MPIPKS Dresden, May 12th, 2009

Density functional theory and molecular dynamics of DNAderivatives for nano-electronics

Rosa Di Felice

rosa.difelice@unimore.it

Natl Center on nanoStructures and bioSystems at Surfaces (S3) of INFM-CNR

dnananowires.

Modena, Italy

Outline

G4-DNA

HO

M-DNA

dnananowi

Current understanding and further needs

- Better measurements
- Towards synthetic DNA-derivatives
- Candidates
 - G4-DNA, xDNA, M-DNA, dsDNA
 - Intercalators and sequence alterations

Properties of interest

- Structure and electronic structure (DFT)
- Optical absorption and circular dichroism (TDDFT)
- Dynamics and energetics (classical MD)
- Selected results by various computational methods

NH₂

xDNA

Rationale: the Π -way?

http://www.energyislife.org/?paged=2

D. Porath, PNAS 2005, Faraday Disc. 2006

Is DNA a viable electrical material?

D. Porath, G. Cuniberti, R. Di Felice, *Topics in Current Chemistry* 237, 183 (2004)

 Experiments on native-DNA charge mobility show poor conductivity for long (>40 nm) molecules deposited on substrates

- Improve measurement setups
 - Stiffer molecules (G4-DNA?)
 - Softer surfaces (alkanethiol monolayers?)
 - Avoiding non-specific DNAsubstrate interaction & controlling DNA-electrode covalent binding
- Improve intrinsic conductivity

SiO.

- Metal insertion
- Base modification
- Helical conformation

How can the difficulty in measuring conductivity be bypassed?

Improving measurement setup

Avoiding non-specific molecule-substrate contact Optimizing covalent molecule-electrode contact

How can the difficulty in measuring conductivity be bypassed?

Exploring DNA-derivatives

Guanine quadruplex Aromatic base expansion Metal complexation

A. B. Kotlyar et al., *Adv.* Mater 17, 1901 (2005) H. Co

H. Cohen et al., *Nano Lett.* **7**, 981 (2007)

dnananowires. IST-2001-38951

- AFM topography: Higher stiffness (brighter, thicker) and persistence length than duplex DNA → may improve resistance against deformation on hard surfaces
- EFM phase map: Polarizable G4-DNA against non-polarizable dsDNA DNALADOEVICES

Other appealing candidates

MDNA

- •Complexation of 1 transition metal cation per base pair (Zn, Ag, Cu???)
- Perspectives: enhanced electron transfer capabilities, detection of single base pairs

• xDNA

- Size expansion of each natural base with a benzene ring \rightarrow increased aromaticity
- Evidence of higher thermal stability for suitable sequences
- Perspectives: enhanced electron transfer capability, augmented genetic alphabet

Properties of interest

Electronic structure by DFT

• Why?

- Transport measurements
- Scanning tunneling spectroscopy measurements

General procedure

- Hypothesize viable initial *model* conformations and annihilate atomic forces until convergence
 - X-ray or NMR structures; chemical intuition
- Compute the self-consistent electronic structure for the optimized geometry
- Analyze energy levels, density of states, charge density distribution, individual wave functions \rightarrow interpretation of possible conduction behavior
- Compute transfer integrals when possible

Method: DFT electronic structure

Structural Optimization and electronic structure

PWSCF: Plane-wave pseudopotential DFT (LDA, PW91, PBE)
 <u>http://www.quantum-espresso.org</u>

• Particularly suitable to describe structures with long-range order

• NWChem, Gaussian: DFT with gaussian basis sets http://www.emsl.pnl.gov/docs/nwchem/nwchem.html, www.gaussian.com

Analysis of the electronic properties

- Bandstructure: $\mathcal{E}_{i,k}$
- Isosurface plots of Bloch orbitals: $\Psi_{i,k}$
- Density of States: $D(E) = \sum_{i,k} \langle \Psi_{i,k} | \Psi_{i,k} \rangle \delta(\varepsilon_{i,k} E) \quad D_{\phi}(E) = \sum_{i,k} \langle \phi | \Psi_{i,k} \rangle \delta(\varepsilon_{i,k} E)$
- Transfer integrals

Electron transfer rates from DFT

Nuclear coordinate

Potential energy surfaces of the initial and final states in a typical ET reaction: interaction \Rightarrow splitting at transition coordinate

Marcus' formula for ET rate

 λ = nuclear reorganization energy

 $V_{\rm IF}$ = electronic coupling

dnananowir

Theoretical approach to ET $V_{\rm IF} = \frac{1}{1 - S_{\rm IF}^2} \left| H_{\rm IF} - \frac{H_{\rm II} + H_{\rm FF}}{2} S_{\rm IF} \right| = \left| \frac{ab}{a^2 - b^2} \Delta E_{\rm IF} \right|$

 $\Delta E_{\rm IF} = E(\psi_{\rm I}) - E(\psi_{\rm F})$

energy difference between the initial and final diabatic electronic states

a, *b*: overlaps between diabatic states and ground state

ground state :
$$|\psi\rangle = a|\psi_{\rm I}\rangle + b|\psi_{\rm F}\rangle + c|\psi_{\rm T}\rangle, \quad |c| \ll |a|, |b|$$

Optical absorption by TDDFT

• Why?

• Tool for structural characterization of chiral biomolecules

Calculation of linear absortpion spectra using OCTOPUS

www.tddft.org/programs/octopus

- Real-space uniform-grid implementation
- Ground state calculated within DFT
- Kohn-Sham equations are propagated in real time

 $ilde{\phi}_j(\mathbf{r})$: ground state

$$v(\mathbf{r},t) = -k_0 x_
u \delta(t)$$
 $x_
u = x, y, z$

Time Evolution

$$i\frac{\partial}{\partial t}\phi_i(\mathbf{r},t) = [\frac{-\nabla^2}{2} + v_{KS}(\mathbf{r},t)]\phi_i(\mathbf{r},t)$$

Polarizability:

$$lpha_
u(\omega) = -rac{1}{k}\int d^3r x_
u \delta n{f r},\omega)$$

photo-absorption cross-section:

$$\sigma(\omega) = -rac{4\pi\omega}{c}\Im\sum_n lpha_
u(\omega)$$

Circular dichroism by TDDFT

• Why?

- Powerful spectroscopic tool to reveal the conformation of chiral molecules
- Clear-cut experimental data available for A strands
- Protection against UV damage: Delocalization through multiple bases? De-excitation mechanism?

THEORY

Time propagation of angular momentum by TDDFT with $\delta(t)$ perturbation

 $L_{\nu}(t) = \sum_{i} \langle \psi_{i}(t) | - i(\mathbf{r} \times \nabla)_{\nu} | \psi_{i}(t) \rangle$

Fourier transform and imaginary part $R(E) = Im \frac{\Re(E)}{\pi}$

R(E) is proportional to the measured signal (difference between left and right refraction indexes)

dnananowires Ist

Gauge-invariance and other technical issues

Structure by MD and MM

Why?

- Describe more complete systems and environment, though not the quantum features
- Motion of ions, rigidity and flexibility, resistance against unfolding, intercalation, conformational effects on electronic structure

General procedure

- Hypothesize viable initial conformations that take into account the solvent
 - X-ray or NMR structures; chemical intuition, various electrostatic rules
- Solve the equations of motion for the "classical" ions
- Analyze the trajectories: selected distances and angles, hydrogen bonds, other structural features depending on the specific system
- Root-mean-square deviations and variance hystograms

Method MD trajectories in real time at finite temperature

$H_{I}(R_{I})\Psi_{I}\Psi_{e}+E_{e}(\{R_{I}\})\Psi_{I}\Psi_{e}=E_{I}\Psi_{I}\Psi_{e}$

 $\hfill \label{eq:slow}$ Slow nuclei \rightarrow replaced by classical particles

$$M_{I}\mathbf{\mathbf{R}}_{I} = -\frac{\partial E}{\partial \mathbf{R}_{I}} = \mathbf{F}_{I} \left[\left\{ \mathbf{R}_{I} \right\} \right]$$

- Total energy derived from quantum electronic structure calculations → quantum Molecular Dynamics (Car-Parrinello)
- Total energy parametrized by two-body potentials (or other forms) → classical Molecular Dynamics with a variety of force fields (CHARMM, AMBER, etc.)

Selected results

Bandstructure calculations

Inspiration

- D. Porath et al., *Nature* **403**, 635 (2000)
- "Semiconductor" behavior due to the bands of the material

Semiconductor

- Bandgap
- Finite bandwidth: E(k) **dispersion** relation

DNANANODEVICES

DFT with plane-wave basis set on Guanine stacks

R. Di Felice et al., Phys. Rev. B 65, 045104 (2002)

- Band dispersion and small effective masses for eclipsed guanines
- Poor band dispersion and huge effective masses for twisted guanines by 36 degrees as in B-DNA

Guanine quadruple helices (G4-DNA molecules)

K(I)-G4 Electronic Structure

A. Calzolari et al., Appl. Phys. Lett. 80, 3331 (2002); J. Phys. Chem. B 108, 2509 & 13058 (2004)

Bandstructure

- Flat bands gathered in manifolds
- No dispersion along wire axis (ΓA)
- No backbone effects
- Manifolds → effective semiconductor

Contour plots

- Channels for charge motion through the bases
- Poor potassium-guanine coupling

Molecular Dynamics simulations of G4-wires

G4-wires are primarily stabilized by

- 1. Hoogsteen paired guanine residues in each G4-plane
 - 2. Metal cations inside the cavity

Can empty channels exist?

- Confirmed "stability" trend K+ > Na+ > Li+
- $\bullet\, Empty$ quadruplexes are less deformed than shorter molecules \to stability is likely to improve with increasing length

A longer simulation (20 ns) of a longer helix (24 planes)

Average structure

Tetrad stacking and base co-planarity are almost precisely preserved

M. Cavallari, A. Calzolari, A. Garbesi, R. Di Felice, *J. Phys. Chem. B* **110**, 26337 (2006)

Increasing the number of stacked tetrads helps preserve the G4-wire structure against unfolding in the absence of cation coordination

Statistical analysis from MD

M. Cavallari, A. Calzolari, A. Garbesi, R. Di Felice, J. Phys. Chem. B 110, 26337 (2006)

- N=total number of atoms
- T=total simulation time (after equilibration)
- <>=average

Porphyrin intercalation

Average structures from 10-ns (mds, mds, mds3, mds5) and 20-ns (mds4, mds6) runs

Major deformations in mds2 and mds3

Larger 1/8 TMPyP/tetrad ratio in mds6 more regular than the smaller 1/2 ratio in all other structures

TMPyP intercalation in long G4-DNA quadruplexes viable

DFT on MDNA base-pairs

G. Brancolini and R. Di Felice, *J. Phys. Chem. B* **112**, 14281 (2008).

Optical absorption of GC pairs: combined effect of **stacking** and **H-bonding**

- •Main effect of **H-bonding**: small redshifts at low energies
- •Main effect of **stacking**: hypochromicity at higher energies (~62% for most intense peak)
- •H-bonding and stacking act separately

dnana

Optical absorption of x-bases

Recent DFT studies of electronic properties

- Role of π -ring
- M. Fuentes-Cabrera & coworkers, *J. Phys. Chem B* 109, 21135 (2005); *J. Phys. Chem. B* 110, 6379 (2006); *J. Phys. Chem. A* 110, 12249 (2006)

Consequenses on optics?

Relation to natural bases?

•Shifts and hypochromicity

Optical absorption of x-base stacks

D. Varsano, A. Garbesi, R. Di Felice, *J. Phys. Chem. B* **111**, 14012 (2007).

 H-bonding → redshift of low-energy excitations (not visible here)

Stacking → pronounced hypochromicity

- Hypochromicity is stronger for structures with regular overlap between x-pairs
- Overall: qualitative behavior similar to stacks of natural pairs, but with strong structural dependence of the fine details

Early circular dichroism attempts

WC WC WC $CS C_2...O_2$ $CS N_6...O_4$

Data by Steen Nielsen, Aarhus University

Transfer integrals between x-pairs

A. Migliore, S. Corni, R. Di Felice, E. Molinari, J. Chem. Phys. 124, 64501 (2006) [METHOD]

Native base-pairs

Expanded base-pairs

 Comparison to post-HF results for natural DNA base pairs [accurate testing of computational ingredients such as basis sets, xc functionals, DFT schemes]

•Does the aromatic expansion enhance the transfer integral as a consequence of enhanced π - π stacking?

Methodological tests on GG stacks

	Method	(eV)	(eV)	(eV)
	6-31g*	0.498	0.141	0.129	
Our work with the BHH exchange-correlation functional	6-311++g**	0.441	0.075		
	6-311++g(3df,3pd)	0.426	0.065		G
	cc-pVTZ	0.439	0.076		po
	TZVP	0.446	0.076	0.069	•
	TZVP + BSSE	0.446	0.076		
Our work with other exchange-correlation functionals	6-31g*, PBE0			0.619	
	6-31g*, B97-3			0.627	
	6-31g*, B3LYP			0.726	
	6-31g*, B97			0.751	
Other DET based works	SCC-DFTB		0.061 (0.087)		
Other Di 1-based works	DFT, TZ2P in ADF		0.053 (0.119)		
HF-based works	KTA, HF/6-31g*		0.081-0.084		
Post-HF-based work	CASSCF(7,8), 6-31g*	0.414	0.067		
	CASSCF(11,12), 6-31g*	0.370	0.049		
	CASPT2(11,12), 6-31g*	0.392	0.051		

Good performance relative to post-Hartree-Fock methods

DNANANODEVICES

Natural versus size-expanded base pairs

GC-GC		xGC-xGC		AT-AT		xAT-xAT	
Real	Ideal	Real	Ideal	Real	Ideal	Real	Ideal
0.058	0.075		0.205	0.003 0.059-0.091	0.008-0.017	0.060	0.040-0.054

Real: taken from pdb files of oligomers Ideal: constructed with nucleic acid builders with average parameters

- Importance of structural fluctuations: difference between "real" and "ideal"
- Net increase upon size-expansion, less remarkable if structural changes are considered

Complementary look at the electronic structure: scanning tunneling spectroscopy (STS)

STS: experiment

E. Shapir, A. Calzolari, C. Cavazzoni, D. Ryndyk, G. Cuniberti, A. B. Kotlyar, R. Di Felice, D. Porath, *Nature Mater.* **7**, 68 (2008)

-2

0 2

Voltage (V)

-4 -2

CNR

Desired but unfeasible ab initio computational setup

0 2

Voltage (V)

0

-4 -2

0

 $^{-4}$

-2

0

Voltage (V)

2

2

Voltage (V)

STS: theoretical interpretation

E. Shapir, A. Calzolari, C. Cavazzoni, D. Ryndyk, G. Cuniberti, A. B. Kotlyar, R. Di Felice, D. Porath, *Nature Mater.* **7**, 68 (2008)

Summary of methods

Experiment

- Charge transfer rates in solution
- Current-voltage measurements
- STM spectroscopy
- Optical spectroscopy

Theory

- Electron transfer theory (transfer integrals)
- Ab initio electronic structure: ground-state and excitations
- Model Hamiltonians
- Molecular dynamics

Summary

Density functional theory

- From the ground state to the excited states (transport and optics)... the road is opening up
- Predictive potentiality

Molecular dynamics

- Structural flexibility
- Powerful tool to complement electronic structure theory

Relevance of dynamical fluctuations in electronic structure issues

dnananowires

People

Collaborators at S3

Elisa Molinari	HouYu Zhang (M-DNA)
Anna Garbesi	Daniele Varsano (TDDFT, xDNA, G4/A4)
Stefano Corni	Manuela Cavallari (molecular dynamics)
Andrea Ferretti	Agostino Migliore (electron transfer, xDNA)
Arrigo Calzolari (G4)	Giorgia Brancolini (M-DNA)

External Collaborators (experiment)

Danny Porath (HUJI Jerusalem, Israel) Sasha Kotlyar (TAU Tel Aviv, Israel)

External Collaborators (theory)

Joshua Jortner (TAU Tel Aviv, Israel) Gianaurelio Cuniberti (TU Dresden, Germany)
Angel Rubio (UPV/EHU San Sebastian, Spain)
Miguel Fuentes-Cabrera (ORNL, Oak Ridge, TN, USA)

Acknowledgements

Funding: **CNR-INFM**, **EC** projects "DNA-based Nanowires" (2002-2006) & "DNA-based Nanodevices" (2006-2009), **EC** Marie Curie Network "EXC!TING", **MIUR** (Italy) "FIRB-NOMADE"

Computer time: CINECA Bologna, ORNL Oak Ridge, NERSC Berkeley

