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1) equilibrium DNA end-point dynamics

2) rotationally driven buckling of stiff polymers

3) rotationally driven flexible polymers

(hydrodynamic solvent-implicit simulations,

pre-averaging hydrodynamic theories

scaling arguments)



End-monomer dynamics of semiflexible polymers

O. Krichevsky et al., Phys. Rev. Lett. 92, 048303 (2004)
M. Hinczewski, X. Schlagberger, M. Rubinstein, O. Krichevsky, R.R. Netz, Macromolecules 42, 860 (2009)

Fluorescence
correlation

spectroscopy (FCS)

mean-squared
displacement

MSD

local exponent

3/4 worm-like chain

2/3 Zimm
flex. chain with hyd.

1/2 Rouse
flex. chain without hyd.

evidence of an “intermediate Rouse regime” with MSD ≈ t1/2

===>  free-draining ??

length scale 100 nm, time scale 1 ms

1  center-of-mass



single monomer diffusion is at increasing time scales 

dominated by progressively growing chain sections :

goal: monomer mean-square-displacement

as function of time

MSD of that section RMSD
2 ≈ D  t

Zimm: D ≈ 1/Rcoup

Rouse : D ≈ 1/N

coupled chain section at time t

Rcoup ≈ Nν

Rcoup

scaling assumption: diffusion radius determines coupling radius Rcoup ≈ RMSD

Zimm: RMSD
2 ≈ t2/3

Rouse: RMSD
2 ≈ t� 2ν/(1+2ν) ideal chain ν=1/2   −>  R2 ≈ t1/2

rod ν=1      −>  R2 ≈ t2/3 (Zimm  R2 ≈ t2/3ln2 t )



Lcoup

R

x

similarity    x/Lcoup ≈ Lcoup/R

->  transverse fluctuations x2 ≈ Lcoup
3 / lP

diffusion x2 ≈ D t

diffusion constant D ≈ Lcoup
-1 ln Lcoup

-> vertical displacement x2 ≈ t3/4 lP
-1/4 ln3/4 t

semiflexible chain dynamics: longitudinal motion blocked ->
thermal transverse bending

exponents:

3/4 (rigid scale)

2/3  (flexible scale)
1 (center-of-mass scale)

1/2 Rouse ??

equipartition theorem:

bending energy / kBT =
lP Lcoup

R
2 =1
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DNA dynamics:
length and time scales (microns and milliseconds)

require coarse-grained simulations techniques!

atomistic resolution

- detailed force fields
- including explicit water

coarse-grained description
- few effective interactions

- continuous hydrodynamics

2nm
10 bp
3.4 nm



Stationary Navier-Stokes equation

for small Reynolds number on the micron scale

How to put in hydrodynamic effects without solvent?

H
αβ (r) =

1

8πηr
δαβ + ˆ r 

α ˆ r 
β[ ]

(Oseen-Tensor)

flow-field due to point-force at origin:

u
α(r) = H

αβ (r) f
β

α,β =1,2,3

linear equation, Green‘s function approach valid

for many particles superposition principle: u
α(r) = H

αβ (r − ri) f i

β

i

∑



Hydrodynamic Brownian simulation techniques

Random force
  
ξ i( t)ξ j( ′ t ) = 6

t 
µ ij kBT δ(t − ′ t )

Mobility matrix:
  

t 
µ ij = Dij / kBT = µ0 δ ij +

t 
H (ri ,rj)

µ0 = 6πRη( )−1
self mobility: hydrodyn. interact.

equivalent to Smoluchowski equation for particle distribut. W(rj,t) :

∂W

∂t
=

∂

∂ri

Dij

∂W

∂rj

−µij f jW
 

  

 

  i, j

∑ stat. solution: W ≅ e
−U / k BT

  
mÝ Ý r j(t)

t 
µ ij + Ý r i(t) =

t 
µ ij f j(t) + ξi(t)Velocity of

i-th particle:

deterministic  force f j( t) = −∂U (t) /∂rj (t) + E



polymer of 50 beads 
persistence length = 20a

bead radius a
-> pers length 20 nm

length 100 nm

Brownian hydrodynamics simulations ( Michael Hinczewski )

End-monomer dynamics of semiflexible polymers

Zur Anzeige wird der QuickTime™ 
Dekompressor „mpeg4“ 

benötigt.

many independent simulations are needed !!

not applicable to long DNA chains !



with pre-averaged Rotne-Prager hydrodynamic interaction                      . 

Hydroynamic mean-field theory (MFT) for semiflexible chain (R. Winkler):

The dynamics are described by a Langevin equation: 

u(s,t)

exact normal mode decomposition: ,

diagonalized Langevin equations

M. Hinczewski:

after saddle-point approx. for constraint: MFT Gaussian Hamiltonian

where:

u
2(s) =1and



validation of the hydrodynamic theory by comparison 

with Brownian hydrodynamic simulations for N=50, 100, 200



validation of the hydrodynamic theory by comparison 

with Brownian hydrodynamic simulations for N=50, 100, 200



Harnau: Winkler solution with diagonal approximation

MFT: numerically exact solution

excellent agreement between the MFT and simulation data

--> confidently extend the MFT to larger chain lengths inaccessible to simulation

(pre-averaging + mean-field assumption probably ok)

validation of the hydrodynamic theory by comparison 

with Brownian hydrodynamic simulations for N=50, 100, 200



HWR: Winkler solution with diagonal approximation

MFT: numericaly exact soution

excellent agreement between the MFT and simulation data

--> confidently extend the MFT to larger chain lengths inaccessible to simulation

(pre-averaging probably ok)

validation of the hydrodynamic theory by comparison 

with Brownian hydrodynamic simulations for N=50, 100, 200



top row:
mean-squared
displacement

bottom row:
local exponent

worm-like chain  (3/4)

Zimm  (2/3)

Rouse  (1/2)

END-MONOMER-DYNAMICS:
Comparison between FCS experiment and hydrodynamic theory

sub-Zimm scaling regime for longer chains

but still slight disagreement

--> problem of theoretical model (neglect of charges, twist diffusion) ?   -->  probably no ! 

--> problem of sample preparation  /  FCS experimental technique?



reanalysis of Petrov/Schwille data
Petrov, Winkler, Schwille et al, PRL 2006

no hidden fitting parameter in
mean-field theory:
rise per bp 0.34nm
hydrodyn. radius 1nm
persist. length lP = 50nm 

Oleg Krichevsky‘s data

further directions:
DNA-peptide binding rates
dynamic DNA force transduction



comparison of Langevin simulations without hydrodynamic
and Langevin simulations with hydrodynamics

for exponents hydrodynamics always relevant !
shift by + 0.1 ( = logarithmic effects)



simple scaling for dynamic crossover

goal: monomer position a.s.f.o. time

coupled chain section at time t

Rcoup ≈ Nν

diffusion of that section RMSD
2 ≈ D t

general : D ≈ 1/Nc

Zimm flex: c = ν =1/2  −> R2 ≈ t2/3

Zimm rod:     c =1 ν=3/2  −> R2 ≈ t3/4

Rouse:   c=1 ν=1/2   −> R2 ≈ t1/2

Rcoup

crossover from stiff rod (c = 1 ν = 3/2 )to flexible polymer (c = ν = 1/2)

crossover for ν ist quite fast 
crossover for c is somewhat slow  

---> intermediate Rouse regime where c = 1 > ν = 1/2



DNA dynamics far from equilibrium:

1) DNA sedimentation
Schlagberger / Netz, PRL 2007

2) DNA in strong shear fields 
Sender / Netz, EPL 2009

3) DNA under constant twist injection

Hirofumi Wada / Netz



replication fork,

-> rotation of mother strand 

L

ω0

a

axial-spinning torque due to rotational friction: M= a2L η ω0

for L=10µm , ω0=104 -> M=kBT  (Heslot et al., PRL 2002)
biologically ω0=10 − 100, power consumption P = M ω0 of order kBT / s





positive

supercoiling

negative 

supercoiling

topoisomerase I
topoisomerase II

(gyrase)

question:

what is degree of twisting ?
--> how big is rotational friction?





- what is the rotation mode ?? (irrelevant for biology …)

- what is the rotational friction  ?? (is replication possible,
does transcribed DNA rotate ?)

- what is the twist density ?? (topo-isomerase activity ?)
- are supercoils (plectonemes) formed ??

axial-spinning

scenario

solid-body-
rotation

scenario



General mathematical theory of an elastic 
filament

Frenet moving 

coordinate 

generalized Frenet equation strain rate vector field

elastic energy of a deformed filament (linear elastic theory)

strongly non-local
… not suitable for 
efficient dynamic 
simulation models

A: bending modulus,   C: twisting modulus



local parameterization in a discrete model

Alternative expression of the  Frenet equation

Elastic energy is described in terms of

only beads positions and angles 



Stokesian dynamics simulation

Equations of motion

Elastic translational force

µij : Stokeslet on Rotne-Prager level , 
no rotational hydrodynamic coupling

and 

Torque about the tangent

A filament is modeled as a chain of
N+1 connected spheres

Chirico & Langowski
Biopolymers 34, 415 (1994).



stiff case L<LP : buckling frequency 

Dynamic buckling condition (linear stability)

bending torqueinjected torque

rotational torque

ω0

exact linear stability analysis (Powers, Goldstein 2000) :



simulation snapshots

for ω = 1.2 ωC , LP/L=103

(Wada, RRN, EPL 2006)

-> strongly discontinuous
dynamic shape transition
from twirling to whirling

finite-T effects
dominant as LP/L < 1

asymptotic
theoretical

result



Experimental realization
(Powers et al, 2008)

propulsion possible …

but highly inefficient



L /LP =10 ω ωc = 0.2

Zur Anzeige wird der QuickTime™ 
Dekompressor „YUV420 codec“ 

benötigt.

Now flexible limit, slow rotation



L /LP =10 ω ωc = 40fast rotation

Zur Anzeige wird der QuickTime™ 
Dekompressor „YUV420 codec“ 

benötigt.



three dissipation channels

2) solid-body rotation

PSB = η R3 ω2

ωω

ω

ω

PAS = η La2 ω2

1) axial spinning

3) plectoneme diffusion

PPD = η1/3 L1/3 ω4/3 lP
4/3

ω

v

minimal dissipation for

ω > ωω > ωω > ωω > ω∗∗∗∗

steady state :

d

dt
Lk =

d

dt
Tw + Wr( )= 0

--> influx/outflux of twist Tw and writhe Wr must cancel



The plectoneme diffusion mechanism

ω

v

D

R

elastic energy to produce one plectoneme (in units of kBT) :  lP/R

one plectoneme per full turn -> power dissipation  P1 = ω lP/R

excess length 2πR is needed at forced end at frequency ω
 -> whole chain is moving at velocity R ω  −> friction force Rω η L
power dissipation P2 = R2 ω2  η L

PPD = η1/3 L1/3 ω4/3 lP
4/3

rot. friction Γ=P/ω2 = η1/3 L1/3 ω−2/3 lP
4/3

power consumption due to plectomene motion is irrelevant

-> minimize P1+P2 with respect to R

critical frequency from comparing PPD and PAS ->  ω∗ = lP /(a2L2 η)



2

axial spinning regime Γr ∝ L

plectoneme diff. regime

rotational friction (related to replication/transcription efficiency)

Γr ∝ L
1/ 3ω0

−2 / 3

in plectoneme diff. regime 

torque N0 = ω0 Γr and
power  P = ω0 N0

goes as L1/3

no problem of rotating very
long DNA in replication or
transcription !

critical torques reached
easily by anchoring DNA !



rotation at free end (biologically irrelevant)

L/LP=10

axial spinning regime

ωL ∝ω0
1/ 3 /L

plectoneme diffusion regime



axial spinning regime

Tw /L ∝ω0L

solid-body rotation regime

total twist (related to attack probability of topo-isomerase)

Tw /L ∝ω0
1/ 3

L
1/ 3

twist density localized close
to twist-injection in
plectoneme-diffusion regime
-> twist-sensitive topo-isomerase

will locally attack (as in experiments)



in plectoneme-diffusion regime:

- DNA twist is confined to a small

region where plectonemes are created

- plectonemes are formed continuously

(interactions with histones ?)

- power dissipation quite small !

positive

supercoiling

negative 

supercoiling

main result: plectonemes are formed in steady state

while rotation friction (power) is reduced !


