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A. Adiabatic time-dependent perturbation theory

Here, we sketch an adiabatic time-dependent perturbation theory (aTDPT) for H = H0(t)+

U(x, t), split into an unperturbed Hamiltonian

H0(t) = −1

2
∇2 + V0(x, t) , (1)

which is itself parametrically time-dependent and a time-dependent perturbation U(x, t).

Let |j(t)〉 and |k, t〉 be an eigenstate of the Hamiltonian H0(t) for fixed time t from the

discrete and continuos part of the spectrum, respectively

H0(t)|j(t)〉 = |j(t)〉 εj(t) (2a)

H0(t)|k, t〉 = |k, t〉 εk with εk =
k2

2
. (2b)

Together the |j(t)〉 and |k, t〉 form a complete orthonormal basis set

〈j(t)|j′(t)〉 = δjj′ , 〈j(t)|k, t〉 = 0, 〈k, t|k′, t〉 = (2π)3δ(k−k′) , (3)

which we label in the following for simplicity with greek letters. Consequently∑∫
|β(t)〉〈β(t)| = 1 holds. Note that the eigenenergies εj(t) as well as all basis functions

are time-dependent but the continuum energies εk = k2/2 of course not.

We expand the solution ψ(t) of the Schrödinger equation

[
H0(t) +Q(x, t)

] ∣∣ψ(t)
〉

= 0 with Q(x, t) ≡ U(x, t)− i∂/∂t (4)

as

∣∣ψ(t)
〉

= e−iχ(t)
∑∫
|β(t)〉 cβ(t) e−itEβ(t) , (5)

where χ(t) is the usual phase freedom which is in our case time-dependent and will be

chosen later to obtain a simple form of the differential equations for the coefficients cβ. For

continuum states β = k we have Ek(t) ≡ εk as usual, but for the bound states β = j the

energies for the phase factor are given by Ej(t) ≡ t−1
∫ t

dt′ εj(t
′).
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If we insert the ansatz (5) into Eq. (4) and project from the left onto |β〉 we obtain

i ċβ(t) = −cβ(t) χ̇(t) +
∑∫

Qββ′
(t) cβ′(t) e−it[Eβ′ (t)−Eβ(t)] , (6a)

where

Qββ′
(t) ≡ 〈β(t)|Q(x, t)|β′(t)〉 (6b)

with Q from Eq. (4).

The coupled Eqs. (6a) provide a full solution to Eq. (4). However, if U(x, t) is only a weak

perturbation, we can solve Eq. (4) to a good approximation by a single iteration, where we

assume that only first order transitions (linear in U or in Q, respectively) occur. With an

initial occupation of a bound state |b〉 and all other states unoccupied it is

c
(0)
b (t) = 1, c

(0)
β 6=b(t) = 0 , (7)

and we obtain by a single iteration of Eq. (6a)

i ċ
(1)
b (t) =

[
Qbb(t)− χ̇(t)

]
c
(0)
b (t) +

∑∫
β 6=b

Qbβ(t)c
(0)
β (t)e−it[Eβ(t)−Eb(t)] (8a)

i ċ
(1)
β (t) = −χ̇(t)c

(0)
β (t) +Qβb(t)c

(0)
b (t)e−it[Eb(t)−Eβ(t)] +

∑∫
β′ 6=b

Qββ′
(t)c

(0)
β′ (t)e

−it[Eβ′ (t)−Eβ(t)] .

(8b)

If we choose χ̇ = Qbb we obtain from Eq. (8a) ċ
(1)
b (t) = 0 implying c

(1)
b (t) = c

(0)
b (t) = 1 and

from Eq. (8b) for β 6= b

c
(1)
β (t) = −i

∫ t

−∞
dt′ Qβb(t′)e−it

′[Eb(t
′)−Eβ(t′)]. (9)

The result (9) of this aTDPT agrees formally with that of the standard TDPT execpt for

two (subtle) differences: (i) the basis states entering the matrix element Qββ′
, cf. Eq. (6b),

are explicitly time-dependent and (ii) so are the energies Eβ(t) for the bound states, e.g.,

β = b.

The lowest-order (time-dependent) correction to the bound states is O(α0
2), where α0 is

the effective quiver amplitude, see Eq. (12) below. Taking only terms up to order α0 we get

c̃β(t) = −i

∫ t

−∞
dt′ 〈β|U(x, t′)|b〉e−i(Eb−εβ)t′ , (10)

which coincides with the result of standard time-dependent perturbation theory in textbooks.

In general, the population of a state |β(t)〉 at any time t is given in aTDPT by Eq. (9),

provided that the system was initially in state |b〉.
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B. Expansion of the envelope hamiltonian in terms of the number of photons

exchanged

In the manuscript, we are interested to split the transition operator Q of the envelope

Hamiltonian [Eq. (6) of the main manuscript] into contributions according to the number of

photons emitted or absorbed. Hence, we write

−i

∫ t

−∞
dt′Qβb(t′)e−it

′[Eb(t
′)−Eβ(t′)] =

+nmax∑
n=−nmax

Mn(k, t) (11)

with the Mn(k, t) given in Eq.(9) of the main manuscript. For the dynamics discussed there,

it has been sufficient to include a maximal exchange of nmax = 2 photons. This is also the

minimal number required to have a consistent limit for very weak pulses α0 � 1. Through

the relation [Eq. (5) of the main manuscript]

α0 =
F0

ω2

1

1 + 8 ln 2/(Tω)2
(12)

small α0 is realized through a short pulse T → 0 or high frequency ω →∞.

In this limit the time-dependent Schrödinger equation formulated with the envelope

hamiltonian agrees for small effective quiver amplitudes α0 with the exact dynamics in the

Kramers-Henneberger frame. To see this we expand the single-period-averaged potentials

Vn(x, t) to second order in α0:

V0(x, t) ≈ V (x) +
1

4

∂2V

∂x2
α2(t), (13a)

V±1(x, t) ≈
∂V

∂x
α(t)e∓iδ, (13b)

V±2(x, t) ≈
1

8

∂2V

∂x2
α2(t)e∓2iδ . (13c)

With the interactions from Eq.(6) of the main manuscript the full potential without single-

cycle averaging is recovered to order α0
2:

+2∑
n=−2

Vn(x, t)e−inωt ≈ V (x) +
∂V

∂x
α(t) cos(ωt+ δ) +

1

2

∂2V

∂x2
α2(t) cos(ωt+ δ)2

≈ V (x + exα(t) cos(ωt+ δ)) . (14)

Since already the non-adiabatic term Eq. (13a) with zero-photon exchange contains the same

interaction potential as the term Eq. (13c) with two-photon exchange, it is necessary to have

a minimum expansion length of nmax = 2 in Eq. (11) to obtain the correct asymptotic limit

for small α0.
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C. Pulse-dependent photo-ionization rates

The adiabatic perturbation theory for parametrically time-dependent perturbations allow

one easily to formulate photo-ionization rates (involving true photon absorption) during the

laser pulse as photo-ionization rates per optical cycle. To this end we simply define the

probability for single-photon ionization (here for clarity in the 1D case as in the main paper)

at time t by integrating the single photon transition matrix element Mn(k, t) over energy

and a laser period Tω,

Pn(t) =

∫
dk

2π

∣∣∣∣∫ Tω

0

dt′ 〈k, t|Vn(x, t)|b(t)〉eit′(k2/2−nω−εβ(t))
∣∣∣∣2 , (15)

where we have fixed all pulse-envelope related time dependencies including that of the bound

state energy εb as a parameter. Then Eb(t) = εb(t), since Eb(t′) ≈ 1/t′
∫ t′
0

dt′′ εb(t) = εb(t).

The residual time dependence t′ in the phase of the integral in Eq. (15) produces a δ-function

2πδ
(
k2/2 − nω − εb(t)

)
while the second (complex conjugate) integral gives then trivially

Tω. The final result for the single-photon ionization rate is then

Γn(t) =
Pn(t)

Tω
=

1

k

(
|〈+k(t)|Vn(x, t)|b(t)〉|2 + |〈−k(t)|Vn(x, t)|b(t)〉|2

)
(16)

with k(t) = [2nω + 2εb(t)]1/2.
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