantum spin on the Bloch
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sphere, it appears like the spin has a definite direction. However, if we try to measure
a different component of the spin, we could not tell with absolute certainty what the
result will be, and the result will again be one of the two options 1/2 and �1/2. For
example, if we measure ŝz, we have probability |h" | i|2 = cos2 ✓/2 to measure spin
up, and |h# | i|2 = sin2

✓/2 to measure spin down. The expectation value of the spin
is h |ŝz| i = 1/2(cos2 ✓/2 � sin2

✓/2) = 1/2 cos ✓, which means that by looking at the
expectation values, the spin still looks like a vector pointing at a direction ✓ with respect
to the z-axis.

Quantum gates

Suppose our two-level system is a qubit used in a quantum computer. To manipulate a
qubit, the quantum circuit can perform unitary operators to the qubit state, which are
called quantum gates. They are unitary in order to preserve the norms of all qubit
states. Some examples of gates used in quantum circuits for single qubits are the Pauli
matrices themselves. Another example is the phase shift gate

P̂ (✓) =

✓
1 0
0 e

i�

◆
, (3.23)

which as a transformation on the Bloch sphere looks like a rotation of the azimuthal
angle. The Hadamard gate

Ĥ =
1p
2

✓
1 1
1 �1

◆
(3.24)

performs a ⇡-rotation around the point � = 0, ✓ = ⇡/4, transforming |0i $ |xi, |1i $
|�xi, and |yi $ |�yi. This gate has applications in different quantum computing algo-
rithms. However, we will not use it elsewhere in the thesis, so the symbol Ĥ will be used
for the Hamiltonian.

In Chap. 5.2, we will be using rotation operator gates, which are the exponentials of
the Pauli matrices:

R̂x(✓) = e
�i�x✓/2, R̂y(✓) = e

�i�y✓/2, R̂z(✓) = e
�i�z✓/2. (3.25)

We can calculate the explicit form of these matrices:

R̂k = exp

✓
�i
✓

2
�̂k

◆
=

1X

n=0

�i
n
✓
n
�̂
n

k

2nn!
=

=
1X

n=0

(�1)n✓2n1

22n(2n)!
+

1X

n=0

�i
(�1)n✓2n+1

�̂k

22n+1(2n + 1)!
=

= cos

✓
✓

2

◆
1� i sin

✓
✓

2

◆
�̂k,

(3.26)

where we have used that

e
x =

1X

n=0

x
n

n!
; cos x =

1X

n=0

x
2n

(2n)!
; sin x =

1X

n=0

x
2n+1

(2n + 1)!
; �

2
k

= 1. (3.27)
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In the three cases (x, y, z), we obtain

R̂x(✓) =

✓
cos(✓/2) �i sin(✓/2)
�i sin(✓/2) cos(✓/2)

◆
,

R̂y(✓) =

✓
cos(✓/2) � sin(✓/2)
sin(✓/2) cos(✓/2)

◆
,

R̂z(✓) =

✓
e
�i✓/2 0
0 e

i✓/2

◆
,

(3.28)

In Chap. 5.2, we will denote the inverse matrices as R̂�x(✓) = R̂
�1
x

(✓) = R̂x(�✓), R̂�y =
R̂

�1
y

and R̂�z = R̂
�1
z

.

Spinors On the Bloch sphere, these matrices perform rotations around the x, y, and
z-axis, respectively. The parameter ✓ in R̂(✓) corresponds exactly to the angle of rotation
on the Bloch sphere. However, we can notice that these matrices, which are in the basis
of |0i and|1i, contain trigonometric functions with argument ✓/2, which looks like they
perform only half of the necessary rotation. This is due to the fact that the spin states | i
are not vectors in the physical sense, but are instead spinors. If we apply a 2⇡ rotation
on such a spinor, the result would be

R̂k(2⇡) | i = cos⇡ | i � i sin ⇡�̂k | i = � | i , (3.29)

meaning that the spinor has transformed into the “opposite” spinor. In fact, the spinor
acquired a global phase ⇡, which does not change its observables.
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Chapter 4

Reinforcement Learning Overview

4.1 Reinforcement Learning Framework

Machine learning is useful in optimization problems such as dynamic control. Its bene-
fits compared to traditional control algorithms are the ability to generalize and therefore
behave properly in different settings, and the ability to perform well in noisy environ-
ments [33]. We will introduce the basic terminology required to translate a dynamical
control problem into a Reinforcement Learning (RL) problem.

In RL, the physical system we need to control is interpreted as an environment. The
state of the physical system is called a state of the environment. The environment can
proceed to different states based on the way we control it. In the RL language, there
are different possible actions that the agent can take which would lead the environment
to different states. The RL agent is a program that receives the state as an input and
produces an action as an output according to a policy. The policy can be thought of as
a strategy followed by the agent. The actions should be chosen in such a way that the
physical system will exhibit certain behavior that would be of interest to us. In order
to learn, the agent should also receive feedback in the form of a reward. We should
choose the reward so that it would be maximal when the environment is close to the
desired goal. During training, the agent updates its policy in such a way as to receive
higher rewards [34]. This feedback loop is shown in Fig. 4.1. We will now give more strict
definitions of these terms.

4.1.1 States, actions, rewards

The environment consists of a state space S, action space A, reward space R, and a set
of rules specifying the state dynamics. The state space S is the set of all the possible
states, where a state st comprises the values of all degrees of freedom of the system at a
certain moment of time. For example, in a classical dynamical system, the state of the
environment would be (qi(t), pi(t)). In a quantum system, it could be a representation of
the quantum state | i, or if we do not possess the full information about the quantum
system, it would be the density matrix.

The action space A consists of all the possible actions a which can be taken. The action
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π (a, s)

agent

environment

s  s'→

action

a

reward

r

state

  s

Figure 4.1: Typical feedback loop in Reinforcement learning. The RL-agents provides actions
according to its policy, changing the state of the environment. The environment provides rewards
so that the agent would refine its policy.

determines the probability
P (s0|s, a) (4.1)

of entering a new state st+1 = s
0. The Markov property states that this probability

can depend only on the previous state st = s and the action at = a taken at that time
step.

The reward
rt+1 = r(st, at, st+1) (4.2)

is a function of the current state of the environment (in the general case of a Markov
Decision Process, it can also depend on the previous state and action). The reward
function r is usually not inherent to a physical system. We add it by hand in a way that
corresponds to our goal – when the system is near the desired state, the rewards should
be higher.

The environment is interacted with during an interval of time called an episode. The
episode is discretized in a finite number of time steps labeled by t. The total number of
time steps T is called the length of the episode. The sequence

⌧ = (s0, a0, s1, a1, ...sT ) (4.3)

is called a trajectory.

Such a control process, containing the states S, actions A, rewards R, and dynamics
determined by the probabilities P (s0|s, a), is called a Markov decision process (Fig. 4.2).
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Figure 4.2: Structure of the Markov Decision Process. The action and current state determine
the probabilities of entering the next state. Depending on the state the environment entered, it
receives a certain reward.

4.1.2 Returns and policy

The agent will be trying to maximize the sum of all rewards it expects to receive after
its action. Therefore, it is useful to define the return as

Rt =
TX

t0=t

rt0+1. (4.4)

As we will set the environment in an initial state at t = 0 and expect the agent to
obtain maximal rewards during the whole episode, the performance can be evaluated by
the return at t = 0, which is often just called return. It is a function of all future states
and actions and constitutes an average over the policy and the transition probability.

The agent is a program that produces actions according to a policy and updates the
policy according to the received rewards.

The policy ⇡ is a function that inputs the environment state and outputs a probability
distribution of the different actions. We will denote ⇡(at|st) the probability of choosing
action at if the environment is in state st. The policy is optimal if it reaches the maxi-
mum of the expected return. In order to formalize this statement, we need a few more
definitions.

The discounted return is

Gt =
TX

k=t+1

�
k�t�1

rk. (4.5)

The discounting factor �  1 allows us to use RL in situations where the episode is
arbitrarily long. The case � = 1 corresponds to the usual return.

The value function is

v⇡(s) = E⇡[Gt|St = s] = E⇡

"
TX

k=0

�
k
rt+k+1|St = s, At = a

#
. (4.6)

23



This is the expected (discounted) return which would be achieved by using policy ⇡

starting from state s at time t. It is a function of the state we are in, so it is often called
a state-value function [34, 35]. The idea is that v⇡(s) would be higher for states which
are near the goal since staying near the goal would give us higher rewards.

Action-value function is

q⇡(s, a) = E⇡[Gt|St = s, At = a] = E⇡

"
TX

k=0

�
k
rt+k+1|St = s, At = a

#
. (4.7)

This is the expected return achieved by ⇡ if we start at s and take action a. We emphasize
that it depends on the action. If an agent knows q⇡(s, a) perfectly for all actions in a
given state, then it would know the best action from the given state, which would be the
action with maximal q⇡. If we have a discrete number of states and actions, then for a
fixed strategy, v⇡ can be represented as a vector of the expected returns of all different
states, and q⇡ – as a matrix of the expected returns of all states, taking all actions.

The optimal policy ⇡⇤ is the one that achieves the highest possible expected return
among all policies, for each initial state s 2 S. Then, the state-value function is the
optimal state-value function

v⇤(s) = max
⇡

v⇡(s), (4.8)

and the action-value function is the optimal action-value function

q⇤(s, a) = max
⇡

q⇡(s, a) (4.9)

for all s 2 S, a 2 A.

4.2 Neural Networks

Suppose we have to teach an agent to play a video game. The game is a complex
environment whose state is a collection of pixels and its reward is the score of the game.
In the ideal case, the agent would have infinite memory and time to try all possible actions
and eventually construct a multiple-dimensional vector v⇡(s) containing the expected
total score that the player would receive after settling on each of the states s. It would
also construct a multi-dimensional matrix q⇡(s, a) with the expected scores achieved by
taking all different possible actions. And it would construct a multi-dimensional matrix
⇡(a, s) containing probabilities for taking each possible action from each possible state.
This would be very ineffective and infeasible in practice. Firstly, even if this discrete
state space, new dimensions (e.g. a pixels) lead to exponential growth of the state space.
This means that in practice, it would be impossible to visit the whole state space in order
to calculate the whole state-value and action-value matrices. Moreover, in a continuous
setting such as the phase space of a classical system or the Hilbert space in the case of
a quantum system, all possible states would be infinite, making this approach even more
absurd.

Hence, we need to approximate the policy (alternatively, the value function) using some
type of a variational ansatz. We cannot just assume linear dependence between ⇡, a,
and s, since in practice the relation between the states, returns, and optimal actions is
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Figure 4.3: a) A single neuron. The outputs from the previous layers xj are inputs of the neurons
in the current layer. b) The policy ⇡(a|s) can be approximated with a neural network. Its input
is a representation of the state st and the output is a vector of probabilities ⇡(a|st) for all actions
a.

nonlinear. In order to approximate the complicated function ⇡(a, s) efficiently, we can
use neural networks. Neural networks are known to be universal approximators [36].

A fully-connected neural network, as seen in Fig. 4.3b), contains multiple layers, each
layer containing multiple neurons. The number of layers in the network is called depth.
The number of neurons in a layer is called width of the layer. A neuron is a simple
function of multiple parameters. For the k-th neuron in an arbitrary layer, this function
has the form

yk = �

 
mX

j=0

wkjxj + bk

!
. (4.10)

where yk is the output of the k-th neuron in a layer. It is produced from the input values
xj which are the outputs of the previous layer neurons (see also Fig. 4.3b). The width of
the previous layers is m. The parameters wkj and bk are called weights and biases, on
which ultimately the policy depends. The function � is nonlinear, which is necessary in
order to have any benefit in including multiple layers [37].

The most often used nonlinear functions � are the logistic function �(x) = (1 + e
�x)�1

and the rectified linear unit (RELU) �(x) = max(0, x). Also, if we want the final layer to
give us probabilities for different actions, it needs to have such function as to guarantee
that the sum of all outputs will be equal to unity, and that no probabilities are negative.
This is achieved by a softmax layer,

�(x1, ...xm)i =
e
xi

P
m

j=1 exj
. (4.11)

As some actions will gradually be discarded, their probabilities should become very small.
The softmax layer will keep track of the logarithms of the probabilities, making it suitable
for retaining small probabilities with good precision.
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In the most general case, the neural network has an input vector x and an output vector
y = y(x, ✓), where ✓ are all of the parameters (weights and biases) of the neural network.
In order for the neural network to learn, we need to specify a cost function C(✓) that
quantifies the performance of the neural network. We will then try to minimize it using
gradient descent,

✓t+1 = ✓t � ⌘r✓C(✓t), (4.12)
where ⌘ is a small parameter. After starting from a random distribution of the parameters
✓, we would slowly “descend” to the minimum of the cost function.

Typical gradient descent algorithms, called “optimizers”, are Stochastic Gradient Descent
(SGD), the Momentum method and Adam. SGD will always update the parameters ✓
in the direction of the current gradient using the same step size. By using momentum,
gradients at past timesteps are also taken into account in an update of the parameters.
This reduces the variance of the updates. The Adam algorithm also uses a second moment
of the gradients in order to adapt its learning rate, leading to better convergence.

Neural networks allow gradients to be taken computationally easily. For more detailed
explanations on gradient descent in neural networks we refer the reader to [36].

Ideally, the cost function depends on all different possible inputs and desired outputs.
However, that would not be computable. In practice, the cost function is approximated
using only a batch (a small number) of different inputs. If we have a measure of the
performance of a single input-output pair ci = ci(yi,goal,xi), then

C /
X

i2batch

ci. (4.13)

This allows faster computation of the gradients. In order to use the information from a
maximum number of input-output pairs, each update ✓t ! ✓t+1 is made using a different
batch. Using batches has other advantages such as serving as regularization. We refer
interested readers to [37].

4.3 Policy Gradient

There are different RL algorithms to find the optimal policy ⇡⇤. The common idea is that
the ansatz policy is a function of a lot of parameters ✓. The parameters can be varied
during training to different values ✓ ! ✓

0 in such a way as to achieve a better policy ⇡0 (in
the sense that the value function is higher) until gradually reaching the optimal policy.

We will now consider one specific instance of a Reinforcement Learning (RL) algorithm,
Policy Gradient (PG), as we will be using it in our simulations. Some RL algorithms try
to approximate the value function using neural networks. In Policy Gradient, the policy
is learned directly using a neural network.

The input of the neural network is the state s, and the output is a policy ⇡, as can be seen
in Fig. 4.3. The objective that the neural network should optimize is J(✓) = v⇡(✓), where
v is the action-value function (4.7). Note that the RL objective is to find the strategy
with the greatest return, so if we use gradient descent, the cost would correspond to
�J(✓). The problem is that we do not know v⇡ directly, so we need to approximate it
using a batch of trajectories. Note that we are not just seeking a good approximation for
v⇡. As we are doing optimizations with gradient descent, we are changing the policy in
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the direction of its gradient. Therefore, we actually need a good approximation for the
gradient of v⇡.

Luckily, there is a neat way to approximate rJ(✓) using the Policy Gradient Theorem:

rJ(✓) /
X

s

µ(s)
X

a

q⇡(s, a)r⇡(a|s, ✓), (4.14)

where µ is the probability distribution of the states occurring in the trajectories if we use
policy ⇡. The proof of this theorem can be seen in Ref. [34].

4.3.1 The REINFORCE algorithm

The idea of the approximation will be to replace the expectation value over states
P

s
µ(s)

with a Monte Carlo (MC) sample of the trajectories. We have

r✓J(⇡✓) /
X

s

µ(s)
X

a

q⇡(st, a)r✓⇡✓(a|st) (4.15)

= E⇡

"
X

a

q⇡(st, a)r✓⇡✓(a|st)
#

(4.16)

= E⇡

"
X

a

q⇡(st, a)⇡✓(a|st)
r✓⇡✓(a|st)
⇡✓(a|st)

#
(4.17)

= E[q⇡(st, at)r✓ ln ⇡✓(at|st)].

We used that under the expectation sign, it does not matter if we use the expected
action according to the policy or the actual action in the sample: E⇡[

P
a
f(a)⇡✓(a|st, )] =

E⇡[f(at)]. Also, r ln x =
rx

x
.

Now the expectation of the q-function can be replaced with the actual reward in the
sample, and instead of taking expectation values, we can take an average:

r✓J ⇡ r✓

1

NMC

NMCX

j=1

TX

t=1

Gt(⌧
j) ln ⇡✓(a

j

t |s
j

t) = r✓J
0
. (4.18)

We have used that after the returns were generated, they are constant with respect to
✓. Therefore, we can move the gradient in front of the averaging. In that way we now
replace the real loss function �J with a pseudo loss function �J

0:

J
0 =

1

NMC

NMCX

j=1

TX

t=1

Gt(⌧
j) ln ⇡(aj

t |s
j

t , ✓), (4.19)

which has approximately the same gradient (up to a factor that can be absorbed in the
step ↵ of the gradient descent) and can be calculated directly.

This gives us the simplest working PG algorithm called REINFORCE [34]. For each
episode, the agent will act with policy ⇡ on NMC copies of the environment. After the
environment produces the rewards r, we can calculate the returns G and update the
policy by updating the parameters of the neural network, ✓0 = ✓ + ↵r✓J

0.
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Algorithm 1 Pseudocode for the REINFORCE algorithm [34].
1: initialize ✓
2: for each episode do
3: for each timestep t do . Generate the episode
4: generate action at following ⇡✓(·|st)
5: act on the environment to get st+1 and rt+1

6: end for
7: for each timestep t do
8: G 

P
T

k=t+1 �
k�t�1Rk . Calculate the returns

9: ✓  ✓ + ↵�tr✓ ln⇡✓(at|st) . Update ✓
10: end for
11: end for

4.3.2 Adding Baseline to the REINFORCE algorithm

The REINFORCE algorithm can be further improved in several directions. First, the
expectation value of the gradient would not change if we include an arbitrary function
b(s) called a baseline:

X

a

b(s)r✓⇡✓(a|s) = 0 )
X

s

µ

X

a

q⇡r✓⇡✓ =
X

s

µ

X

a

(q⇡ � b)r✓⇡✓. (4.20)

This means that in the end, we could also add a baseline to the pseudo loss which would
not change the expectation value of the gradients. However, we can choose b so that the
variance of the gradient would be smaller. This would give better approximations of the
gradients. A good practical baseline that we use in our algorithms is the averaged return
over the sample bt =

1

NMC
Gt(⌧j). The pseudo loss with baseline has this form:

J
0(✓) =

1

NMC

NMCX

j=1

TX

t=1

ln ⇡✓(a
j

t |s
j

t) (Gt(⌧j)� bt) . (4.21)

4.3.3 Regularization and Policy Entropy

The second improvement to the algorithm is adding regularization. This is necessary
for stability issues – neural networks are prone to the exploding gradients or vanishing
gradients problem. In our problems, we needed to combat mainly the exploding gradients
problem by using L2 regularization [38].

Also, regularization is needed to increase exploration while learning. In order for the
agent to find the optimal strategy in the long run, it has to observe various different
strategies in the short run. By naively following the greatest ascent of the reward it
would explore less. Suppose the agent performs with high probability relatively good
(although not optimal) actions. By moving in the direction of the highest return, it will
perform these actions with even higher probability until the policy converges to a delta
function, meaning that the agent will always perform the same actions.

Optimizing exploration can be achieved by adding another term in the pseudo loss which is
proportional to the entropy of the probability distribution ⇡. By increasing the entropy
of its strategy, the agent has the chance to encounter more different trajectories.
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The Shannon entropy of the policy ⇡ (since ⇡ is a probability distribution) has the form

H(⇡✓(·|st)) = �
X

a

⇡✓(a|st) ln ⇡✓(a|st). (4.22)

Let us understand why increasing entropy leads to more exploration. Suppose we are
interested in a fixed state s and we have n different possible actions a1, a2, ...an. An
example “delta function” (also called greedy) strategy would be

⇡(ai|s) = �i1 =

(
1, i = 1

0, i 6= 1
, (4.23)

which has entropy H(⇡(·|s)) ! 0. However, If we perform an "-greedy strategy, that is,
having 1�" probability to perform the first action and " probability to perform a random
action:

⇡(ai|s) = �i1 =

(
1� "n�1

n
, i = 1

"

n
, i 6= 1

, (4.24)

it would have entropy

H(⇡(·|s)) = �
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n

◆
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when 0 < " < 1, which means that the entropy is always increasing if we increase the
probability of choosing a random action.

Finally, if we choose each action with equal probability ⇡(ai|s) = 1/n, the entropy would
be H(⇡(·|s)) = ln(n) which is the highest possible entropy for n options.

We can add the entropy to the pseudo loss with a coefficient that would best suit the
specific task. We may call this parameter temperature. The resulting pseudoloss will
be

J
0(✓) =

1

NMC

NMCX

j=1

TX

t=1

ln ⇡(aj

t |s
j

t , ✓)

 
Gt(⌧j)� ��1
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j

t |s
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t)� bt

!
. (4.27)
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Chapter 5

Reinforcement Learning to Control
Intrinsically Nonadiabatic Dynamical
Systems

In this chapter, we apply Reinforcement Learning (RL), which we introduced in Chap-
ter 4, to find the optimal control policy of different dynamical systems. More specifically,
we use the Policy Gradient (PG) algorithm, defined in Section 4.3. Although RL is widely
used in dynamical control, it is applied in situations where the dynamics of the system
only depend on its coordinates and the external control. It is also applied in environ-
ments that change with time adiabatically, such as the “slowly changing environments”
in Ref. [29]. Other examples of similar research are discussed in Sec. 1.3.2. The scenario
in these cases is that the environment becomes slightly different in subsequent episodes
of the training and the agent has to adapt to learning the new environment, leading to
the ideas of the “optimistic” agent in Ref. [27] and the “prognosticator” in Ref. [28].

By contrast, here we extend the scope of Reinforcement Learning to systems whose
dynamics change with time significantly within a single episode. We will see that the
RL-algorithms can fail without intrinsic knowledge of the time. On the one hand, such
environments cannot be considered Markov Decision Processes, as their dynamics do not
solely depend on the state. Also, time-agnostic RL-agents are restricted to taking the
same action (or distribution of actions) in the same environment state. This can make it
impossible to follow the optimal policy if it is time-dependent.

We will first look at a simple situation where the environment changes with time but
the optimal policy does not (cf. the potential well in Section 5.1.1). Then, we move on
to more complicated environments where changes of the environment with time require
that the optimal policy depends on time as well (cf. a double well in Sec. 5.1.2 and a
two-dimensional potential in Sec. 5.1.3). We then consider a quantum two-level system
in Sec. 5.2, whose optimal preparation policy is also time-dependent. Time-agnostic RL-
agents are more prone to failing at such tasks, requiring modifications to the algorithms
so that they will incorporate information about time.

All of the programs in this section were written in Python. The differential equations
simulating the dynamics of the classical systems (considered in Sec. 5.1) were solved
using a Runge-Kutta method of order 8(5,3) [39] in the SciPy library. The gradients
in the neural networks were computed automatically using the JAX library [40]. The
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full codes required for the simulations are stored on https://github.com/gmaleksand/
time-dependent-rl.

5.1 Dynamical Control Case Studies in Classical Systems

We will be describing the classical systems with Hamiltonian Dynamics, as introduced in
Chapter 2.3 and control them using external forces.

5.1.1 Single Potential Well

Problem Setup

A particle with mass m is contained in a field with potential energy

V (x, t) = � A(t)

cosh x

w(t)

, (5.1)

where
A(t) = A0 + A1 sin(!1t) (5.2)

defines a sinusoidal time-varying strength of the potential with amplitude A1 and fre-
quency !1, about the constant offset value A0;

w(t) = w0 + w1 sin(!2t) (5.3)

determines the width of the potential well which again varies periodically with time with
frequency !2 and amplitude w1, about the mean value w0. An example plot of this
potential for a fixed moment of time is given in Figure 5.1(a).

The shape of the potential is stretched in the V direction by changing A(t), making the
well deeper or shallower, and w(t) changes the width of the potential well. To make
the potential static, we can set w1 = 0 and A1 = 0. Setting w1 = 0 excludes the time
dependence of the width and A1 = 0 excludes the time dependence of the height of the
potential well, respectively. As we will see later, the static system would be easier to
control using the RL framework.

In the static case (A1 = 0, w1 = 0) we can easily visualize the phase portrait of the
particle, as shown in Fig. 5.1(b). Near the minimum, it looks like the phase portrait of
a simple harmonic oscillator, and it has free solutions at high energies, resulting in open
orbits.

We now consider the following control problem: By manipulating the system using an
external constant force F directed leftwards or rightwards, get the particle to escape the
potential well and approach infinity, as shown in Fig. 5.1.

Adding this control to the system, its dynamics are defined by the following equations of
motion:

ṗ(t) = �A
tanh(x/a)

a cosh(x/a)
+ F,

ẋ(t) =
p

m
.

(5.4)
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Figure 5.1: a) Plot of the potential energy of the particle at t = 0. The particle is initialized
at rest at the minimum (x = 0) and the goal is to escape the potential well and move towards
infinity using a constant force F directed leftwards or rightwards. The dashed lines show the
potential at the extreme widths and amplitudes. b) Phase portrait of the simple potential well
with no time dependence and without external control (plotted in blue). For comparison, the
gray circles correspond to the phase portrait of a simple harmonic oscillator with frequency
! = 1 s�1. Constants in the plots: A0 = 1 J, w0 = 1 m, A1 = 0.5 J, w0 = 0.2 m, m = 1 kg.

The force F is chosen small enough so that we cannot make the particle escape by only
applying it in one direction. However, it is useful to think of a theoretical strategy
as a benchmark to the RL performance. The theoretical solution to the control problem
we suggest is the following. In order for the particle to escape from the potential well,
we can always apply forces in the direction of motion so that its energy would always
increase. In that way, the particle would eventually have enough energy to reach infinity.
This strategy has an additional benefit – it should work whether the width and height of
the potential well change with time or not. A similar problem and solution are discussed
in Ref. [34] as a “mountain car problem”.

RL approach for the time-independent system

To cast this problem within the RL framework, we need to define the state space, ac-
tion space, and reward space. The physical system described above is a deterministic
environment, whose RL states can be defined as the physical states of the phase space,
which means that a state is s = (x, p) – the coordinate and momentum of the particle.
Initially, the particle is at rest in the minimum of the potential well, i.e., the initial state
is s0 = (0, 0).

The RL agent can take one of two actions: a constant force directed leftwards or right-
wards, so A = {�F, +F}. We set the reward to be r = |x|, so that the further away the
agent is from the minimum, the higher reward it receives, which is in line with the goal
of approaching an infinite distance from the center of the potential well. We are using
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Figure 5.2: Performance of the RL agent in the time-independent simple potential well. a)
phase diagram of the controlled particle, b) coordinate of the controlled particle as a function of
time. The blue trajectory corresponds to a particle controlled by the RL agent, and the black
trajectory - particle controlled by the theoretically suggested strategy. We notice that the agent
behaves similar to the expectation, although the theoretical strategy is still better. c) strategy
learned by the agent. The ploted value is the probability to act with force in leftwards direction.
d) training curve of the agent and the dashed line is the return acquired by the theoretically
optimal strategy. Constants for the simulation: m = 1 kg, A0 = 1 J, A1 = 0, w0 = 1 m, w1 =
0,!1 = 2 s�1,!2 =

p
2 s�1, F = 0.1 N.

discretized time steps and cut off the episode to a finite length which is chosen to be long
enough so that the particle can reach a place where the potential energy will be negligible.
However, the length of the episode should not be too long so that the trajectory will not
be dominated by the free movement. The exact discretization is shown in Table A.2.

We are searching for the correct policy using the Policy Gradient algorithm with hy-
perparameters described in Table A.9. In the fixed case, we observe that the algorithm
found a policy that resembles our physical intuition and received a similar return to the
theoretical solution. We can see its performance in Fig. 5.2.

RL approach for the time-dependent problem

Now, let us add the time dependence to the system. Since the static policy works in the
time-dependent environment, the same agent can learn to escape the potential well even

33



if we do not give it explicit information about time, as can be seen in Fig. 5.3. However,
we can modify our algorithm in two different ways so that it can incorporate the time
dependence. We do this by complementing the state s = (x, p).

The simpler way we can modify the state is to include the phases !1t and !2t of the varying
strength and width of the potential. We observe that if the agent receives states in the
form s = (p, x, sin(!1t), sin(!2t), this additional information helps it to learn a strategy
that performs somewhat better than the strategy learned without any information about
time. The result is shown in Fig. 5.3. However, we should be wary of this procedure.
Although it is reasonable that a controlling agent should have information about time,
the information about !1 and !2 is specific to the system we want to control and may
not be directly available.
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Figure 5.3: Performance of the different agents in the time-dependent simple potential well.
Black: theoretical strategy (F > 0 () p > 0), red: agent receiving only the phase space state
s = (p, x), green: agent receiving time in the form sin(!1t) and sin(!2t), blue: agent receiving
t through an extra cos-layer. a) shows the phase diagrams of the controlled particle, b) – the
position of the particle as a function of time, and c) – the training curve of the different agents.
As the time-agnostic agent (red) failed to learn in a stable way, the plotted trajectory is its most
successful during training. The agent using our modified neural network (blue) managed to
find the best possible control strategy among all agents as it escapes the potential well earliest.
Constants for the simulations: m = 1 kg, A0 = 1 J, A1 = 0.5 J, w0 = 1 m, w1 = 0.2 m,!1 =
2 s�1,!2 =

p
2 s�1, F = 0.1 N.
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Figure 5.4: Structure of the modified neural network used for the time-dependent environment.
Time is being preprocessed by an additional layer with two neurons and a sine function.

We now present a modification that would be more universal – it may be suitable for
all cases where the system dynamics evolve non-adiabatically but periodically with time,
assuming we do not know the period of the time variations. The RL state will now
consist of time and the phase space state of the physical system s = (t, sphysical), in our
case s = (t, x, p). In addition to this, we extend the neural network with an additional
layer through which we pass the time parameter. This layer consists of two neurons1,
which use the sine function as their non-linearity, so that their outputs are

sin(wit + bi), i = 1, 2, (5.5)

where w1, w2, b1, b2 are parameters of this extended neural network. The resulting network
can be seen in Fig. 5.4.

Using this approach, the RL agent finds an even better policy (in the sense of higher
received reward) than the agent which was trained using the hard-wired sin(!1t) and
sin(!2t) where !1 and !2 are the frequencies of the time variations, cf. Eqs. (5.2), (5.3).
The result of the training can be seen in Fig. 5.3.

With this problem, we demonstrate that the need of using RL algorithms that take time
into account in controlling the dynamical system depend on the specific control problem
we have. In this case, the dynamics of the system vary with time. There exist good
control policies that do not depend on time, so using time-agnostic control may work
well. However, even in this case, the time-dependent agent finds a policy that is closer
to the optimal.

5.1.2 Double-Well Potential

We will now move to a bit more complicated example where we can intuitively see that
the time-independent control policy cannot be optimal. Our potential well is replaced
with a double well with the goal to traverse from one of the minima to the other. This
time, there will be a time-dependent shortcut between the two minima, which changes
the optimal strategy. To set up the problem, first, we will consider our physical system.

1
In our case we use two neurons as we have two characteristic time scales of the time-dependence. However,

this method can also be used with a different number of neurons.
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Figure 5.5: a) Plot of the potential energy of the particle at t = 0. The particle is initialized in
the left minimum; the goal is to settle in the rightmost minimum using a constant force F in a
desired direction. The blue plot is the value of the potential at t = 0, while the dashed lines show
the extreme values of the potential. Constants for the plot: A0 = 1 J, A1 = 0.9 J, w = 1 m.
b) Phase portrait of the double well with no time dependence and without external control. All
particle trajectories are closed. However, in the lower-energy trajectories the particle orbits only
one of the minima; therefore, it needs to first acquire higher energy, and then lower it when it
approaches the second minimum. The model parameters are: A = 1 J, w = 1 m, m = 1 kg.

Problem Setup

A particle with mass m is contained in a field with potential energy

V (x, t) = A(t)

✓⇣
x

w

⌘4
� 2

⇣
x

w

⌘2◆
, (5.6)

where
A(t) = A0 + A1 sin(!t) (5.7)

defines a time-varying height of the potential well with amplitude of the variations A1

and frequency !1 about the value A0, and w sets the positions of the minima: xmin = ±w.
An example plot of this potential for a fixed moment of time is given in Figure 5.5(a).

We now consider the following control problem: Using a constant external force F directed
leftwards or rightwards, if the particle is initially at rest at one of the minima (x =
�w, p = 0), get the particle to escape from this well and settle in the other minimum
(x = w, p = 0).

By adding the control to the system, our equations of motion become

ṗ(t) =
4A

w

✓
x

w
� x

3

w3

◆
+ F,

ẋ(t) =
p

m
.

(5.8)

We can see the phase space portrait of the static double well potential in Fig. 5.5(b). The
particle can oscillate near both minima and needs additional energy in order to traverse
from one side of the potential to the other.
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Again, the static case is obtained by setting A1 = 0. This time, the intrinsic variation
comes from A(t) which can be interpreted as an overall height of the potential well. Note
that the overall structure of the double-well potential stays the same by varying A(t). The
function x

4 quickly increases for large x and this behavior is not affected by A(t). The
most significant difference is produced in the space between the two minima. As A is the
energy difference between the minima and the central maximum, we will interpret lower
values of A as an “open shortcut” between the two minima, as can be seen in Fig. 5.5(a).

The expectation is that, in the static case, the force should again be applied in the
direction of motion to accumulate energy, until the particle passes to the region around
the second minimum. Then we should apply the force in the opposite direction so that the
particle would lose energy and eventually stop. This will be referred to as a ‘theoretical
strategy’. However, in the dynamical case, it would be easier for the particle to pass from
one valley to the other during the time interval when the barrier height is minimal.

RL approach

Now, let us translate the problem into the RL framework. In the static case, the RL-state
can be defined again as s = (x, p) – the phase space state of the particle, and the initial
state would be s0 = (�w, 0).

In the time-dependent case, we will again test different algorithms with different defini-
tions of the RL state. A time-agnostic algorithm would receive only the phase space state
s = (x, p). Extra-knowledge algorithms would use both the time t and the frequency !
of the potential variations in the form sin(!t) and cos(!t), so the total state consists of
s = (sin(!t), cos(!t), x, p). We also test an algorithm receiving unprocessed information
about the time t, in which case s = (t, x, p). In all of the above cases, the initial time is
t = 0.

The action space again consists of a constant force directed leftwards or rightwards:
A = {�F, +F}. The reward has to be set in such a way as to be higher when the particle
becomes closer to the goal sfinal = (w, 0). To treat all agents equally, we set the same
reward

r = �4A
⇣

x

w
� 1
⌘2
� k

p
2

2m
� u, (5.9)

where �4A(x/w � 1)2 approximates the potential energy around the desired minimum,
giving higher rewards when the particle is closer to the minimum; kp

2
/(2m) is a kinetic

energy term, giving a higher reward when the particle stops; and u is an additional
constant penalty for “non-completed” trajectories, which is given when the particle is
outside a small phase space ‘ellipse’, i.e., when (x� w)2/x2

tol + (p/ptol)2 > 1. We can see
the values of the different reward weights used in the simulations in Table A.5.

All agents will use the same finite episode length containing T discretized time step of
length �t in terms of the time of the physical system. The length of the episodes is
chosen to be somewhat longer than the time necessary for the particle to traverse from
the first to the second minimum of the double well, so that the agents can be able to
learn the optimal strategy gradually, first strategies where the particle approaches the
goal in a longer time. The exact discretization can be seen in Table A.5.
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Figure 5.6: Performance of the RL agent in the time-independent double well. a) phase portrait
of the controlled particle. b) coordinate of the controlled particle as a function of time. The blue
trajectory corresponds to a particle controlled by the RL agent, and the orange – to a particle
controlled by the theoretically suggested strategy [see text]. In this case, the agent moves along
a nearly perfectly aligned trajectory with the theoretical. c) strategy learned by the agent. The
colorbar shows the probability to act with force in the leftward direction. d) training curve of
the agent; the dashed line is the return acquired by the theoretically optimal strategy. The
constants for the simulation are as in Table A.4-A.6 except for A1 = 0.

Results

We again use the PG-algorithm to solve this problem, with hyperparameters as shown
in Table A.6. In the static case, we can that that the algorithm can find a policy which
resembles our expectation, provided that the force used to control the particle is large
enough so that the neural network has a high probability of observing trajectories that
successfully exit the ‘undesired valley’ around x = �w. We can see its performance in
Fig. 5.6.

It would be interesting to find neural networks or modifications of the reward function
which can successfully control the particle with even smaller forces. However, this is
currently beyond our focus as we will be trying to control the particle in the time-
dependent case. We can speculate that this could be achieved by altering the initial state
so that one acquires enough trajectories close to “seeing” the other side of the barrier, or
by modifying the reward function in a way that would encourage exiting the valley as a
first step.

38



Now, for the time-dependent scenario, we can again first try the same theoretical strategy:
apply a force +F whenever p > 0, x < 0 or p < 0, x > 0, and �F otherwise. However,
since the trajectory is sensitive to the time variations of the potential, this strategy may
completely fail when the particle gets to pass the potential barrier at an inappropriate
time, as shown in Fig. 5.7.1 (a,b).

We are using two time-dependent agents, which are structured similarly to the previous
Sec. 5.1.1. The first one (“sin(!t), cos(!t)”-agent) receives s = (p, x, sin(!t), cos(!t)) as
a state. This state is fed directly into the neural network. The second agent, which we
will call the “Adaptive time agent”, receives s = (t, p, x) However, the time component is
transformed through an additional two-neuron cos-layer as in Fig. 5.4. We observe that
both time-dependent agents can learn to navigate the particle to the goal using a smaller
force magnitude (as listed in Table A.5) than the static case. This can be explained
by the fact that the particle passes through a lower barrier between the two minima
as the agents successfully use the time window when the shortcut is open. This can
be confirmed by looking at the particle position as a function of time in the controlled
trajectories, cf. Fig. 5.7b). Both agents managed to receive very similar returns. The
more universal agent (T2) performed a bit better. Therefore, it is sufficient to provide
the agent with the raw time t. The agent can still learn a successful policy even without
providing it with ! – which acts as additional information about the potential.

For comparison, we test a time-agnostic agent as well. In the same case when the time-
dependent agents learn to reach the goal, it fails to learn in a stable way, as seen in
Fig. 5.8. Moreover, even before “unlearning”, the acquired policy still fails to reach the
desired goal. However, it successfully escapes the first potential well, as seen in Fig. 5.7a.2.
This agent may sometimes reach a good level of performance, but it has a fundamental
problem with learning in a stable way.

The problem is that as the environment changes with time, it can no longer be considered
a Markov decision process. The current state (p, x) and action do not give away the full
information necessary to determine the next state. As the agent can visit the same state
at different time steps, changing its action can be an improvement for one of the time
steps and a deterioration for another. This phenomenon confuses the agent, leading to
the destabilization of the agent’s learning.

We should note this could not be the only reason for the failure. At other parameter
choices (e.g. increasing A, making the wells deeper), the time-dependent agents fail to
learn a successful policy as well.

5.1.3 Two-Dimensional Potential

Now, let us continue with a case where we would have less intuition. We now have a
two-dimensional system, containing multiple potential barriers, a rotating shortcut and
drag force. The extra dimension will bring a greater variety of trajectories. The shortcut-
equipped barriers will present a maze-like environment, which is difficult to navigate. The
drag force will prevent accumulating too much energy and will ensure that the potential
remains relevant.
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Figure 5.7: Performance of the RL agents in the time-dependent double well. a) phase diagram
of the controlled particles, b) coordinate of the controlled particle as a function of time. The
theoretical strategy may work well if the particle passes the barrier at the appropriate time.
However, in this choice of parameters, it completely fails, as demonstrated in (1). For the
time-agnostic agent (2), we are showing the best trajectory during training (at epoch 2500, see
Fig. 5.8) which still fails to reach the minimum. The dashed vertical lines in (b) are placed at
t = 1.5⇡

!
, t = 3.5⇡

!
and t = 5.5⇡

!
when the potential height is lowest. The time-dependent agents

(3,4) learn to pass when the shortcut is open. Constants as in Table A.4-A.6.
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Figure 5.8: Training curves of the different RL agents in the time-dependent double well. The
return received by the theoretical strategy is plotted by the dashed line. The time-agnostic agent
fails to learn in a stable way. Constants as in Table A.4-A.6.

Problem Setup

A particle with mass m is contained in a field with potential energy

V (⇢, ✓, t) = AR(⇢)⇥(✓ + !t), (5.10)

where the radial profile of the potential has the form

R(⇢) = A|⇢| sin2(⇢/⇢0), (5.11)

which defines multiple potential barriers of increasing height as seen in Fig. 5.9 (a). The
parameters A and r0 control the height of the potential barrier and the distance between
the barriers respectively. The angular part of the potential is given by the function

⇥(✓) = 1� e
� sin2(✓)

, (5.12)

which has the property of extinguishing the potential around ✓ = 0, ⇡, as seen in Fig. 5.9
(b), making the area around ✓ = 0, ⇡ a ‘shortcut’. The parameter  controls the width of
the shortcut. Due to the time-dependence ⇥(✓ + !t), the shortcut rotates at a constant
angular velocity !. The whole 2d structure of the potential can be seen in Fig. 5.9 (c).

If we ignore the shortcut, the potential is radially symmetric and contains a minimum
at the center. The rest of the minima are equidistantly spaced in the form of concentric
circles. Due to the symmetry of the potential, it will be easier to work with polar
coordinates ~r = (⇢, ✓) and ~p = (p⇢, p✓). The static equivalent of this system can be
obtained by setting ! = 0. This way we would still have a direction in space with a
shortcut, but it would not be rotating, so unlike the previous problem in Sec. 5.1.2, the
static version of the problem is now easier to control since the shortcut is still present.

There is also a friction force acting on the system, proportional to the velocity of the
particle: ~ffriction = ��m~v.

With this system, we will consider the following control problem: If the particle is initially
at rest at the central minimum, ~rinit = (0, 0), ~pinit = (0, 0), using a force with constant
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Figure 5.9: Plot of the potential energy of the particle at t = 0. (a) radial profile of the
potential; (b) angular profile of the potential; (c) 1-4 – color plot of the two-dimensional potential
at different time steps 0, t, 2t, 3t. The potential contains an infinite number of minima and
maxima as well as a rotating shortcut. The particle is initialized at the central (0-th) minimum
and the goal is to end up in the third minimum. Parameter values:  = 5, A = 1 J, r0 = 1 m,
! = 1 s�1, t = 0.5 s.

magnitude F , we should make the particle reach another desired minimum (e.g., the third
minimum |~r| = 3⇡⇢0). The particle is free to move in the ✓-direction as it reaches the
minimum.
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In polar coordinates, the Hamilton equations of motion (see Eq. (2.25)) read:

ṗ⇢(t) =
p
2
✓

m⇢3
�R

0(⇢)⇥(✓ + !t) + F⇢ � �p⇢,

ṗ✓(t) = �R(⇢)⇥0(✓ + !t) + rF✓ � �p✓,

⇢̇(t) =
p⇢

m
,

✓̇(t) =
p✓

m⇢2
,

(5.13)

where
R

0(⇢) =
A|⇢|
⇢0

sin(2⇢/⇢0) + Asign(⇢) sin2(⇢/⇢0),

⇥0(✓ + !t) = e
� sin2(✓+!t)

2 sin(✓ + !t) cos(✓ + !t).

(5.14)

The rotating in time potential presents us with the possibility to transform the coordinate
system to a co-rotating frame where the time dependence of the potential is removed.
This means that our dynamic problem can be transformed into a static problem. We can
do this using the transformation

# = ✓ + !t,

p# = p✓,
(5.15)

which gives us the following Hamiltonian:

H
0 = H + !p# (5.16)

and new equations of motion

ṗ⇢(t) =
p
2
#

m⇢3
�R

0(⇢)⇥(#) + F⇢ � �p⇢,

⇢̇(t) =
p⇢

m
,

ṗ#(t) = �R(r)⇥0(#) + ⇢F✓ � �p#,

#̇(t) =
p#

m⇢2
+ !.

(5.17)

Numerical simulation of the potential

In the numerical simulations, the radial coordinates present certain difficulties near the
origin of the coordinate system (⇢ = 0) as ṗrp̃

2
✓
/⇢

3 !1, ✓̇p̃✓/⇢2 !1. We cannot evade
the divisions by ⇢ completely, but we will make the substitution

p̃✓ =
p✓

⇢
(5.18)

which will allow us to reduce the power of ⇢ in these divisions. As the potential barrier
grows linearly with r, ˙̃p✓ will not contain division by zero. Also, in order to ensure
numerical stability around ⇢ = 0, we replace the terms containing ⇢

�1 with “clipped”
values between �10 and 10. With these substitutions, the equations of motion used in
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the simulations are as follows:

ṗ⇢(t) = clip
✓

p̃
2
✓

mr

◆
� A

✓
|⇢|
⇢0

sin(2⇢/⇢0) + sign(⇢) sin2(⇢/⇢0)

◆
(1� e

� sin2(✓+!t)) + F⇢ � �p⇢,

˙̃p✓(t) = �2Asign(⇢) sin2(⇢/⇢0)e
� sin2(✓+!t) sin(✓ + !t) cos(✓ + !t) + F✓ � �p̃✓,

⇢̇(t) =
p⇢

m
,

✓̇(t) = clip
✓

p̃✓

m⇢

◆
,

(5.19)
where clip(x) = max(�10, min(10, x)).

RL approach

Let us again translate the problem to the RL framework. The RL state will coincide with
the phase space state. For numerical reasons, we prefer to use p̃✓ instead of p✓. As p✓

will become much larger than p̃✓ by increasing r, it could dominate in the neural network
input.

The static RL state we use is s = (⇢, ✓, p⇢, p̃✓), and the RL state being used by the
time-dependent agent will be s = (t, ✓, ⇢, p̃✓, pr) with both t and ✓ being preprocessed
through a cos-layer as in Fig. 5.4. The initial state is given by a distribution around
⇢ = 0, ✓ = 0, p⇢ = 0, p✓ = 0, which can be seen in Table A.7-A.9

The possible actions A are forces in either direction, which means they could be param-
eterized by an angle � showing the direction of the force, so that in polar coordinates
~F = (ṗ⇢, ˙̃p✓) = (F⇢, ⇢F✓) = (F sin�, ⇢F cos�). We discretize the possible actions to angles
� = k⇡/4 , k 2 {0, 1, ..., 7}. We define the reward function as r = �|⇢ � 3⇡⇢0| for all
agents.

Results

We are using the PG-algorithm with hyper-parameters as shown in Table A.9. In order
for the agent to reach the goal quickly, it should find the position of the shortcuts. It
would be harder for the particle to jump over the potential barriers, as it has a F/� cap
on its momentum due to friction, making it difficult to gain enough energy to pass the
barriers.

We notice that both agents – the one with knowledge of time and the one which does not
know about time, managed to learn the successful policy. This can be seen in Fig. 5.10.
The particle controlled by both agents passes the barriers at a zone around the shortcuts,
where the potential energy is lower. As the initial states have small variations, the
resulting passage occurs at different time steps, with different values of ✓. However, when
we transform the trajectories to the rotating frame of reference, we see that they all have
similar ✓ � !t-coordinate when their radial coordinate is on the barriers.

The reason why the behavior of the time-agnostic agent is similar to the time-dependent
one is still unclear. One possible speculation is that although the potential and the
trajectories depend on time, the successful control sequence might have a strong time
dependence. Also, it could be the case that the time-agnostic agent, although receiving
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Figure 5.10: Performance of the RL agents in the time-dependent potential. (a), (b) – tra-
jectories of the controlled particles; (a) – agent without knowledge of time, (b) – agent with
knowledge of time; (c) – the coordinate of the controlled particles of an arbitrary trajectory in
the batch as a function of time; (d) – training curves of different agents. Out of convenience, all
of the diagrams are plotted in the rotating reference frame in order to see where the shortcuts
are located with respect to the current position of the particle. Both agents learn to pass in the
vicinity of the shortcuts, while doing so at different time steps, respectively at different angles ✓.
Both agents display similar training curves The constants for the simulation are as in Table A.9

partial information, still has enough data to deduce its action correctly. We have tried
modifying the potential by rotating the shortcuts with different frequencies, which should
prevent the possibility of a good time-independent strategy. However, we observed that
the time-dependent agent also performed poorly in that situation. This experiment can
be seen in App. B. The question of whether we do need to incorporate time in this higher
dimensional problem is still open for further research.

5.2 Dynamical Control Case Studies in Quantum Systems

In this section, we apply Reinforcement Learning to prepare a two-level quantum system,
e.g., a qubit, as described in Sec. 3.2, in a desired target state.
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Figure 5.11: Color plot of the qubit decay probability from the current state | i to |1i. The
green color shows the area where the decay probability is higher. It is located near the equator
of the Bloch sphere. The three plots correspond to different time steps t = 0, t = 1, and t = 2.
Model parameters: p0 = 0.5 1 = 20, 2 = 1, ! = 2.5, t = 1.

Problem Setup

We consider a two-level quantum system. Its state is described by Eq. (3.15), which can
be represented on the Bloch sphere (see Eq. (3.17)).

The qubit state can be controlled using quantum gates, which are represented by the
unitary transformations

1 =

✓
1 0
0 1

◆
, R̂±x = e

±i�t�x , R̂±y = e
±i�t�y , R̂±z = e

±i�t�z , (5.20)

where �x, �y, and �z are the Pauli matrices (see Sec. 3.2.2), and �t is a time step.

The qubit will be initialized in a random state whose �-coordinate is uniformly distributed
in the interval (�⇡, ⇡] and ✓ – in the interval [0.8⇡, ⇡]. The idea is that the initial states
are on the southern hemisphere of the Bloch sphere, near |1i.

We can apply one of the seven gates for each time step. The goal is to bring the qubit to
the target state | targeti = |0i – the north pole of the Bloch sphere, in a fixed number of
time steps T .

A difficulty for this state preparation problem will arise if the qubit starts interacting
with an environment, leading to decoherence. We model the possible decay of the qubit
as a decay from the current state | i to |1i. Due to the choice of environment, the decay
probability is state and time-dependent, and we will model it by the following equation:

pdecay(✓,�, t) = p0e
�1(✓�⇡/2)2(1� e

�2(�+!t+⇡)2), (5.21)

which gives us a region near the equator on the Bloch sphere, where the probability
of decay is higher (Fig. 5.11). The �-coordinate of this region rotates with time at
frequency !. The constants 1 and 2 respectively determine the width of the high-decay
region around the equator in the ✓ and � direction, and p0 is the amplitude of the decay
probability in this region. Note that the initial state is chosen so that it is at a significant
distance below the decay region.

The procedure we use for simulating the decay is the following: First, apply the action as
if there is no decay and determine the state | i. Then, generate a uniformly distributed
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random number between 0 and 1. If the random number is less than pdecay, send the state
to |1i. If the random number is larger than pdecay, do not make any additional changes
to the state.

RL approach

Given this time-dependent quantum environment, we are trying to test whether by mod-
ifying the RL agent by taking time into account, we will achieve higher fidelity in the
preparation of the qubit state.

We again compare the performance of two agents. One of them has knowledge only of an
RL state, consisting of the angles (✓,�) on the Bloch sphere. We will call it the “static”
agent. The other agent will also use the time t as an input to the neural network. We
will call it the “dynamic” agent. Both agents will operate on the same qubit subject
to the time-dependent decay. They will also have identical neural network architecture
(listed in Table A.12), with the only difference being that the “dynamic” agent has an
additional input neuron containing the time t.

We will not manually transform the angles and time with sine and cosine functions
with the appropriate periods. Instead, our first layer in the neural network will have a
sine-nonlinearity, which will be applied to all neurons, so that the neural network could
discover the periods on its own if necessary. Note that the transformation from quantum
state | i to the RL state is performed in such a way that ✓ 2 [0, ⇡],� 2 (�⇡, ⇡]. This
means that two identical quantum states cannot acquire different � and ✓ coordinates.

The neural network has 7 output neurons corresponding to the 7 actions:

A = {1, R̂�xR̂�y, R̂�z, R̂x, R̂y, R̂z}. (5.22)

The reward function we use is the fidelity r = | h0| i |2 (explained in Sec. 3.1.2).

Results

Both agents succeed in learning a policy that accomplishes a relatively high fidelity.
However, the “dynamic” agent achieves a fidelity much closer to the maximum compared
to the “static” agent. The fidelity of both agents over the training episodes is shown in
Fig. 5.12.

By studying the specific policies of the agents, some of which are shown in Fig. 5.13, we
notice that the “static” agent relies on chance, applying gates that try to rotate the qubit
straightforwardly to the direction of the |0i state. On the other hand, the “dynamic”
agent tries to rotate the qubit in such a way as to avoid the large-decay area, leading to
a lower frequency of decay events.

It is interesting to understand what parameters control the observed difference between
both fidelities – achieved by training the static and the dynamic agent.

First, we can widen the decay area by varying the parameter 1. By doing so, both agents
find it harder to prepare the qubit, with the time-dependent agent keeping its advantage
over the static agent. This can be observed in Fig. 5.14 (a), (b).
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Figure 5.12: Fidelity achieved by the two agents in the qubit environment. Red: “static” agent,
green: “dynamic” agent. The dynamic agent finds a control sequences which achieve nearly
maximum fidelity. The static agent still manages to accomplish a relatively high fidelity. Model
parameters as in Table A.10-A.12

Figure 5.13: Path traced by the qubit states when controlled by: (a) – “static” agent, (b) –
“dynamic” agent. The static agent almost always tries to move the qubit in the same way
upwards and if it has luck, the qubit passes through the decay area and reaches the north pole.
The dynamic agent offers more flexible solutions, which allow the qubit to pass through different
sections of the decay area at different times. (c) plots the trajectory traced by the qubit states
in a reference frame co-rotating with the dissipation, showing that the qubit passes through the
no-decay area (which in this case is situated at �x).

Also, we can vary the total time t = T �t that agents can operate on the qubit. Decreasing
t leads to overall lower fidelities, with the static agent performing yet worse than the
dynamic one. This is illustrated in Fig. 5.14 (c), (d). Note that we decrease t by keeping
the total number of time steps T fixed, leading to a decrease of the length �t of a single
time step.

Finally, we should note that the results may vary due to random events in the training
process. We observed the training of the same dynamic agents, starting from different
seeds of the random number generators. We see that their learning curves are different
from one another. Especially, their policies can be suddenly affected both in a positive
and a negative direction, as can be seen in Fig. 5.15.
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Figure 5.14: Fidelity achieved by the two agents in different settings. In (a) and (b), we vary
the width of the decay area. In (c) and (d), we vary the time length. Both agents perform
worse when given less time or having a wider decay area, with the time-dependent agent having
advantage. The other model parameters as in Table A.10-A.12. We remind that the baseline
values of  and t we used are  = 20 and t = ⇡.
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Figure 5.15: Training curves of dynamic agents with different seeds for the random number
generators. Randomness affects the training of the RL agents. All training parameters are as
in A.12.
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Chapter 6

Conclusion

Reinforcement Learning (RL) is a powerful framework for searching optimal control poli-
cies in dynamical systems. Its advantages are that it can solve control problems au-
tonomously, without requiring prior knowledge or an explicit model of the system in
place. It is well-suited for controlling systems with continuous state spaces and sys-
tems whose dynamics exhibit nonlinearities. Also, it has the potential to generalize its
knowledge to control modified or noisy environments.

In this thesis, we studied the problem of controlling time-dependent environments. In
RL, the environment is required to be a Markov decision process. In that case, the agent
determines its action based only on the state of the environment. When the environment
itself is time-dependent, the RL framework needs to be generalized. We modified the
RL framework by adding time as an additional element of the RL state. We used this
approach to control three Hamiltonian systems and one quantum system.

In the first classical system, considered in Sec. 5.1.1 – a single potential well – a time-
dependent RL agent managed to escape the quickest from the well by exploiting the time
variations of the potential. Next, in Sec. 5.1.2, we moved on to a bit more complex system
– a double well, where the time-agnostic agent could learn a policy that made the particle
escape one of the potential minima and move to the vicinity of the second minimum, but
as it passes through the same phase space state at different times, it is led to “unlearn”
its policy. In contrast, the time-dependent agents learned to escape the first minimum
and reach the second minimum successfully.

In the last classical system in sec. 5.1.3 – a two-dimensional potential, we failed to observe
any significant benefits of including time to the RL state. This poses some new problems,
which are interesting for further research. Firstly, it is interesting to understand whether
some of the high-dimensional time-dependent systems have such intrinsic dynamics that
knowledge of time would not be required at all in their control. Secondly, it would be
interesting to research other ways in which we could extend the RL framework so that
the agents could make better use of the time dependence.

In classical mechanics, there are other different control problems that we did not cover
in this thesis but could be tackled by RL. A simple system that could be controlled in
a very similar fashion to our example systems is the parametric oscillator. RL could be
used in more complicated control problems, such as chaotic dynamical systems.

We also applied RL to prepare a two-level quantum system in ground state (see Sec. 5.2).
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We created a simple model for a time-dependent decay of the system and we observed that
our time-dependent agent could achieve significantly higher fidelity than an agent without
knowledge of time. However, we should note that our agents are receiving rewards in the
form of fidelity, which cannot be directly observed in a real quantum system. Although
we have demonstrated the potential benefits of the time-dependent agent, it is currently
operating in artificially created settings. The work on this problem could be developed
in two main areas – to train agents using only information from measurable quantities,
and to use environments with more realistic models of quantum dissipation.
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Appendix A

Hyperparameters and parameters of
the control problems considered

Mass of the particle m = 1 kg
Mean depth of the potential well A0 = 1 J
Amplitude of depth oscillations A1 = 0.5 J
Frequency of depth oscillations !1 = 2 s�1

Mean width of the potential well w0 = 1 m
Amplitude of width oscillations w1 = 0.2 m
Frequency of width oscillations !1 =

p
2 s�1

Table A.1: Parameters of the physical system for the single potential well (Sec. 5.1.1)

Force applied F = 0.1 N
Number of time steps T = 200
Time length of the physical system t = 40 s
Length of one time step �t = 0.2 s

Table A.2: Discretization and control parameters used by turning the single potential well into
a control problem

Optimizer Adam
Step size lr = 0.0001
First momentum �1 = 0.9
Second momentum �1 = 0.999
Adam stability term ✏ = 10�8

L2-regularization parameter ✏l2 = 0.01
Returns discount factor � = 1
Initial temperature of the entropy term T0 = 1
Temperature decay constant Ndecay = 400
MC-sample NMC = 512
Neural network hidden layers sizes 128, 128, 64

Table A.3: Hyperparameters of the PG algorithm in the single potential well
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Mass of the particle m = 1 kg
Mean depth of the potential well A0 = 1 J
Amplitude of depth oscillations A1 = 0.9 J
Frequency of depth oscillations ! = 0.5 s�1

Table A.4: Parameters of the physical system for the double well (Sec. 5.1.2)

Force applied
F = 0.2 N in the static case,
F = 0.15 N in the dynamic case

Number of time steps T = 200
Time length of the physical system t = 40 s
Length of one time step �t = 0.2 s
Kinetic term weight k = 2
Position tolerance xtol = 0.112 m
Momentum tolerance ptol = 0.224 kg.m/s

Table A.5: Discretization and control parameters used By turning the double well potential
into a control problem

Optimizer Adam
Step size lr = 0.0001
First momentum �1 = 0.9
Second momentum �1 = 0.999
Adam stability term ✏ = 10�8

L2-regularization parameter ✏l2 = 0.01
Returns discount factor � = 1
Initial temperature of the entropy term T0 = 1
Temperature decay constant Ndecay = 400
MC-sample NMC = 512
Neural network hidden layers sizes 128, 128, 64

Table A.6: Hyperparameters of the PG algorithm in the double well problem

Mass of the particle m = 1 kg
Amplitude coefficient of the potentials A = 2 J/m
Potential width scale r0 = 1 m
Thinness of the shortcuts  = 10
Angular velocity of the rotating shortcut ! = 1 s�1

Drag coefficient � = 0.5 s�1

Table A.7: Parameters of the physical system for the 2D potential (Sec. 5.1.3)

Force applied F = 1 N
Number of time steps T = 100
Time length of the physical system t = 20 s
Length of one time step �t = 0.2 s

Table A.8: Discretization and control parameters used when turning the 2D potential into a
control problem
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Optimizer Adam
Step size lr = 0.001
First momentum �1 = 0.9
Second momentum �1 = 0.999
Adam stability term ✏ = 10�8

L2-regularization parameter ✏l2 = 0.01
Returns discount factor � = 1
Initial temperature of the entropy term T0 = 0.01
Temperature decay constant Ndecay = 400
MC-sample NMC = 512
Neural network hidden layers sizes 256, 128

Table A.9: Hyperparameters of the PG algorithm in the two-dimensional system

Probability amplitude p0 = 0.5
Decay region ✓-distribution 1 = 20
Decay region �-distribution 2 = 1
Angular velocity of the decay region ! = 2.5 s�1

Table A.10: Parameters characterizing the decay of the two-level system discussed in Sec. 5.2

Number of time steps T = 60
Time length of the physical system t = ⇡ s
Length of one time step �t = ⇡/60 s

Table A.11: Discretization and control parameters for the quantum two-level system

Optimizer Adam
Step size lr = 0.001
First momentum �1 = 0.9
Second momentum �1 = 0.999
Adam stability term ✏ = 10�8

L2-regularization parameter ✏l2 = 0.001
Returns discount factor � = 1
MC-sample NMC = 512
Neural network hidden layers sizes 512, 256, 64

Table A.12: Hyperparameters of the PG algorithm used in the control of the quantum two-level
system
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Appendix B

Additional Experiments with the
Two-Dimensional Potential

We have compared the agents from Sec. 5.1.3 with and without knowledge of time in a
modification of the two-dimensional potential.

The new potential takes the form

V (⇢, ✓) =

8
><

>:

A1 sin2 (⇢/⇢0) ⇥(✓ + !1t), ⇢ 2 [⇡⇢0, 2⇡⇢0],

A2 sin2 (⇢/⇢0) ⇥(✓ + !2t), ⇢ 2 [2⇡⇢0, 3⇡⇢0],

0, ⇢ < ⇡ [ ⇢ > 3⇡,

(B.1)

where ⇥ is defined by Eq. (5.12). This potential contains only two barriers. However, the
shortcuts in different barriers rotate with different angular frequencies (!1 and !2). The
task is the same as in Sec. 5.1.3 – the particle has to reach the zone ⇢ = 3⇡⇢0. The RL
agents have the same structure as in Sec. 5.1.3 and are being given the same reward
r = �|⇢� 3⇡⇢0|.

The result of the training is shown in Fig. B.1. We did not observe any benefit from adding
time as a parameter to the agent. On the contrary, the time-agnostic agent achieved a
final
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Figure B.1: Performance of the RL agents in the modified time-dependent potential. (a), (b) –
trajectories of the controlled particles; (a) – agent without knowledge of time, (b) – agent with
knowledge of time; (c) – the coordinate of the controlled particles of an arbitrary trajectory in
the batch as a function of time; (d) – training curves of different agents. In (a) and (b) the
goal r = 3⇡ is designated by a black circle. Both agents sometimes get stuck before the second
barrier. The time-agnostic agent achieved somewhat better control over the particle with more
trajectories reaching the goal, leading to a higher mean return. The constants for the simulation
are given in App. B.1.
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B.1 Constants for the simulations with the modified 2D potential

Mass of the particle m = 1 kg
Amplitude of the first barrier A1 = 3 J
Amplitude of the first barrier A2 = 5 J
Potential width scale r0 = 1 m
Thinness of the shortcuts  = 10
Angular velocity of the first shortcut !1 = 1 s�1

Angular velocity of the second shortcut !2 =
p
2 s�1

Drag coefficient � = 0.75 s�1

Table B.1: Parameters of the physical system

Force applied F = 1.5 N
Number of time steps T = 100
Time length of the physical system t = 20 s
Length of one time step �t = 0.2 s

Table B.2: Discretization and control parameters used when turning the modified 2D potential
into a control problem

Optimizer Adam
Step size lr = 0.001
First momentum �1 = 0.9
Second momentum �1 = 0.999
Adam stability term ✏ = 10�8

L2-regularization parameter ✏l2 = 0.01
Returns discount factor � = 1
Initial temperature of the entropy term T0 = 0.01
Temperature decay constant Ndecay = 400
MC-sample NMC = 512
Neural network hidden layers sizes 256, 128

Table B.3: Hyperparameters of the PG algorithm in the modified two-dimensional system
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