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It is shown that the two-step excitation scheme typically used to create an ultracold Rydberg gas can be
described with an effective two-level rate equation, greatly reducing the complexity of the optical Bloch
equations. This allows us to efficiently solve the many-body problem of interacting cold atoms with a
Monte Carlo technique. Our results reproduce the observed excitation blockade effect. However, we
demonstrate that an Autler-Townes double peak structure in the two-step excitation scheme, which occurs
for moderate pulse lengths as used in the experiment, can give rise to an antiblockade effect. It is most
pronounced for atoms arranged on a lattice. Since the effect is robust against a large number of lattice
defects it should be experimentally realizable with an optical lattice created by CO, lasers.
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Because of the strong interactions between highly ex-
cited Rydberg atoms, laser excitation of cold atomic gases
to such states substantially differs from what is known for
low excitations or isolated atoms. In the extreme case of
very dense atomic samples, multiple excitations may even
be completely suppressed, such that the gas acts as a single
“superatom’’. This effect was first proposed to create
mesoscopic devices for quantum information processing
[1] and has sparked several experiments [2—4] which
demonstrated a partial excitation blockade effect. Beyond
potential applications in quantum information, the corre-
lated dynamics of cold gases, manifest in this excitation
suppression, poses an interesting and conceptually chal-
lenging [2,5] many-body problem since the numerical
effort to solve it increases exponentially with the number
of atoms rendering a full quantum treatment of realistically
large systems presently intractable.

Here, we describe an approach which allows for an
efficient treatment of very large systems, while still cover-
ing the highly correlated nature of the gas dynamics. The
approach is applicable under well-defined conditions
which are realized, e.g., in the two-step excitation schemes
of [3,4]. We can reproduce the observed excitation block-
ade as well as its effect on the atom counting statistics [6],
as observed in [4]. However, in addition we predict the
opposite effect, namely, an interaction-induced excitation
enhancement or ““‘antiblockade’’. It is most pronounced for
a lattice gas and may even be used to gain quantitative
information about the strength of interaction between
Rydberg atoms.

While in [2] Rydberg excitations to principal quantum
numbers n = 30-80 are achieved by a single photon of a
pulsed UV laser from the 55 Rb ground state, in [3,4] a
two-step scheme is used where a strong pump laser drives
the 5s-5p transition of Rb atoms and a tunable second laser
excites Rydberg atoms from the S5p state. In all three
experiments a suppression of the excitation has been ob-
served as a function of increasing laser intensity or/and
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density of the gas. However, as the two excitation schemes
are very different in nature, they may lead to dramatic
differences in the excitation dynamics of the system. In
fact, as we will show, the two-step scheme can induce an
antiblockade due to a transient Autler-Townes splitted
shape of the single-atom excitation probability P,(z, A)
as a function of the detuning A from resonance.

In the two-step excitation of a three-level system the
initial state |g) (typically the ground state) and the Rydberg
state |e) are optically coupled to an intermediate state |m)
(see Fig. 1). The Rabi frequency () of the lower transition
is typically much larger than the Rabi frequency w of the
Rydberg excitation. Moreover, the intermediate level |m)
decays with a rate I' > w, large compared to the upper
Rabi frequency w. Under these conditions, i.e., ) > w,
I’ > w and for a Rydberg excitation pulse longer than I'"!
one can adiabatically eliminate all coherences and the
population of the intermediate state [7] in the optical
Bloch equations [8], which ultimately reduce to a linear
rate equation
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FIG. 1. Sketch of the two-step excitation scheme.
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FIG. 2 (color online).
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The population P, of the Rydberg state |e) in the three-level system of Fig. 1 according to the equation (2)

(solid) and the optical Bloch equation (dashed) for different pulse lengths 7. The parameters are () = 4, w = 0.2, ' = 6 MHz for the
left set (a)—(d) and Q) = 22.1, w = 0.8, I' = 6 MHz for the right set (¢)—(h).

of an effective two-level system for the Rydberg state
population P,(t), where y and 7y, denote the excitation
and deexcitation rate, respectively. Solving Eq. (1) yields

P.(1,A) = POO(A)<1 - exp|:— ;’i?iﬂ) )

where P,, = P,(t — o, A) is the steady-state occupation
of |e). For typical Rabi frequencies [3,4] and pulse lengths
of 7 = 0.5 us, the excitation is well described by Eq. (2)
and has the intuitively expected resonance shape with a
single peak [Figs. 2(a)—2(d)]. However, also a double peak
structure with maxima at finite detuning A [Figs. 2(e)—
2(h)] can occur. The latter is due to the Autler-Townes
splitting of the intermediate state |m) under strong driving
of the |m) < |g) transition.

Adding a second Rydberg atom the detuning A is given
by the sum of the laser detuning and the interaction-
induced shift of the atomic transition frequency. In general,
the interaction between two Rydberg atoms can be rather
complicated, due to the mixing of a large number of
electronically excited molecular potential curves. How-
ever, as demonstrated in [9], a simplified treatment, which
for a given atom pair neglects the couplings to all but the
energetically closest two-atom state, provides a very good
description of the interatomic potential at large distances .
Consider a pair of Rb atoms in an [ns, ns] state coupled to a
pair of atoms in state [np, (n — 1)p] by the interaction
term, V(r) = p,,p,,/r’. Here, the dipole moments s,
and u,, represent the ns — np and ns — (n — 1)p tran-
sitions, respectively. Since the dipole coupling to the [p,
p'] pair is off resonant by 8, < 0, the resulting potential,
connected to the (ns, ns) asymptote, is repulsive and reads
[10]

8(r) = %(80 + /85 + 4V2). 3)

Proceeding to N atoms, we note that the energy shift for
the Rydberg state of an atom at r; is now given by the sum
of shifts induced by all existing Rydberg atoms at positions
r; in the gas, A; =3 ,.;6(|r; — r)]). These shifts deter-
mine individual rates (A ;) for (de-)excitation of each
atom which enter a many-body rate equation. While still
describing the complete set of many-body states, which
increases exponentially with the number of atoms, it can be
efficiently solved within a standard Monte Carlo proce-
dure. This allows us to treat large systems with several 10°
atoms.

Figure 3 shows the calculated dependence of the fraction
of Rydberg atoms f, on the degree of excitation n for laser
parameters similar to those of the experiment [3] but for
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FIG. 3. The fraction of Rydberg atoms f, as a function of
increasing excitation n and for laser pulse lengths of 0.5 (dashed
line), 1 (dotted line), 2 (solid line), and 5 ws (dotted-dashed
line). The density of the ultracold gas is p = 8 X 10° cm™3, and
the laser parameters are () = 22.1, o = 0.8, I' = 6 MHz.
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pulse lengths 7 =5 us considerably shorter than the
20 ws in the experiment. At shorter pulse lengths plasma
formation due to ionizing atom-atom collisions does not
play a role, since for repulsive interactions as considered
here, ionization is greatly suppressed [9]. It is further
reduced in the spatially ordered systems, discussed below.
As in the experiments, Fig. 3 reveals that the blockade
effect is stronger for longer pulses. In fact long pulses
completely mask the antiblockade effect (curve for 7 =
5 ws), which manifests itself in a nonmonotonic behavior
of f, with a slight initial increase (curves for 7 <5 us in
Fig. 3). The antiblockade is weak since the distribution of
interatomic distances in the gas does not allow for a large
excitation enhancement at a specific interaction strength.
The Autler-Townes splitting, however, leads to a drastic
effect for regularly spaced atoms, as demonstrated in Fig. 4
for a simple cubic lattice with a lattice constant of a =
5 pm. Restricting the distribution of interatomic distances
leads to a resonant excitation enhancement for certain
values of n. The position and shape of the peaks is readily
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FIG. 4. The fraction of excited Rydberg atoms f, as a function
of increasing excitation » for atoms regularly arranged in a three-
dimensional simple cubic lattice with lattice constant 5 um
(p =8 X 10° cm™3) and parameters as in Fig. 3; (a) perfect
filling of lattice sites, (b) 20% lattice defects (i.e., empty lattice
sites). The inset in (a) shows the peak of f, corresponding to
atom spacing a, (see text) as function of the inverse lattice
constant ¢! at n = 82 and 7 = 2 us.

understood by analyzing the geometry of the atoms on the
cubic lattice.

The interaction shift of the Rydberg transition of a given
atom is dominantly induced by Rydberg atoms located at
closest possible distances a;. For a simple cubic lattice they
are given by a; = \Jja, corresponding to nearest neighbors
(a,), neighbors along the diagonal (a,), and those along the
cubic diagonal (a3;). The excitation probability reaches a
maximum if the corresponding shift §(a;;n;) for a given
quantum number 7; matches the position A,, of the Autler-
Townes peaks of the single-atom spectrum (Fig. 2). This
leads to the peaks in Fig. 4. Their position is determined by

6(aj,nj) = Am, (4)

which for the parameters of Fig. 4 predicts {n, ny, n3} =
{65, 78, 87}, in good agreement with the numerical values
of {65,77, 86} for the shortest pulse length of 0.5 wus.
Compared to Eq. (4) the peak positions are only slightly
shifted towards lower n, due to the presence of other, more
distant Rydberg atoms in addition to the nearest neighbor.
Hence, varying the lattice spacing and the Rabi frequen-
cies, i.e., the Autler-Townes splitting, Eq. (4) provides an
accurate relation to experimentally probe the long-range
part of Rydberg atom interaction over a wide range of
excited states.

The position of the main peaks is due to two-atom
interactions. Three-particle correlations, which correspond
to two Rydberg atoms equally contributing to the interac-
tion shift of the Rydberg transition of an atom located
between them, give rise to additional structures, see
Fig. 4. They form at the low-n side of the main peaks since
the corresponding resonance condition requires a weaker
single-atom shift. Because of the limited resolution in n,
the additional excitation enhancements are difficult to
identify in f,(n), but clearly appear as side peaks when
f. 1s probed as a function of the inverse mean atomic
spacing a~' = p'/3 at constant n [inset of Fig. 4(a)].

A lattice with characteristic spacing of a ~ 5 um can be
produced by CO, lasers [11], but perfect filling of the
lattice is difficult to achieve experimentally. Therefore,
we have also studied the influence of random lattice de-
fects. As shown in Fig. 4(b), even 20% of defects hardly
diminishes the contrast of the excitation enhancement,
since it relies dominantly on contributions from pairs of
close neighbors; i.e., a missing neighbor due to a lattice
defect leads neither to an antiblockade nor a blockade and
therefore does not spoil f,. This robustness of the observed
peak structure makes an experimental verification of the
antiblockade feasible, leaving the realization of the double
peak structure in the single-atom excitation spectrum as the
most crucial experimental constraint.

For typical laser parameters, the splitting of the single-
atom excitation probability is only a transient effect, such
that the appearance of the antiblockade peaks also depends
on the length 7 of the Rydberg excitation pulse. Figure 5
illustrates the corresponding boundary between the single
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FIG. 5. Boundary in w-{) space between the blockade (upper
area) and the antiblockade (lower area) regime for different pulse
lengths and fixed I' = 6 MHz. The dashed lines are the linear
approximations for {) > w, see text. The parameters of Fig. 2
are indicated by black dots.

peak (blockade) and double peak (antiblockade) domain
for different values of 7. For large 7, the exponential term
in Eq. (2) is suppressed and the steady-state probability P,
dominates, resulting in a single peak [12]. On the other
hand, for small y7/P,, the Rydberg population is governed
by 7y, which gives rise to the Autler-Townes splitting in P,.
The rate 7y, as well as P, take on a relatively simple form
in the limit 0w < I' < ),

_ T/ -
YT o0 - 4a7/00)7 T 11+ 8AZ/02
From 9%P,(1, A)/dA%*|s—o = 0 and Eq. (5) we obtain a

universal condition for the transition from the double to the
single peak structure of P,(7, A), which can be written as

go =21In(1 + go) = 2.513, (6)

&)

with g, = I'tw?/Q?. Hence, for ) > o the two regimes
are separated by a linear boundary of w = a{), where
a® = g,/(7I) (see dashed lines in Fig. 5). Note also, that
Eq. (5) clearly demonstrates the transient character of the
double peak structure which vanishes for long laser pulses.
Yet, experimentally accessible parameters, as, e.g., in [3],
realize exactly the transient regime and therefore provide
the conditions to see the antiblockade.

To summarize, we have derived a rate equation for the
population of Rydberg states in ultracold gases produced in
a two-step excitation scheme. The rate describes very well
the structure of the Rydberg excitation in a single atom
when compared to the exact solution of the Bloch equa-
tions including a transient Autler-Townes splitting in the
Rydberg population for certain parameters.

The validity of the rate equation has allowed us to
formulate an efficient Monte Carlo treatment of the corre-
lated many-body excitation dynamics of Rydberg states in
an ultracold gas for a realistically large number of atoms,
which is well beyond the capacity of a full quantum
calculation. We can reproduce the Rydberg blockade effect
observed previously and also its effect on the atom count-
ing statistics, but in addition we have identified an anti-
blockade effect due to the Autler-Townes splitted Rydberg
population. We predict that this antiblockade effect can be
seen in an experiment with a gas trapped in an optical
lattice created by a CO, laser since the antiblockade is
robust even against a large number of lattice defects. In the
(realistic) limit of a very small upper Rabi frequency w we
could show that the formation of the double or single peak
structure in the Rydberg population is determined by a
universal parameter. It allows a simple navigation in pa-
rameter space consisting of the two Rabi frequencies, the
decay rate of the intermediate level and the pulse length, to
achieve the desired peak structure in the single-atom
Rydberg excitation probability.
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