Metal-DNA electronic hybridization from first principles

G. Brancolini and R. Di Felice

DNATEC09, May 11-15, 2009 MPIPKS Dresden, Germany

Introduction: M-DNA

♦ M-DNA is investigated for serving as novel molecular nanowires.

The changes induced by metal incorporation could possibly confer metalbased functionalities to DNA resulting e.g. in enhanced conductivity

♦ M-DNA is obtained from the complexation of one metal ion per base pair

Questions:

Which metal elements are most suitable to perturb the electronic structure of DNA in a profitable way for nanotechnology applications?

Which kind of perturbations do the metals induce? What is the effect on energy gaps?

Zn(II), Ag(I), Cu(I) and Cu(II) investigated cations

Brancolini, G.; Di Felice, R. J. Phys. Chem. B 2008, 112 (45), 14281

M-GC bp Optimized Structures

Methods

Ground-state properties: Density Functional Theory (DFT)
codes with localized basis sets. Gaussian03, NWCHEM

Tests on different xc functionals and basis sets for M-DNA

xc= B3LYP, PBE0, BHH Std basis 6-311++G**: **Cu(II)-bp** Std basis 6-31G**: **Zn(II)-, Cu(I)-bp** Std basis 3-21G** 5d: **Ag(I)-bp**

 Bulk solvent effects included through the PCM model in Gaussian03

Brancolini, G.; Di Felice, R. J. Phys. Chem. B 2008, 112 (45), 14281

Widening of	Structures M-DNA	HOMO – LUMO GAS B3LYP[eV]	GAS PBE0
excitation gap in most cases,	H-GC	3.79 ^в 2	4.19
shrinking only in Zn- imino case	Zn(II)-imino-H ₂ O	3.36	3.75
	Zn(II)-N7-5H ₂ O	4.17	4.59
Zn/III)-imino	3.36 eV		4.17 eV
HOMO-5	I6 -14 -12 -10 -8 -6 -4 - Orbital Energies (eV)	² Zn(II)-N7-5H ₂ O LUMO+1	-16 -14 -12 -10 -8 -6 -4 -2 Orbital Energies (eV)

Electronic Structures: Cu(I,II) cations mostly contributes to the hybridization of the frontier orbitals

Closed-shell Cu(I): HOMO-1	pen-shell Cu(II) cations systems: SOMOs
----------------------------	---

Cu(I)-imino

Cu(II)-imino

Cu(II)-lipsyn-2H₂O

 \blacklozenge The Singly Occupied Molecular Orbital (SOMO) has the same character as the $\beta\text{-LUMO}$ and hosts the unpaired electron

 The SOMO is likely to be the most reactive orbital of those systems

Conclusions on M-DNA bps

Structure and electronic properties of metal modified GC bp have been investigated by *ab initio* DFT method

Doping with Cu(II) is both structurally/energetically feasible (persistent planarity & strong hybridization of frontier orbitals)

Cu-modified GC complexes might be the best candidates for nanowires with good conduction properties and on-purpose modifications of DNA to detect local electrical signals along the helix

In particular, due to the smallest HOMO-LUMO gap, Cu(II)-N7 conformation may have enormous impact in practical applications

xDNA

♦ x-DNA: design and syntesis of more conductive structures by chemical modifications of nucleobases as an alternative way to go beyond the limits of native-DNA

• x-DNA is obtained by the expansion of each natural base with a benzene ring that is covalently bonded to the base and co-planar with it

How is the aromatic enhancement reflected on the electronic/optical properties ?

Varsano, D.; Garbesi, A.; Di Felice, R. J. Phys. Chem. B 2007, 111, 14012

Introduction: M-xDNA

M-xGC bp Optimized Structures

Ag(I)-CxG-N7 Ag(I)-CxG-N7 $2H_2O$ Ag(I)-CxG-imino

In both natural and size-expanded **bp** pairs, **Cu(II)** is the cation that mostly reduces the **HOMO-LUMO gap**, and the effect of the solvent is small.

The effect of guanine	Structures	GAS	GAS	SOLVENT
expansion is larger in		B3LYP	PBE0	B3LYP
Ag(I)-xGC than in Cu(II)-xGC				
Solvent effect is to	H-xGC	3.65	4.00	4.24
generally open the				7
band gap	Cu(II)-N7	0.85 [1	90] 1.20	1.11
HOMO and LUMO of		1.46	2.15	3.68
Ag(I)-N7 are not altered				
by the presence of the		×		
solvent, the electron				× 1 ×
associated to purely	Ag(I)-N7 LUMO (GAS)		- -	
electrostatic effects			Ag(I)-N7 L	UMO (SOL)

Aromatic base expansion favour **Planarity**:

planar models are more suitable for building antiparallel duplexes

The effect of guanine expansion is larger in Ag(I)-xGC complexes for what concern electronic levels shifts

Cu-modified xGC complexes are the most promising candidates for nanotecnology applications

◆ Cu(II) mostly contributes to the hybridazation of the frontier orbitals in both natural and size-expanded DNA base pairs.

 Hybridization along with persistent planarity of Cu(II)-complexes: powerful tool to design modifications exploitable in applications

General shrinking of the HOMO-LUMO gap also with Cu(I), Ag(I)

On-going work on M-DNA stacks

- Electronic structures, HOMO-LUMO gaps
- Comparisons between different exchangecorrelation functionals (B3LYP, PBE0, BHH) and basis sets crucial for base-pairs including transition metals
- Effects of **stacking** interactions

Stability: Binding Energies (storage)

M-DNA

Dimer models	Edimer	E ^{bsse}	$\Delta E^{D \bullet f}$	$\Delta E^{binding}$
Cu(I)-imino	-2655.9024653	-2655.81071	-0.0195	-45.26
Cu(II)-imino	-2655.7040626	-2655.56258	-0.0163	-78.47
Cu(II)-imino-2H ₂ O	- 2808.6024 233	-2808.49226	-0.0567	-33.52
Ag(I)-imino	-6186.0390459	-6185.97552	-0.0097	-33.77
Zn(II)-imino-H2O	-2871.0263726	-2870.89559	-0.0256	-65.96
Trimer models	Etrimer	E ^{esse}	$\Delta E^{D \bullet f}$	$\Delta E^{binding}$
Cu(II)-N7	-2655.9096433	-2655.35142	-0.0301	-331.20
Cu(II)-N7-4aH2O	-2961.8126735	-2961.49253	-0.0988	-138.81
Cu(II)-N7-4bH₂⊖	-2961.8062325	-2961.54184	-0.0664	-124.18
Cu(II)-lipsyn-2H ₂ O	-2808.9229342	-2808.54107	-0.0364	-216.64
Ag(I)-N7	-6186.4821938	-6186.29401	-0.0195	-105.76
Ag(I)-N7-H₂⊖	-6262.5396345	-6262.37255	-0.0181	-93.43
Ag(I)-N7-2H ₂ O	-6338.5870565	-6338.43217	-0.0434	-69.91
Zn(II)-N7-5H2O	-3177.1284545	-3176.89228	-0.0656	-106.97
Zn(II)-lipsyn-2H ₂ O	-2947.7932534	-2947.41262	-0.0523	-205.88

M-xDNA

Model M-xGC	Bainer	B ^{esse}	$\Delta \mathcal{E}^{D \bullet f}$	$\Delta B^{binding}$
Cu(II)-imino	-2809.82605425	-2809.67167575	-0.035811641	-74.35
Ag(I)-imino	-6338.77299730	-6338.70755821	-0.011356642	-33.91
Model M-xGC	Barajuman	B ^{esse}	$\Delta \mathcal{B}^{D_{\bullet} f}$	$\Delta E^{binding}$
Gu(II)-N7	-2810.08610154	-2809.47532717	-0.027127084	-366.00
Ag(I)-N7	-6339.17322369	-6339.01828247	-0.093688609	-38.41
Ag(I)-N7-2H ₂ O	-6491.27184000	-6491.11138053	-0.147396209	-8.19

Formation energies with respect to the constituens isolated parts

Among imino: Cu(II)-imino has the highest energy gain

Among N7: Cu(II)-N7 has the markedly highest energy gain