Switching with nucleic acid hybridization

Trigger: Nucleic Acid ; Response: Light

constraining element	
DNA duplex	Tyagi, Kramer, 1996
hydrophobic probe	Seitz / Frank-Kamenetskii, 2000
homo-DNA duplex	Leumann, 2005
LNA	Benner, Tan, 2005
DNA quadruplex	Jullien, Mergny, 2006
2	

Molecular Beacons: Enhanced specificity through constraint

High fidelity probes

<u>Aim</u>: Improve target specificity

- 1) improve hybridization selectivity of probes
- 2) add another sequence discriminating event

FIT probes

Forced intercalation (FIT):

fluorescent dye serves as base surrogate responds to perturbations

Temperature dependence of fluorescence increase

Dilip Jarikote

Tyagi, Kramer, Nat. Biotechnol. 1996, 14, 303

Detection of Her2-neu

Improved sensitivity compared to DNA-stain

Socher, Jarikote, Knoll, Röglin, Burmeister, Seitz, Anal. Biochem. 2008, 375, 2, 318-330

Single base mutation analysis with wildtype background

FIT Probes: High sequence specifity

 $(F_{ma}-F_0)/(F_{mi}-F_0) \le 10$ at non-stringent conditions $(F_{ma}-F_0)/(F_{mi}-F_0) \le 200$ at stringent conditions

High dynamic range of fluorescence signaling

$$F_{ma}/F_0 \leq 30$$

Next generation: Low noise stem-less PNA beacons

Socher, Bethge, Knoll, Jungnick, Herrmann, Seitz, Angew. Chem. Int. Ed. 2008, 47, 9555-9559

Next generation: Low noise stem-less PNA beacons

Socher, Bethge, Knoll, Jungnick, Herrmann, Seitz, Angew. Chem. Int. Ed. 2008, 47, 9555-9559

Next generation: Low noise stem-less PNA beacons

5⁻-CGGCTATTTAGGC-3⁻ C-gccgataOatgccg-C C-gccgataOatgccg-NIR

Socher, Bethge, Knoll, Jungnick, Herrmann, Seitz, Angew. Chem. Int. Ed. 2008, 47, 9555-9559

RNA Detection

DNA-catalyzed transfer

Großmann, Seitz, J. Am. Chem. Soc. 2006, 128, 15596-15597

The chemistry

Grossmann, Seitz, J. Am. Chem. Soc. 2006, 128, 15596-15597

DNA-catalyzed transfer

37 °C, pH 7.0, 0.2 μM probes, 10 mM PO₄, 200 mM NaCl, 0.2 mM TCEP, 0.1 mg/mL RBR

Grossmann, Seitz, J. Am. Chem. Soc. 2006, 128, 15596-15597

22

Amplified detection of DNA and RNA

Grossmann, Röglin, Seitz, Angew.Chem. Int. Ed. 2008, 47, 7119

Amplified detection of DNA and RNA

Grossmann, Röglin, Seitz, Angew.Chem. Int. Ed. 2008, 47, 7119

Switching with nucleic acid hybridization

Hairpin Peptide Beacons

Thurley, Röglin, Seitz, J. Am. Chem. Soc. 2007, 129, 12693-12695

Target: SH2 domain of Src kinase

Thurley, Röglin, Seitz, J. Am. Chem. Soc. 2007, 129, 12693-12695

Target: active site of protease renin

Reversible binding, not cleaved \Rightarrow increase and decrease of protein activity can be measured

Thurley, Röglin, Seitz, J. Am. Chem. Soc. 2007, 129, 12693-12695

Switching with nucleic acid hybridization

Crosslinking signal transduction pathways

Bioactive peptide conformation of SH2 ligands

Ala-Gln-pTyr-Glu-Glu-Ile-Pro-Gly-Tyr-Leu

active

Kinase

<u>_</u>TY

SH3

SH2

Src

2

Kinase

Pro

p-Tyr

Tyr

Tyr

Tyr

Cas

inactive

SH3

SH2

Wakesman et al, *Cell* **1993**, 72, 779

Pawson et al, TICB 2001, 11, 504

Intermolecular hybridization

Hybridization triggers inhibition

L. Röglin, R.M. Ahmadian, O. Seitz, Angew. Chem. 2007, 2759-2763

Repeated switching

RNA-induced activation of Src-kinase

Röglin, Altenbrunn, Seitz, ChemBioChem 2009, 10, 758

Overview

Nucleic acid detection

Seitz Angew. Chem. 2000, 112, 3389, Mattes et al. Angew. Chem. 2001, 113, 3277, Dose et al. Angew. Chem. 2006, 118, 5495, Grossmann et al. Angew. Chem. 2007, 119, 5315, Grossmann et al. Angew. Chem. 2008, 120, 7228, Socher et al, Angew. Chem. 2008, 120, 9697 Köhler et al. ChemBioChem 2005, 6, 69, Ficht et al. J. Am. Chem. Soc. 2004, 126, 9970, Grossmann et al. J. Am. Chem. Soc. 2006, 128, 15596.

Protein-protein/DNA interactions

Beuck et al. *Angew. Chem.* **2003**, *115*, 4088, Röglin et al. *Angew. Chem.* **2007**, *119*, 2759, Thurley et al. *J. Am. Chem. Soc.* **2007**, *129*, 12693.

Protein/nucleotide chemistry

Bergmann et *al.Angew. Chem.* **1999**, *111*, Mende et al. *Angew. Chem.* **2007**, *119*, 4661, Haase et al. *Angew. Chem.* **2008**, *120*, 1575, Haase et al. *Angew. Chem.* **2008**, *120*, 6912 Hainke et al. *J. Org. Chem.* **2007**, *72*, 8811

Acknowledgements

The Group:

Frank Abendroth Frank Altenbrunn Lucas Bethge Franziska Diezmann Anne Frben Melanie Eischbach **Christian Haase** Sven Hainke Hendrik Eberhardt Dr. Rikard Larson Dr. Andrea Knoll Franziska Mende Ulrike Laufer **Julia Michaelis Brigitte Redlich** Heike Rhode Alexander Roloff **Christian Scheibe** Josephine Schmalisch **Elke Socher Christian Stutz Stefanie Thurley** Tanja Westphalen

Dr. Tom Grossmann Dr. Lars Röglin

The Collaborators:

Amadian (MPI Dortmund) Weinhold (RWTH Aachen) Ernsting (HU Berlin) Röder (HU Berlin) Herrmann (HU Berlin)

