“The envelope hamiltonian for electron interaction with ultrashort pulses”:

Supplemental material.
A. Adiabatic time-dependent perturbation theory

Here, we sketch an adiabatic time-dependent perturbation theory (aTDPT) for H = H(t)+

U(z,t), split into an unperturbed Hamiltonian
l oo

which is itself parametrically time-dependent and a time-dependent perturbation U(x,t).
Let |j(t)) and |k,t) be an eigenstate of the Hamiltonian Hy(t) for fixed time ¢ from the

discrete and continuos part of the spectrum, respectively

Ho(@)[j(1)) = [i(t)) &(t) (2a)

k
Ho(t)lk, t> = |k, t> €k with Ex — ? (2b)
Together the [j(t)) and |k,t) form a complete orthonormal basis set
GO0 =65, (WK t) =0, (k t[K,t) = (27)*d(k-k'), (3)

which we label in the following for simplicity with greek letters. Consequently
I|B(t))(,@(t)| = 1 holds. Note that the eigenenergies ¢;(t) as well as all basis functions
are time-dependent but the continuum energies g, = k?/2 of course not.

We expand the solution ¢(t) of the Schrédinger equation
[Ho(t) + Q(z, )] [¢(t)) =0 with Q(z,t) = U(x,t) —i0/0t (4)

as

[p(t)) = 0 i 1B(1)) ca(t) e B0 (5)

where x(¢) is the usual phase freedom which is in our case time-dependent and will be
chosen later to obtain a simple form of the differential equations for the coefficients cg. For
continuum states 5 = k we have Ey(t) = e as usual, but for the bound states 8 = j the

energies for the phase factor are given by Ej(t) = ¢t~ [*dt’ g (t).



If we insert the ansatz (5) into Eq. (4) and project from the left onto |/5) we obtain

ica(t) = —ep(t) X(t) + IQW( ) cpr (1) e B =B 0], (6a)

where

QY (t) = (B(1)|Q(=, 1)|5'(¢)) (6b)

with @ from Eq. (4).
The coupled Egs. (6a) provide a full solution to Eq. (4). However, if U(z,t) is only a weak
perturbation, we can solve Eq. (4) to a good approximation by a single iteration, where we
assume that only first order transitions (linear in U or in @), respectively) occur. With an

initial occupation of a bound state |b) and all other states unoccupied it is
0 0
) =1 =0, (7)
and we obtain by a single iteration of Eq. (6a)

1f0) = [0~ U0]ee) + Y0 QP (0 pye B0 (80)

i60t) = =X (D) AE) + Q7 (t)ely (t)e MENO=Er] i Q7 () t)e P (O=Fa(t)]
B'#b
(8b)
If we choose x = Q" we obtain from Eq. (8a) c'l()l)(t) = 0 implying cél)(t) = cfjo)(t) =1 and
from Eq. (8b) for 8 # b
t
C(ﬁl)(t) _ —i/ d¢ Qﬁb(t/)efit’[Eb(t’)fEB(t’)}. (9)

[e.o]

The result (9) of this aTDPT agrees formally with that of the standard TDPT execpt for
two (subtle) differences: (i) the basis states entering the matrix element Q%% cf. Eq. (6b),
are explicitly time-dependent and (ii) so are the energies Ejs(t) for the bound states, e.g.,
S =h.

The lowest-order (time-dependent) correction to the bound states is O(ag), where aq is
the effective quiver amplitude, see Eq. (12) below. Taking only terms up to order ag we get

ég(t) = —i / t At (B|U (z, t')|[b)e " Ep=es)t’, (10)

—0o0

which coincides with the result of standard time-dependent perturbation theory in textbooks.
In general, the population of a state |5(t)) at any time ¢ is given in aTDPT by Eq. (9),
provided that the system was initially in state |b).
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B. Expansion of the envelope hamiltonian in terms of the number of photons

exchanged

In the manuscript, we are interested to split the transition operator () of the envelope
Hamiltonian [Eq. (6) of the main manuscript| into contributions according to the number of

photons emitted or absorbed. Hence, we write

+Nmax

t
—i/ dt' QP (¢/)e ¥ [En(t)=Bs ()] — Z M, (k, 1) (11)

with the M, (k,t) given in Eq.(9) of the main manuscript. For the dynamics discussed there,
it has been sufficient to include a maximal exchange of n,,., = 2 photons. This is also the
minimal number required to have a consistent limit for very weak pulses ag < 1. Through
the relation [Eq. (5) of the main manuscript]
n_

w?l+48In2/(Tw)?

small «y is realized through a short pulse " — 0 or high frequency w — oo.

(12)

%)

In this limit the time-dependent Schrodinger equation formulated with the envelope
hamiltonian agrees for small effective quiver amplitudes o with the exact dynamics in the
Kramers-Henneberger frame. To see this we expand the single-period-averaged potentials

Va(x,t) to second order in ap:

1o°V
Vo(x,t) = V(x) + 19.2° (t), (13a)
Vii(x,t) ~ %a(t)e:Fié, (13b)
1 92 .
Via(x,t) ~ g%oﬂ(zﬁ)emw. (13¢)

With the interactions from Eq.(6) of the main manuscript the full potential without single-

cycle averaging is recovered to order of:

+2
' ov 167V
—inwt oV 107V )
n;2 Vi(x,t)e ~ V(x)+ o a(t) cos(wt + §) + 552" (t) cos(wt + 0)
~ V(x+ egat) cos(wt +9)) . (1)

Since already the non-adiabatic term Eq. (13a) with zero-photon exchange contains the same
interaction potential as the term Eq. (13c) with two-photon exchange, it is necessary to have
a minimum expansion length of ny.,x = 2 in Eq. (11) to obtain the correct asymptotic limit

for small ay.



C. Pulse-dependent photo-ionization rates

The adiabatic perturbation theory for parametrically time-dependent perturbations allow
one easily to formulate photo-ionization rates (involving true photon absorption) during the
laser pulse as photo-ionization rates per optical cycle. To this end we simply define the
probability for single-photon ionization (here for clarity in the 1D case as in the main paper)
at time t by integrating the single photon transition matrix element M, (k,t) over energy

and a laser period T,

h- [

where we have fixed all pulse-envelope related time dependencies including that of the bound

2

Tw
|t Vi bt e (15)
0

state energy ey, as a parameter. Then Fy(t) = e, (t), since Ey(t') ~ 1/t fot/dt” ep(t) = ep(t).
The residual time dependence t’ in the phase of the integral in Eq. (15) produces a é-function
210 (k*/2 — nw — ey,(t)) while the second (complex conjugate) integral gives then trivially

T,,. The final result for the single-photon ionization rate is then

T % (ICHE() Vi, D) + (=R (0| Va(, 1) (D) ) (16)

with k(t) = [2nw + 2e,(t)]Y/2.



