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    Off Oregon and California, CTZ includes 
shelf, slope, adjacent ocean interior 

    Complex flows in CTZ govern shelf/ocean 
exchange 

    CTZ flow strongly influenced by continental 
slope—not well resolved in basin scale 
models 

    Natural coastal domain includes CTZ and 
extends 200-300 km offshore and 
alongshore 41º-47ºN 

Coastal Transition Zone


Oregon CTZ SST 



(Halliwell and Allen, 1984)


Forced and damped first-order wave equation

Coastal sea-level response to large-scale winds




(see Durski and Allen, JPO, 2005)


Numerical modeling - instabilities of coastal upwelling jet




Samelson COAS/OSU 

Coastal ocean model ensemble – wind-analysis error


(Kim, Samelson, and Snyder, submitted) 
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Previous work: 
  Optimal Interpolation w/ POM 
  (Oke et al. JGR 2002; 
    Kurapov et al. 2005abc) 

•   Representer-based variational DA on finite time intervals 
     (alternate form of 4DVAR) 

•   Strong-constraint (correct initial conditions) and weak-constraint 
     (correct ICs plus forcing and dynamical errors) 

•   DA and dynamics:  instabilities and CTZ-eddy/shelf-current interactions 

•   Test TL & Adj ROMS + Inverse Ocean Modeling (IOM) System 
     (Chua & Bennett) 

Data Assimilation




Instability and disturbance growth

•   Steady flow: standard normal modes, 
      exponential growth 

•   Time-periodic flow:  Floquet-vector normal 
     modes, product of time-periodic function 
     and exponential growth 

•   Nonperiodic flow:  Lyapunov-vector normal 
     modes, asymptotic exponential growth 

LVs are generalized normal modes:  intrinsic, invariant, consistent 

(Lyapunov vector = “Covariant Lyapunov vector” = “characteristic vector”) 



Lyapunov exponents and vectors

(Oseledets, 1968) 



Lyapunov exponents and vectors

(Oseledets, 1968) 



Lyapunov exponents and vectors

(Oseledets, 1968) 

(Theorem 3 is the multiplicative ergodic theorem) 



Lyapunov exponents and vectors

(Oseledets, 1968) 

Theorems 1-3: 

        Exponents (exponential growth rates; 
           nested subspaces; MET) 

Theorem 4: 

       Vectors (time-invertible case; splitting; 
          vectors if multiplicity = 1) 



Lyapunov exponents and vectors


Get vectors from intersections of subspaces 
(which can be obtained, e.g., via Gram-Schmidt 
orthogonalization) for forward-time and backward-time 
limits, not from eigenvalue problem. 



Lyapunov exponents and vectors


Get vectors from intersections of subspaces 
(which can be obtained, e.g., via Gram-Schmidt 
orthogonalization) for forward-time and backward-time 
limits, not from eigenvalue problem. 

Problem: 

 For kth LV in N-dimensional system, 
           must compute intersection of subspaces 
           of dimension k and N-k+1. 

 If N is large, this is a big computation. 



Lyapunov vectors and singular vectors


•   Lyapunov vectors:  fundamental (invariant) 
     time-dependent normal modes for instability 
     of time-dependent flow 

•   Singular vectors:  optimal transient growth in 
     specified norm over fixed time interval 



Singular vectors (Optimal perturbations)

“Singular vectors” are the eigenvectors of: 

Here L is the linear propagator, N is the norm, and t1 and t2 
are the initialization and optimization times. 

The long-time limit singular vectors are related to the Lyapunov vectors. 



Long-time singular vectors and Lyapunov vectors


“Forward” SVs: 

“Backward” SVs: 

=> forward/backward SVs provide bases for Lyapunov subspaces 

(initialize at t1; optimize at t) 

(initialize at t; optimize at t2) 



The trick  (geometrically)


So, forward/backward SVs provide bases for 
Lyapunov subspaces…and SVs are 
orthogonal. 

Thus, we can use k-1 backward SVs to find 
the N-k+1 Lyapunov subspace, by taking the 
complement of the (k-1)-SV subspace. 

Analytically, this is expressed in terms of 
Kronecker-delta relations for the SV inner-
products; to find the LV, we end up solving for 
the null vector of a k x k matrix. 



Efficient recovery of Lyapunov vectors from singular vectors 
(with C. Wolfe)


•   Standard method: For k-th LV, find intersection of k-th 
     backward SV subspace with (N - k + 1)-th forward SV subspace; 
     => N + 1 SV’s required to obtain LV in N-dimensional system 

•   New method: 2k-1 SV’s required to obtain first k LV’s in 
     N-dimensional system.  Note that often k << N. 

Wolfe, C. L., and R. M. Samelson, 2007. An efficient method for recovering Lyapunov 
vectors from singular vectors. Tellus, 59A, 355-366. 



Unstable baroclinic wave-mean oscillation


FV #1 

Basic 
oscillation 

Two-layer, quasigeostrophic, periodic-channel, pseudo-spectral model, ~4000 DOF 

(Essentially, a pair of coupled 2D vorticity equations; PDEs in (x,y,t).) 



Unstable baroclinic wave-mean oscillation


FV #2 

Basic 
oscillation 

Two-layer, quasigeostrophic, periodic-channel, pseudo-spectral model, ~4000 DOF 

(Essentially, a pair of coupled 2D vorticity equations; PDEs in (x,y,t).) 



Lyapunov (Floquet) vector #1




Recovery of LVs (FVs) from SVs


Relative error in 
estimate of 10 leading 
(and 10 trailing) LVs 
from recoveries using 
20 SVs 

vs. 

LV index 

N = 3840 DOF 



LV (FV) description of local chaotic attractor structure


Variance of chaotic 
attractor near-returns 
for leading n LVs 

vs. 

Near-return distance 

In contrast: 
Leading-n-SV 
explained variance 
less than 0.1 



Notes on LVs for baroclinic wave-mean oscillation


•   3840 (or more) DOF; but only a few (3-4) unstable modes 

•   Lyapunov exponents are small compared to local growth and 
         decay rates for FV structure function (i.e., “DOS violation”) 

•   Convergence to LVs in 1-3 T = 2-6 baroclinic lifecycles 

•   Is the analogy to the atmosphere valid? 
    …multiply DOF by ratio of Earth area/domain area 
           => get something like the “500” unstable 
                  unstable baroclinic atmospheric modes 
   …but, error doubling rates in atmosphere seem much larger 
           than these Lyapunov exponents, i.e., similar to baroclinic 
           instability growth rates 



End of results


Now, onward to pure speculations…. 



LVs for coastal ocean model


Not yet computed, but expect separation between slow, large-
scale instabilities in the offshore regime, and fast, small-scale 
instabilities in the onshore (shelf) regime. 

Opportunities to learn about dynamics and to contribute to 
construction of good data assimilation scheme. 

Follow-on question: interactions between shelf and offshore. 

A good problem! 



LVs from forecast/analysis cycle of global NWP model?


Not yet computed, but numerically feasible using SV algorithm! 

Some brief preliminary computations were done by Carolyn 
Reynolds (NRL, Monterey, USA) with the NOGAPS model.  
These suggested (partial) convergence of the needed backward 
and forward SVs after 10 days (but need to filter inertial 
instabilities at tropopause, etc….): 



Compute “THE” LVs of the global atmosphere 
from multi-decadal reanalysis???


LVs are invariant => only need to do it ONCE! 

For example, for 0000 UTC 1 January 1990.  Then evolve by 
linearization to get later (earlier) structures…. 

We would know the “DIMENSION OF THE ATTRACTOR” and the 
    “STRUCTURE OF THE TANGENT SPACE”! 

We would have “THE BASIS” for the optimal DA subspace! 

BUT… 



Compute “THE” LVs of the global atmosphere 
from multi-decadal reanalysis???


BUT… 

•   Accuracy requirements would be prohibitive for linearized evolution 
    to later (earlier) structure (amplification over years of baroclinic 
    growth rate of 1/days) 

•   Convergence?  LV convergence limited by LE differences; error 
    growth can be faster:  must link together many overlapping 
    calculations (=> Is there a ‘shadowing theorem’?) 

•   Atmosphere not really recurrent (Hunt – ergodicity; Kalnay – 
    space-time localization of bred vectors) 

On the other hand, if it can’t be done, can the “chaotic attractor” idea 
  of synoptic variability be sustained? 



Finally, a more modest question….

Is this SV-based intersection algorithm for computing LVs 
equivalent to the Ginelli et al. algorithm  (or, what is the 
relation between the two)? 



A.  Computing Lyapunov Vectors 
      (“Covariant”, “characteristic”) 

B.  Are global Lyapunov Vectors the right linear objects 
       for analysis of multi-scale systems like the atmosphere? 

        - Mr. Magoo vs. The Ballerina, or 
          How I Violated DOS And Lived To Tell About It 

        - A toy model for computation of “THE” LVs 
          of the global atmosphere 

ECODYC10 Discussion points 



A.  Computing Lyapunov vectors (“Covariant”, “characteristic”)


How do the Ginelli et al. forward-backward algorithm and the 
Wolfe-Samelson SV-intersection algorithm compare? 

1.  Are they equivalent?  (No, they seem to be different.) 

2.  Is one more efficient than the other, and, if so, which one? 

3.  Can a mathematical result be proven, i.e., convergence? 



Compute n-th Lyapunov Vector φn from 2n-1 Singular Vectors:


SVs are the eigenvectors of: 

Wolfe, C. L., and R. M. Samelson, 2007. An efficient method for recovering Lyapunov 
     vectors from singular vectors. Tellus, 59A, 355-366. 

1.  Compute n limiting backward SVs or n-th order GS orthogonalized basis ηj


2.  Compute n-1 limiting forward SVs ξj 

3.  Compute inner products and form n x n matrix D; solve for zero eigenvector 



Compute n-th Lyapunov Vector φn by forward-backward algorithm:


1.  Compute the n-th order GS orthogonalized basis at time t;  at each time-step s < t, 
store a KxK (?) upper triangular matrix Rs from decomposition of matrix of Jacobian-
iterated and orthogonalized GS basis vectors.     

2.  Choose a vector in the n-th order GS subspace that has a non-zero component of the 
n-th GS vector but is otherwise arbitrary, and integrate backwards using the inverses 
Rs

-1
 of the upper triangular matrices Rs, until the vector emerges that grows most 

rapidly (decays most slowly) in backward time. 

3.  This vector is the desired φn, since it must be the vector in the n-th order GS subspace 
that grows most slowly in forward time. 

Ginelli, F., et al., 2007.  Characterizing dynamics with covariant Lyapunov vectors, 
   Physical Review Letters, 99, 130601. 



B. Are global Lyapunov Vectors the right linear objects 
       for analysis of multi-scale systems like the atmosphere? 

LVs are invariant => only need to do it ONCE! Then evolve by 
linearization to get later (earlier) structures…. We would know the 
“DIMENSION OF THE ATTRACTOR” and the “STRUCTURE OF THE 
TANGENT SPACE”! 

BUT… 

•    Atmosphere not really recurrent (Hunt – ergodicity; Kalnay – 
     space-time localization of bred vectors) 

•   Convergence without recurrence? (Is there a ‘shadowing theorem’?) 

•   Is slow long-term growth or fast short-term growth more important? 
     (Mr. Magoo vs. The Ballerina) 



Mr. Magoo vs. The Ballerina 
or 

How I Violated DOS And Lived To Tell About It


Which is more important: 
                slow long-term (LV) growth? 
                fast short-term (SV/LV-DOS) growth? 
 and, do LVs capture short-term growth? 

rms
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Consider a large stack of non-interacting unstable (chaotic?) 
baroclinic wave-mean oscillations with random initial phases 

and random (hard-sphere?) variations in relative position 
(“All storms look the same; but their position and timing is random”)


Taken as a whole, recurrence time is “infinite,” 
  but LVs of each oscillation are known exactly 
  (e.g., FVs plus relative displacements)! 

1.  What does direct LV analysis of the whole 
give? 

2.  Is there a general approach for localizing the 
LV analysis to recover approximately the 
exact results? 

Note:  Can use weakly-nonlinear wave-mean 
models (ODEs) instead of strongly nonlinear 
numerical simulations 

A toy model for computation of “THE” LVs  
of the global atmosphere 




