Metals in and around DNA

Thomas Carell LMU Munich Department of Chemistry and Biochemistry ...conductivity, magnetic properties, DNA as a catalyst...

DNA as a multidentate ligand

DNA as a template

DNA Catalyst or Wires

DNA Nanowires in Devices

Constructing the nanoworld from DNA

N. Seeman, the famous cube P. W. K. Rothemund, *Nature* **2006**, *440*, 297-302

The self recognizing information in DNA allows the assembly of complex nanostructures / architectures

...conductivity, magnetic properties, DNA as a catalyst...

DNA as a Template

Collaboration between

Carell at LMU Munich Simon at RWTH Aachen Eichen at the Technion, Israel Mayer at RWTH Aachen

DNA nanowires

How can we make DNA conductive?

Coat with a metal film !

Braun, Eichen, Sivan *et al.*, *Nature*, **1998**, *391*, 775. Keren *et al.*, *Nano Lett.*, **2004**, *4*, 323. *How can we make DNA conductive?*

Coat with a metal film !

Braun, Eichen, Sivan *et al.*, *Nature*, **1998**, *391*, 775. Keren *et al.*, *Nano Lett.*, **2004**, *4*, 323. How can we make DNA conductive?

Coat with a metal film !

Use principles of black and white photography

Braun, Eichen, Sivan *et al.*, *Nature*, **1998**, *391*, 775. Keren *et al.*, *Nano Lett.*, **2004**, *4*, 323.

The chemistry behind black and white photography (1. Step)

Black & White Photography: Physical development deposition of Ag⁺ from solution

- J. Eggert: Wissenschaftliche Photographie, Verlag O. Helwich, Darmstadt 1958, p. 328.
- R. Matejec, R. Meyer, Z. Wiss. Photogr. Photophys. Photochem. 57 (1963) 45.
- R. Matejec, Photogr. Korresp. 107 (1971) no. 3, 37.
- R. Matejec, J. Signalaufzeichnungsmat. 3 (1975) 219.

Black & White Photography: Physical development deposition of Ag⁺ from solution

- J. Eggert: Wissenschaftliche Photographie, Verlag O. Helwich, Darmstadt 1958, p. 328.
- R. Matejec, R. Meyer, Z. Wiss. Photogr. Photophys. Photochem. 57 (1963) 45.
- R. Matejec, Photogr. Korresp. 107 (1971) no. 3, 37.
- R. Matejec, J. Signalaufzeichnungsmat. 3 (1975) 219.

Black & White Photography:

Physical development deposition of Ag⁺ from solution

- J. Eggert: Wissenschaftliche Photographie, Verlag O. Helwich, Darmstadt 1958, p. 328.
- R. Matejec, R. Meyer, Z. Wiss. Photogr. Photophys. Photochem. 57 (1963) 45.
- R. Matejec, Photogr. Korresp. 107 (1971) no. 3, 37.
- R. Matejec, J. Signalaufzeichnungsmat. 3 (1975) 219.

Physical Development Deposition of Ag⁺ from solution

- J. Eggert: Wissenschaftliche Photographie, Verlag O. Helwich, Darmstadt 1958, p. 328.
- R. Matejec, R. Meyer, Z. Wiss. Photogr. Photophys. Photochem. 57 (1963) 45.
- R. Matejec, Photogr. Korresp. 107 (1971) no. 3, 37.
- R. Matejec, J. Signalaufzeichnungsmat. 3 (1975) 219.

DNA metallization to increase conductivity

- modify the DNA with reducing groups

Use molecular biology to construct nanodevices

DNA duplexes with up to 2000 bp are accessible in this way ! (around 500 modifications)

[3+2] cycloaddition (click reaction) to label DNA with aldehydes

1: 5'-GCG CTG TXC ATT CGC G 2: 5'-GCG CTG XXC ATT CGC G 3: 5'-GCG CXG TXC AXT CGC G 4: 5'-GCG CXX XXX XGT CGC G 5: 5'-GCG CTG TYC ATT CGC G 6: 5'-GCG CTG YYC ATT CGC G 8: 5'-GCG CYY YYY YGT CGC G

... In the presence of excess azide, a Cu(I) salt and DNA a range of adducts corresponding to strand breaks were observed, suggesting that the original click procedure was not amenable to high density functionalisation of DNA.

However, using the Cu(I)-stabilising ligand (tris-(benzyltriazolylmethyl)amine),full conversion of both ODN-1 and ODN-4 to their respective triazole products was observed ...

Gierlich, Burley, Carell Org. Lett 2006

... In the presence of excess azide, a Cu(I) salt and DNA a range of adducts corresponding to strand breaks were observed, suggesting that the original click procedure was not amenable to high density functionalisation of DNA.

However, using the Cu(I)-stabilising ligand (tris-(benzyltriazolylmethyl)amine),full conversion of both ODN-**1** and ODN-**4** to their respective triazole products was observed ...

Gierlich, Burley, Carell Org. Lett 2006

Click reaction at work

Enzymatic incorporation of building blocks using a high fidelity DNA polymerase

Back to silver staining: Sugar coating of DNA

G. A. Burley, J. Gierlich, M. R. Mofid, H. Nir, S. Tal, Y. Eichen, T. Carell. *J. Am. Chem. Soc.* **2006**, *128*. 1398. Highlighted in *Science*, **2006**, *311*, 437.

Clicking of sugar dendrimers DNA increases metallization

J. Am. Chem. Soc. 2006

Lane 1, 3, 5, 7, 9: **floppy Alkin 1**: 300 bp. 7 ng, 3.5 ng, 1.75 ng, 0.88 ng, 0.44 nm Lane 2,4,6,8: **natural DNA**: 300 bp. 7 ng, 3.5 ng, 1.75 ng, 0.88 ng

Ag-Staining (down to 100 atomol)
PCR free detection

Fluorescence-Staining

Nano wires templates by sugar coated DNA

Sugar coated DNA after Ag deposition

AFM images depicting the (a,c) height- and (b,d) phase images of DNA strands after the two-step metallization process: The upper part (a) and (b) shows an overview, below zoomed images (c) and (d) of a strand are depicted Fischler, Simon*, Nir, Eichen, Burley, Gierlich, Gramlich, Carell, *Small* **2007**

Metallised DNA

Preliminary results of electrical characterization UNIVERSITY

EDX analysis: elements detected along the line:

I(V)- curve (range -0.1 - +0,1 V)

Click with µ-contact printing

Printing 240406_S2A 5'-GCGCTGTXCATTCGCG

AFM picture

hybridized with 5'-Cy5-CGCGAAT at 2 °C

D. I. Rozkiewicz, J. Gierlich, G. A. Burley, K. Gutsmiedl, T. Carell, B. J. Ravoo, D. N. Reinhoudt *ChemBioChem* **2007**, *8*, 1997-2002.

P. M. E. Gramlich, S. Warncke, J. Gierlich, T. Carell *Angew. Chem. Int. Ed.* **2008**, *47*, 3442-3444.

Can we design the nucleus needed for metallization

Di-aldehyde modified DNA to generate a Ag₄ Cluster

a) 300mer DNA. b) 900mer DNA. c) 2000mer DNA.

Lane 1: **native** triphosphates: DNA•N; Lane 2: dTTP substituted with **monoaldehyde-**triphosphate Lane 3: dTTP substituted with **dialdehyde**-triphosphate

The Tollens reaction

UV-VIS of the Tollens reaction Black line: before addition of Tollens solution, Colored lines: 5 min interval after Tollens addition

Plasmon peak development Black: Monoaldehyde Red: Dialdehyde

Membrane staining experiment performed with

- 1: Unmodified DNA
- 2: Monoaldehyde DNA
- 3: Dialdehyde DNA
- **a:** 40 ng/μL, **b:** 4 ng/μL, **c:** 0.4 ng/μL, **d:** 0.04 ng/μL

HR STEM micrographs.

- A Tollens solution without DNA,
- **B** Tollens solution incubated with native DNA,
- C Tollens solution incubated with 900mer monoaldehyde-NA,
- **D** Tollens solution incubated with 900mer dialdehyde-DNA.

A new copper-free click reaction for DNA modification (strained alkenes plus nitrile oxides)

Acknowledgement

Dr. Glenn A. Burley Philipp Gramlich Johannes Gierlich Katrin Gutsmiedl Dr. David Hammond Christian Wirges

BASECLICK GmbH

Financial Support LMU München DFG (SFB 486) Volkswagen Foundation

Fonds der Chemischen Industrie BASF AG Ludwigshafen

Collaborationspartners

U. Simon and J. Mayer (RWTH Aachen) Yoav Eichen (Haifa, Israel) M. Shionoya (Tokyo, Japan)