

Delft University of Technology The Netherlands

Kavli Institute of Nanoscience

Construction, mechanics, and electronics

11 May 2008

DNA-based nanotechnology:

Charge inversion accompanies DNA condensation

by multivalent ions

Serge Lemay

Overview: research lines

Electrophoresis

Nanotubes

Single-molecule detection

Voltammetry

Nanopores

Outline

Introduction

- 1. Atomic Force Microscopy
- 2. Magnetic tweezers
- 3. Electrophoresis

Summary

Basics of ionic screening

1

Poisson-Boltzmann equation:

Ionic concentrations:

$$c^{i}(x) = c_{\infty}^{i} \exp(-ze\phi/kT)$$

$$c'(x) = c_{\infty}' \exp(-ze\phi/k)$$

Debye, Gouy & Chapman (1920's)

Ŧ

Basics of ionic screening

"Compact layer" "Helmholtz layer" "Stern layer" "Manning condensate"

High surface charge:

Some odd observations...

1. Charge inversion

Electrophoretic mobility reverses sign at high concentration of <u>multivalent counterions</u> James & Healey, J. Coll. Int. Sci. **40**, 42 (1972) 234 (2003) Quesada-Perez et al., ChemPhysChem 4,

Force-distance apparatus

Petrov, Miklavic & Nylander, J. Phys. Chem. 98 2602 (1994) Pashley, J. Coll. Int. Sci. **102**, 23 (1984)

<u>Atomic force microscopy</u>

Vithayaveroj, Yiacoumi & Tsouris, J. Disp. Sci. Techn. **24**, 517 (2003) Besteman et al, PRL 93, 170802 (2004)

<u>Streaming</u> currents

van der Heyden et al, PRL 96, 224502 (2006)

Some odd observations...

2. Like-charge attraction

DNA condensation by spermine⁴⁺ Lambert et al., PNAS 97, 7248 (2000)

Actin filaments condensed by Ba²⁺ Angelini et al, PNAS 100, 8634 (2003)

Proposed mechanisms

[overview] W. M. Gelbart et al, Physics Today 53, 38 (2000)

F. Oosawa, Biopolymers 6, 1633 (1968)

Rouzina & Bloomfield, JPC **100**, 9977 (1996)

Kornyshev & Leikin, PRL 82, 4138 (1999)

PRL 82, 4456 (1999), PRE 66, 051802 (2002) Golestanian, Kardar & Liverpool,

Zhang & Shklovskii, Physica A **349**, 563 (2005)

... and many others

But no smoking gun experiment!!!

Why study DNA condensation?

- electrostatic effects (high charge density) Prototypical system for studying •
- High level of control
- Biological relevance (DNA packaging, chromatin structure)
- Potential application to gene therapy
- Because it's fun!

Previous experimental work

TEM images

Spermidine (3+)

$1 \mu m imes 1 \mu m$

NEGATIVE SURFACE: bare mica

Highly-charged surfaces

Imaging in liquid

Bare mica PL-coated mica

At mM concentrations of trivalent ions, highly-charged objects stick together

Don't use AFM to learn about condensate morphology!

Take-home messages

1 mM spermidine (3+)

Graphite

Scale bar 50 nm

What's wrong with mean-field theories?

No charge inversion

No like-charge attraction

Coulomb's law

Charge inversion possible

Like-charge attraction possible

New elements:

- discreteness of charge
- spatial correlations
- electrostatic energies must be > kT

In general, minimize free energy U dominates for low T, high Z S " high T, low Z G = U - TS

Proposed electrostatic mechanisms

"Electrostatic zipper"

Kornyshev & Leikin, PRL **82**, 4138 (1999)

Correlated liquid

Rouzina & Bloomfield, JPC **100**, 9977 (1996) Zhang & Shklovskii, Physica A **349**, 563 (2005)

Magnetic tweezers

μ

300

Condensation is a first-order, nucleated process

Coat ss-DNA with RecA Ruling out DNA-surface interactions (1/3) Both Implementation ss-ds-ss DNA **DNA-surface DNA-DNA** Stiff spacers Solution Potential problem

Ruling out DNA-surface interactions (3/3)

- RecA-coated ss-DNA behaves as stiff rod
- Condensation concentration and dynamics unaffected by surfaces

- Reentrant behavior manifest at singlemolecule level
- Some ion specificity (especially spermidine)
- Approximately quadratic in ln (c/c₀)
 "as expected"

What are we probing?

 $F_c =$ free energy of condensation per unit length

Murayama et al, PRL **90**, 018102 (2003) (exp't) Zhang et al, Physica A **349**, 563 (2005) (theory)

But we observe nucleation kinetics!

Hypothesis: the transition state is a loop

T. R. Strick et al., Prog. Biophys. Molec. Biol. 74, 115 (2000)

 $k_b T p$

2F

R = 1

bending work against

force

energy

Testing the loop hypothesis

Winding the spring: Pre-twisting a torsionally constrained molecule lowers the energy for forming a loop

T. R. Strick et al., Prog. Biophys. Molec. Biol. 74, 115 (2000)

 $U_{\rm twist}(n) = 1$

Testing the loop hypothesis

$$F_{c}(n) = F_{c}(0) \left(1 + \frac{2\pi C}{L\sqrt{2k_{b}TpF_{c}(n=0)}} n \right)^{2}$$

 $F_c(0) = fit parameter$ $C = 86 nm k_b T$ p = 50 nm

Nucleation state contains a DNA loop

So what causes the concentration dependence?

$$\Delta G^{\pm} = U_{\rm loop} + G_{\rm elec} + \ldots = G_{\rm crit}$$

Approximate as two cylinders

$$\vec{J}_{\text{elec}} = rac{\pi \varepsilon L}{\ln\left(1 + \lambda_D / R_c\right)} \phi^2$$

$$\phi = (kT / Ze) \ln (c / c_0)$$

$$\delta U_{\rm loop} + \delta G_{\rm elec} = 0$$

$$(c_0)\left(1-\frac{L}{a}\ln\left(\frac{c}{c_0}\right)\right)^2 \quad a =$$

 $F_c(c) = F_c(c)$

known constant

Fit to our simple model

$$r_c^7 = F_c(c_0) \left(1 - \frac{L}{a} \ln \left(\frac{c}{c_0} \right) \right)^2$$

- Qualitatively good fit (except spermidine)
- Fits yield
 L = 40 nm
 (compare to loop
 perimeter >34 nm)

Acid test

Prediction: For c>c₀, the DNA should be positively charged

Problem:

Nobody had ever reported positive DNA in electrophoresis! But not a straightforward experiment:

- Condensates get stuck in the gel
 - Mobility is very low
- Electroosmotic flows

Dynamic light scattering

Raw data Slope \propto electrophoretic mobility

Malvern zeta-sizer ZS (M3-PALS mode) 5 ng/µL DNA 10 min incubation

Electrophoretic mobility

- Spermine can charge-invert DNA
- Charge inversion inhibited by monovalent salt (probably why it was not observed before)

We observe a correlation between • the maximum force concentration

the charge inversion concentration

Salmon protamine (salmine)

- Small cationic protein
 (21 arginines out of 32 amino acids) that replaces histones in spermiogenesis
- Charge inversion clearly observed *(see also Raspaud et al., PRL 2006, for 150 bp DNA)*
- Force decreases at high protamine conc)
- Robust up to 300 mM

Conclusions

Condensation of DNA under tension occurs via a discrete, activated process

Transition state involves the formation of a loop

Multivalent ions can charge-invert DNA at low salt

Observations are qualitatively consistent with SCL mechanism

Biopolymers 87, 141 (2007) Phys. Rev. Lett. 98, 058103 (2007) Nature Physics 3, 641 (2007)

Acknowledgments

Marcel Zevenbergen

Koert van Eijk

Nynke Dekker

Susanne Hage (ss-ds DNA constructs) Igor Vilfan, U. Ziese (TEM)

Koen Besteman

NWO

Funding:

Charge inversion accompanies DNA condensation by multivalent ions

tweezers and found that condensation occurs via discrete nucleated events. By measuring the influence of charge-inverted by tri- or quadrivalent ions at sufficiently low monovalent salt concentration. These results an imposed twist, we showed that condensation is initiated by the formation of a plectonemic supercoil. I will discuss the problem of how stiff, highly charged DNA can be condensed into dense structures by mechanical constraints. We also performed electrophoresis measurements showing that DNA can be suggest a direct connection between charge inversion and DNA condensation, and are qualitatively multivalent ions. We studied in real time the condensation of single DNA molecules using magnetic This demonstrates a strong interplay between the condensation transition and externally imposed consistent with the theoretical proposal that both effects are interdependent, purely electrostatic phenomena.

