

Catalytic DNA Systems

Bernard Yurke

Boise State University

International Workshop on DNA-based nanotechnology DNATEC09 Dresden Germany May 12, 2009

Funded by NSF

Outline

Catalytic DNA systems – Why are they interesting? Reaction mechanisms for engineering DNA reaction networks Some catalytic DNA-based systems

A catalytic system driven by base paring

A catalytic system driven by entropy increase

A catalytic cascade analogous to signaling cascades

An autocatalytic system

Catalytic DNA systems – Why are they interesting?

Catalytic DNA systems are useful for devising DNA-based autonomous motors analogous to biological molecular motors DNA-based chemical amplifiers analogous to biological signaling cascades DNA-based self-replicating systems analogous to living organisms

Reaction mechanism for engineering DNA reaction networks

Motorized DNA tweezers

Entropy driven strand displacement

Catalytic DNA Systems

1. Catalytic system powered by increase in the number of bases paired.

G. Seelig, B. Yurke, and E. Winfree, JACS **129**, 12211 (2006).

2. Catalytic system entropically driven by increase in the number of DNA strands.

D. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree, Science **318**, 1121 (2007).

catalyst

L

S

strand

s

Making a metastable fuel complex

Catalytic speedup of fuel-complex decay

reaction intermediate, I

Seelig, et al., JACS 90, 12211 (2006)

[fuel complex] = 200 nM, varying [catalyst]

Catalytic speedup: 5000

Turnover: 40

Seelig, et al., JACS 90, 12211 (2006)

Energy content of the fuel

Entropy drive catalyst

D. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree, Science **318**, 1121 (2007).

Entropy drive catalyst

Entropy driven catalyst

Catalytic speedup: 1.9 X 10⁴

Zhang, et al., Science **318**, 1121 (2007).

Using entropy to go uphill energetically

A catalytic cascade

[C0] is constant with time
For short times
[OB0] is proportional to t
[0B1] grows as t²

A catalytic cascade x (10 nM) 0.7 .5x F0 2x .1x 0.35 0.75 Fluorescence (a.u.) 0.05x 12 6 F1 time (hr) 2 0.5 data sim 0.01x 0.25 05x 002x 001xontrol 0 0.5 1.5 0 2 1 time (hr)

F0 4b 5 7 8 9 B0 4b 5 7 B0 C0 4 5 7 B0 C0 C0C

After 12 hours we can reliably distinguish between 0 pM and 1 pM of catalyst. 1pM of catalyst generated 900 pM of reporter.

This is 900 fold amplification.

1 pM corresponds to about one molecule per eukaryotic cell.

An autocatalytic system

Exponential growth with saturation

318, 1121 (2007).

Conclusions

Entropy driven reactions provide a powerfull way to engineer DNA reaction networks.

Catalytic DNA systems have been devised which:

1.exhibit motor activity

SJ Green, J Bath, AJ Turberfield, PRL **101**, 238101 (2008). 2.function similar to biological signaling cascades. 3.exhibit autocatalytic behavior.

Future challenges

- 1. Make better autonomous DNA-based motor systems.
- 2. Make chemical amplifiers that would be commercially useful.
- 3. Make autocatalytic systems that can transmit some sort of genetic information.