Zinc ions embedded in a dry DNA double helix form a 1D molecular chain of unpaired electron spins

Aleš Omerzu

Complex Matter Department Jozef Stefan Institute Ljubljana, SLOVENIA

dnatec09, Dresden 2009

Motivation: DNA electronic doping for better conductivity

M-DNA

M: Zn²⁺, Co²⁺, Ni²⁺

Imino $H^+ \leftrightarrow Zn^{2+}$

- Synthesis in buffered water solutions
- High pH (8-9)
- Moderate temperature (RT \leq T \ll T_m)
- Salt concentration $c_M > 1 \text{ mM}$
- \cdot DNA concentration c_{DNA} ~ 100 $\mu g/ml$ (150 μM in terms of bp)
- Time $t \ge 1 h$
- J. S. Lee et al., *Biochem. Cell. Biol.* **71** (1993) 162

Jožef Stefan Institute

M-DNA Conductivity

In Solution

Electrochemical studies

C. Z. Li et al. J. Phys. Chem. B 107 (2003) 2291

Fluorescence quenching experiments

P. Aich et al., *J. Mol. Biol.* 294(1999) 477
S. D. Wettig et al., *Nano. Lett.* 3 (2003) 617.

 \Rightarrow High electron-transfer rates

In Solid State (dry)

A. Rakitin et al., Phys. Rev. Lett. 86 (2001) 3670

Free carriers in *M*-DNA?

FIG. 5. (Color online) EPR spectrum of Zn-DNA. The signal intensity is much weaker than that for Mn-DNA, as implied by a low S/N ratio compared with that in Mn-DNA.

K. Mizoguchi et al., Phys. Rev. B 72 (2005) 033106

Percipitation with cold (-20°C) EtOH !

Preparation of dry (lyophilised) M-DNA

Room-temperature ESR signal of

lyophilized ZnDNA samples

- Strong (0.2-1 spin per bp)
- Broad (~ 200 Gauss)
- Asymmetric (A/B > 1)

• With g-value > 2 (g = 2.2)

Control experiments

ESR signal	Tris-HCI pH 7	Tris-HCI pH 9	DNA	ZnCl ₂
Yes		\checkmark	\checkmark	\checkmark
No		\checkmark	\checkmark	
No		\checkmark		\checkmark
No	\checkmark		\checkmark	\checkmark

Monovalent Zn⁺ ?

Zinc Monocation in a Solid State

Electronic structure:

- Zn: 3d¹⁰ 4s²
- Zn+: 3d10 4s1
- Zn²⁺: 3d¹⁰ 4s⁰

Figure 2. ESR spectrum for Zn@SAPO-CHA at room temperature.

Y. Tian et al., J. Am. Chem. Soc. 125 (2003) 6622

EPR signal of reduced nucleobases at 4 K

- \cdot Measured at low T
- \cdot X-ray irradiation in LiCl glass
- Diluted (isolated) spins
- Distinctive & narrow spectra

W. A. Bernhard, J. Phys. Chem. 1989, 93, 2187

Temperature evolution of Zn@DNA ESR signal

Temperature dependence of ESR parameters

Microwave conductivity

Method: Cavity perturbation technique at 16 GHz (contactless)

Dipolar interactions II

Ferromagnetic correlations

 $\left\langle \Delta \quad \tilde{1} \right\rangle^{z} = -\frac{2^{\mu} r_{3}}{12} \implies \qquad \tilde{r} = \tilde{0} - \Delta$

 Temperature independent spin susceptibility & MW conductivity between 100 K and 300K

T = 300 K : delocalized electrons, uncorrelated spins

• Divergence of spin susceptibility and ESR linewidth, g-value starts to increase + step increase in MW conductivity at 100K

T ~ 100 K : delocalized electrons, onset of FM spin correlations

• T \rightarrow 0 , MW conductivity \rightarrow 0, g-value \rightarrow 3

1 1 1 1 1 1 1

Prof. Dragan Mihailović Complex Matter Department, JSI, Ljubljana

Dr. Iztok Turel Sample preparation Bernarda Anželak Faculty of Chemistry and Chemical Technology, Ljubljana

Dr. Janez ŠtrancarESRDr. Denis ArčonIow T ESRAnton GradišekIow T ESRCondensed Matter Department, JSI, Ljubljana

Dr Iztok Arčon University of Nova Gorica XANES, EXAFS

Dr. Hiroshi Matsui *Tohoku University, Sendai* **MW conductivity**

Than you for your attention !

