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Linear Polymer Chains

Typical size grows like power law (Flory)

RG’ X L3/(2—|—d)

Typical shapes are prolate (Kuhn)




Excluded Volume Effects
Single DNA Molecules confined to 2D
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B. Maier and J.0O. Radler, PRL 82, 1911 (1999)



L <51,

Circular DNA

Nicked plasmids were used
to generate circular DNA
without superhelicity

AFM images on mica
surfaces

Witz et al. PRL (2008)




The Wormlike Chain Model

L 2 2
K 0-r

Inextensible chain: | t(s) ’:| 81‘(8)/88 |: 1
Bending stiffness: — lpkBT

Persistence length: <t(s)t(8/)> = exp [(S — S/)/lp]

O. Kratky and G. Porod, Rec. Trav. Chim. 68, 1106 (1949) ; N. Saito et al., J. Phys. Soc. Jpn. 22, 219 (1967)




» Ring Geometry?

» Self-Avoidance?




» Tangent-Tangent Correlations

» Radius of Gyration

» Shape (Asphericity)




AFM Images of DNA Plasmids on Mica
7" pBR322

TABLE 1. Properties of the investigated DNA molecules. The length L is calculated using 0.34 nm per base pair. All lengths are in
nanometers.

DNA type (bp) L L/¢, €, v

Minicircle 1 241 82 1.6 not applicable 0.90 = 0.01
676 4.6 not applicable 0.91 = 0.01

Minicircle 2

49.1 = 2.8 4125 =12 0.76 = 0.01
49.6 = 2.5 6293 + 18 0.75 = 0.01




Tangent-Tangent Correlations (2D)

(cosO(s)) = exp|—s/2l,]

(exact for open 2D string w/out self-avoidance)

> What is the effect of ring geometry?

» What is the effect of self-avoidance?




Very Stiff Rings (Mini-circles)
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2D DNA Data (Dietler group @ EPFL)
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Ring Geometry (3D)

(no self-avoidance)




Mean-Square Diameter

Stiff regime:
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K. Alim and E. Frey, Eur. Phys. J. E 24, 185-191 (2007)



What is the shape of a polymer ring?

Radius of gyration (shape) tensor:
Qi; = %fdsm(s)rj(s) = %fdsrz-(s) %fdsrj(s)
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Radius of gyration (“size”

R =Tr@Q = M\ + Ao + A3

Traceless shape tensor:

A 1 _
Qij = Qij — gTI‘QCSz'j = Qij — A 04

3
Asphericity: i QZ _ Z(AZ _ j\)Z

=1
= rescaled variance measuring the deviation from a sphere

Nature of asphericity:  Det Q — ()\1 = 5\)()\2 — 5\)()\3 — 5\)

= ,counting the signs” measures the nature of deviation from sphere

J. Aronovitz and D. Nelson, J. de Phys. 47, 1447 (1986)
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Results for Random Coils

(Diehl & Eisenriegler, 1989)

<A>ring ~ 0.29 <Z>ring ~SN¢

(Cannon et al., 1991)

(A)open ~ 0.40 (3 open ~ 0.75




Ig 2D structures
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The average shape parameters

simulations
stiff
flexible (fl,c)
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K. Alim and E. Frey, PRL 99, 198102 (2007)



Ig 2D structures
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Rings are stiff and oblate for I < 41,

For L = 8l ;the shape distribution is
extremely broad: planar and crumpled
conformations are equally likely.

Shape distributions for flexible  Ipolymeis
are also very broad: mean and most likely

value are not the same.

Shape changes discontinuously as one cuts a
polymer ring!




Ring Geometry (2D)

(the effect of self-avoidance)




AFM Images of DNA Plasmids on Mica
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TABLE 1. Properties of the investigated DNA molecules. The length L is calculated using 0.34 nm per base pair. All lengths are in
nanometers.

DNA type (bp) L L/¢, €, L v

Minicircle 1 241 82 1.6 not applicable 83 =1 0.90 = 0.01
Minicircle 2 676 4.6 not applicable 241 £ 1 0.91 = 0.01
pUCI19 2686 525 £5.1 937 = 13 0.85 = 0.07
pBR322 4361 30 49.1 = 4.6 1543 £5 0.82 = 0.01
pSH1 5930 40 53.5*+4.2 2110 £ 10 0.81 = 0.01
2 X pSH1 11860 80 49.1 = 2.8 4125 = 12 0.76 = 0.01
3 X pSH1 17790 49.6 = 2.5 6293 + 18 0.75 = 0.01




Self-Avoidance

,local“ overlap
(stiffening)

,global“ overlap
(swelling)

Topological self-avoidance & Excluded volume (finite thickness)




Radius of Gyration

stiff analytical
phantom <
excluded volume A
experimental data —&—

semiflexible flexible

F. Drube, K. Alim et al. (preprint) arXiv:0906.3991




Excluded volume leads to effective stiffeningup to L = 15/,
(,local” contacts?)

Excluded volume leads to significantly stronger swelling than
topological self-avoidance
(,,elobal” contacts?)

Good agreement with experimental data of Dietler group for
DNA on Mica surfaces for d =0.13 /,




Is swelling affine (isotropic)?




Asphericity

semiflexible flexible

phantom
excluded volume
experimental data —&—

F. Drube, K. Alim et al. (preprint) arXiv:0906.3991




Excluded volume leads to significantly reduced
asphericity, i.e. to non-affine swelling




Summary & Outlook

» Shapes of 3D polymer rings strongly depend on L/Ip

» Self-avoidance alters shape and size of 2D polymer rings
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