Using DNA Information to Control the Structure of Matter in 3D

Nadrian C. Seeman

Department of Chemistry New York University New York, NY 10003, USA ned.seeman@nyu.edu

DNA-Based Nanotechnology: Construction, Mechanics and Electronics Technische Universität Dresden May 11, 2009

Reciprocal Exchange: A Theoretical Biokleptic Tool To Generate New DNA Motifs

Reciprocal Exchange in a Double Helical Context

Biological Reciprocal Exchange: The Holliday Junction

Design of Immobile Branched Junctions: Minimize Sequence Symmetry

5-Arm, 6-Arm, 8-Arm and 12-Arm Junctions

Wang, Y., Mueller, J.E., Kemper, B. & Seeman, N.C. (1991), Biochemistry 30, 5667-5674. Wang, X. & Seeman, N.C. (2007), J. Am. Chem. Soc. 129, 8169-8176.

Bricks from the Ming Tombs in Nanjing

Sticky-Ended Cohesion: Smart Affinity

Sticky-Ended Cohesion: Structure

The Central Concept of Structural DNA Nanotechnology: Combine Branched DNA with Sticky Ends to Make Objects, Lattices and Devices

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

OBJECTIVES AND APPLICATIONS FOR OUR LABORATORY

ARCHITECTURAL CONTROL AND SCAFFOLDING

[1] MACROMOLECULAR CRYSTALLIZATION (PERIODIC IN 2D AND 3D).

- [2] NANOELECTRONICS ORGANIZATION (PERIODIC IN 2D AND 3D).
- [3] DNA-BASED COMPUTATION (APERIODIC IN 2D OR 3D).
- [4] CONTROL OF POLYMER AND MATERIALS COMPOSITION & TOPOLOGY.

NANOMECHANICAL DEVICES

[1] NANOROBOTICS.[2] NANOFABRICATION.

SELF-REPLICABLE SYSTEMS

CURRENT CRYSTALLIZATION PROTOCOL

A New Suggestion for Producing Macromolecular Crystals

Seeman, N.C. (1982), J. Theor.Biol. 99, 237-247.

A Method for Organizing Nano-Electronic Components

Robinson, B.H. & Seeman, N.C. (1987), Protein Eng. 1, 295-300..

A Suggestion for a Molecular Memory Device Organized by DNA (Shown in Stereo)

Why DNA?

Nucleic Acid Sequences Can Be Programmed and Synthesized, Leading to Information-Based Structural, Dynamic and Catalytic Chemistry

Predictable Intermolecular Interactions: Both Affinity and Structure. Can Design Shape by Selecting Sequence: Robust Branched Motifs Programmable by Sequence. **Convenient Automated Chemistry:** Both Vanilla DNA and Useful Derivatives. **Convenient Modifying Enzymes:** Ligases, Exonucleases, Restriction Enzymes, Topoisomerases. Locally A Stiff Polymer: Persistence Length ~500 Å; Stiff Branched Motifs Have Been Developed. **Robust Molecule:** Can Heat Individual Strands without Doing Damage. Amenable to Molecular Biology and Biotechnology Techniques: Gels, Autoradiography, PCR. **Externally Readable Code when Paired:** Different Points in a Lattice Can be Addressed. High Functional Group Density: Every 3.4 Å Nucleotide Separation Prototype for Many Derivatives: The Gene Therapy Enterprise Has Generated Hundreds of Analogs Potentially Self-Replicable and Selectable: May be Able to Make and Improve Constructs Inexpensively.

DNA Topology Affects DNA Nanoconstructions

Chain Mail

Interwoven

What Is the Intellectual Goal of Structural DNA Nanotechnology?

Controlling the Structure of Matter in 3D to the Highest Extent (Resolution) Possible, so as to <u>Understand</u> the Connection between the Molecular and Macroscopic Scales.

"What I cannot create, I do not understand." --Richard P. Feynman (Inverse not necessarily true.)

STRUCTURAL AND TOPOLOGICAL ASSEMBLIES

Polyhedral Catenanes

Cube: Junghuei Chen

Truncated Octahedron: Yuwen Zhang

Truncated Octahedron

Zhang, Y. & Seeman, N.C. (1994), J. Am. Chem. Soc. **116**, 1661-1669.

Construction of Crystalline Arrays

REQUIREMENTS FOR LATTICE DESIGN COMPONENTS PREDICTABLE INTERACTIONS

PREDICTABLE LOCAL PRODUCT STRUCTURES

STRUCTURAL INTEGRITY

Derivation of DX and TX Molecules

Seeman, N.C. (2001) NanoLetters 1, 22-26.

2D DX Arrays

Erik Winfree (Caltech) Furong Liu Lisa Wenzler

Schematic of a Lattice Containing

AFM of a Lattice Containing 1 DX Tile and 1 DX+J Tile

Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. (1998), Nature 394, 539-544.

Schematic of a Lattice Containing 3 DX Tiles and 1 DX+J Tile

AFM of a Lattice Containing 3 DX Tiles and 1 DX+J Tile

Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. (1998), Nature 394, 539-544.

Robust 2D Arrays: DX Triangles

Baoquan Ding

Simple Bulged 3-Arm Junction Triangle (1996)

J. Qi, X. Li, X. Yang & N.C. Seeman, J. Am. Chem. Soc., **118**, 6121-6130 (1996).

DX Bulged Triangle Motif

Ding, B. & Seeman, N.C. (2004), J. Am. Chem. Soc. 126, 10230-10231.

Two Trigonal Motifs Form a Pseudohexagonal Trigonal Array

Ding, B. & Seeman, N.C. (2004), J. Am. Chem. Soc. 126, 10230-10231.

Lattice Views

Ding, B. & Seeman, N.C. (2004), J. Am. Chem. Soc. 126, 10230-10231.

Zoomed Images

Ding, B. & Seeman, N.C. (2004), J. Am. Chem. Soc. 126, 10230-10231.

DIVERSIFYING THE CHEMISTRY

Organizing 5 and 10 nm Gold Nanoparticles

Jiwen Zheng Pam Constantinou Christine Micheel (Berkeley) Paul Alivisatos (Berkeley) Rick Kiehl (Minnesota)

The 3D-DX Triangle: A DX Version of the Tensegrity 3D Triangle

J. Zheng, P.E. Constantinou, C. Micheel, A.P. Alivisatos, R.A. Kiehl & N.C. Seeman, NanoLetters 6, 1502-1504 (2006).

YZ 2D Array of 3D-DX Triangle

One Tile

Attachment of a Nanoparticle to the 3D-DX Motif

J. Zheng, P.E. Constantinou, C. Micheel, A.P. Alivisatos, R.A. Kiehl & N.C. Seeman, NanoLetters 6, 1502-1504 (2006).

Two Motifs Can Organize Nanoparticles

J. Zheng, P.E. Constantinou, C. Micheel, A.P. Alivisatos, R.A. Kiehl & N.C. Seeman, NanoLetters 6, 1502-1504 (2006).

Organized 5 nm and 10 nm Particles

J. Zheng, P.E. Constantinou, C. Micheel, A.P. Alivisatos, R.A. Kiehl & N.C. Seeman, NanoLetters 6, 1502-1504 (2006).

<section-header><section-header><section-header><section-header><section-header><section-header>

A Sequence-Dependent Device

Hao Yan

Derivation of PX DNA

Seeman, N.C. (2001) NanoLetters 1, 22-26.

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65..

Machine Cycle of the PX-JX₂ Device

System to Test the PX-JX₂ Device

AFM Evidence for Operation of the PX-JX₂ Device

Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. (2002), Nature 415, 62-65.

A Robust 3-State Sequence-Dependent Nanomechanical Device

Banani Chakraborty

Three States of a Nanomechanical Device

B. Chakraborty, R. Sha N.C. Seeman, (2008), Proc. Nat. Acad. Sci. (USA) 105, 17245-17249 (2008).

Cassette To Be Inserted

B. Ding & N.C. Seeman, Science 314, 1583-1585 (2006).

Array for Insertion

Two States of the Array

B. Ding & N.C. Seeman, Science 314, 1583-1585 (2006).

B. Ding & N.C. Seeman, Science 314, 1583-1585 (2006).

Transitions in the Array (Zoom) $PX \rightarrow JX_2$ $JX_2 \rightarrow PX$ $JX_2 \rightarrow PX$

B. Ding & N.C. Seeman, Science 314, 1583-1585 (2006).

Pairs of Inserted PX-JX₂ Devices Used to Program a Pattern

Hongzhou Gu

Programming an Array for Assembly

A. Carbone & N.C. Seeman, Proc. Nat. Acad. Sci. (USA) 99 12577-12582 (2002).

AFM Image of Blank Origami Arrays for Insertion

AFM Image of Origami Arrays with Inserted Cassettes

H. Gu, J. Chao, S-J. Xiao & N.C. Seeman, Nature Nanotech., in press, (2009).

Schematics of Programmed Patterns Made By Capturing Different Molecules

AFM Images of JX-JX Patterns

H. Gu, J. Chao, S-J. Xiao & N.C. Seeman, Nature Nanotech., in press, (2009).

AFM Images of JX-PX Patterns

AFM Images of PX-JX Patterns

H. Gu, J. Chao, S-J. Xiao & N.C. Seeman, Nature Nanotech., in press, (2009).

AFM Images of PX-PX Patterns

Schematic of the Device and Sidewalk

The Steps in a Walk

Sherman, W.B. & Seeman, N.C. (2004), *NanoLett.* **4**, 1203-1207.

Autonomous Walker Design

Autonomous Walker Movement

T. Omabegho, R. Sha, & N.C. Seeman, Science 324, 67-71 (2009).

Autonomous Walker Uses Up the Track

Animation of the Autonomous Walker

T. Omabegho, R. Sha, & N.C. Seeman, Science 324, 67-71 (2009).

SUPPORT

National Institute of General Medical Sciences (1982-) Office of Naval Research (1989-2004; 2009-) National Science Foundation (1997-) DARPA/AFOSR (2001-2003) Army Research Office (2005-) W. M. Keck Foundation (2006-) Nanoscience Technologies, Inc. (2003-2006) Department of Energy -- NYNBIT (2006-2008)

WEB PAGE

HTTP://SEEMANLAB4.CHEM.NYU.EDU