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Photoionization of helium with ultrashort XUV laser pulses
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Received: 8 April 2003
Published online 9 September 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. Coupled-channel calculations for multiphoton ionization probabilities of helium through inter-
action with intensive short laser pulses are presented. Besides Slater-like orbitals we use regular Coulomb
wavepackets in our configurational interaction basis to describe the continuum. Linearly polarized laser
pulses of 3.8 fs duration and 2.96 × 1014 Wcm−2 peak intensity have been used for frequencies between
0.2−1.2 a.u. The results are compared with other ab initio calculations.

PACS. 32.80.Fb Photoionization of atoms and ions – 32.80.Wr Other multiphoton processes

1 Introduction

Photoionization of the helium atom in an intense laser field
has been extensively studied both, experimentally and
theoretically [1–5]. The first non-perturbative fully corre-
lated three-dimensional calculations have been performed
in the frame work of R-matrix Floquet (RMF) theory to
describe multiphoton processes [6]. Later, explicitly time-
dependent configuration interaction approaches have been
used for the interaction with ultra short laser pulses [7,8],
where in [7] time-dependent restricted Hartree-Fock calcu-
lations were also presented. A mixed finite-difference basis
set technique was employed in [9] to calculate the double-
ionization probabilities for pulses. Finally, the intense-
field many-body S-matrix theory (IMST) has been de-
veloped to calculate single- and multiple-ionization of
noble gases [10]. Further details including references and
an overview over various methods are given in the review
by Lambropoulos et al. [11].

Here, we report on the new implementation of our
coupled-channel method for laser driven atomic pro-
cesses. So far, the method has been successfully applied
for heavy ion helium collisions to calculate total cross-
sections [12,13]. We take the electron-electron interaction
fully into consideration which is important for double-
ionization. To represent bound states and resonances we
use Slater-type orbitals. A special feature in our explicitly
correlated basis are regular Coulomb wavepackets which
we use to discretize the continua. As we will show, the
low lying single- and double Coulomb continua can be ap-
proximated well for dynamics in short XUV pulses with
the help of these wavepackets. Alternatively, this is done
by numerically calculating single-electron wave functions
in a finite box [14]. To identify the double excited states
embedded in the single electron continuum (e.g. 2s2s) we
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adopted the method of complex scaling [15]. Atomic units
are used otherwise mentioned.

2 Theory

To describe the ionization process in the laser pulse we
solve the time-dependent Schrödinger equation

i
∂

∂t
Ψ(r1, r2, t) =
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ĤHe + V̂ (t)

)
Ψ(r1, r2, t), (1)

where ĤHe is the Hamiltonian of the unperturbed spin-
independent helium atom
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V̂ (t) is the interaction operator between the laser pulse
and the atomic electrons which will be specified later. To
solve (1) we expand Ψ(r1, r2, t) in the basis {Φj} of eigen-
functions of the time independent Schrödinger equation

ĤHeΦj = EjΦj (3)

to yield

Ψ(r1, r2, t) =
N∑

j=1

aj(t)Φj(r1, r2)e−iEjt , (4)

where the aj(t) are the time-dependent expansion coeffi-
cients and Ej are the eigenvalues in (3). Inserting (4) the
time-dependent Schrödinger equation (1) leads to a sys-
tem of first-order differential equations for the expansion
coefficients

dak(t)
dt

= −i
N∑

j=1

Vkjei(Ek−Ej)taj(t) (k = 1, ..., N) (5)
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with the coupling matrix elements

Vkj = 〈Φk|V̂ |Φj〉. (6)

Denoting the ground state with channel j = 1, the initial
condition before the laser pulse is applied reads

aj (t → −∞) =
{

1 j = 1
0 j �= 1.

(7)

The probabilities for transitions into final helium states j
after the pulse are simply given by

Pj = |aj(t → +∞)|. (8)

For the ionization probability one must sum the Pj which
correspond to the discretized channels formed by the
wavepackets solved numerically.

The eigenfunctions Φj in (3) are obtained by diago-
nalizing the Hamiltonian in a basis of orthogonal sym-
metrized two-particle functions fµ so that

Φj(r1, r2) =
∑

µ

b[j]
µ fµ(r1, r2) . (9)

In the following we restrict ourselves to singlet helium
states only. For the single-particle wave functions we use
an angular momentum representation with spherical har-
monics Yl,m, hydrogen-like radial Slater functions and ra-
dial regular Coulomb wavepackets. The Slater function
reads

Sn,l,m,κ(r) = c(n, κ)rn−1e−κrYl,m(θ, ϕ), (10)

where c(n, κ) is the normalization constant. A regular
Coulomb wavepacket

Ck,l,m,Z(r) = q(k, ∆k)Yl,m(θ, ϕ)

Ek+∆Ek/2∫
Ek−∆Ek/2

Fk,l,Z (r) dk

(11)
with normalization constant q(k, ∆k) is constructed from
radial Coulomb function of the well-known form [16]

Fk,l,Z(r) =

√
2k

π
e

πη
2

(2ρ)l

(2l + 1)!
e−iρ | Γ (l + 1 − iη)|

×1F1(1 + l + iη, 2l + 2, 2iρ), (12)

where η = Z/k, ρ = kr.
The wavepackets cover a small energy interval ∆Ek

and thereby form a discrete representation of the contin-
uum which can be incorporated into our finite basis set.
The normalized Coulomb wavepackets are calculated up
to 315 a.u. radial distance or more to achieve a deviation
of less then one percent from unity in their norm. With
the help of the Coulomb wavepackets we can make calcu-
lations for quiver radii (rq =

√
I/ω2) of more than 50 a.u.

(I stands for the pulse intensity and ω for the photon
energy). This would be hardly possible with bound wave
functions only.

Table 1. Some energy levels of bound singly and doubly ex-
cited states used in our calculations, compared with a basis
set calculations from [17], b CI calculation results [7] and
c complex-coordinate rotation calculations from [18].

states our results other theory

1s1s −2.9011 −2.9037a

1s2s −2.1441 −2.1460a

1s3s −2.0607 −2.0612a

1s4s −2.0333 −2.0335a

2s2s −0.7297 −0.7779a

2s3s −0.5711 −0.5899a

2s4s −0.5372 −0.5449a

2s5s −0.5133 −0.5267a

1s2p −2.1233 −2.1238b

1s3p −2.0550 −2.0551b

1s4p −2.0309 −2.0310b

2s2p −0.6472 −0.6931c

2s3p −0.5821 −0.5971c

2s4p −0.5451 −0.5640c

2s5p −0.5335 −0.5470c

3s3p −0.2998 −0.3356c

1s3d −2.0556 −2.0556b

1s4d −2.0312 −2.0313b

2s3d −0.5497 −0.5692c

2s4d −0.5295 −0.5564c

In our approach two different effective charges Z have
been used to take into account the difference between the
the singly and the doubly ionized electrons. For singly
ionized states we have used Z = 1.0, and Z = 2.0 for the
doubly ionized case. A slight deviation from the effective
charge gives practically no change in the final spectrum.
We cover the single- and double-continuum up to 6 a.u.
energy equidistantly.

Out of the single particle states (5) we have used 17 s-
functions (9 Slater functions (sf), 4 wavepackets (wp) with
Z = 1.0 and 4 wp with Z = 2.0), 18 p-functions (6 sf, 6 wp
with Z = 1.0 and 6 wp with Z = 2.0) and 12 d-functions
(4 sf, 4 wp with Z = 1.0 and 4 wp Z = 2.0) to con-
struct the symmetrized basis functions fLM

µ (r1, r2). For
the L = 0 configurations we have used ss + pp + dd angu-
lar correlated wave functions to get a ground state energy
of −2.901 a.u. which is reasonably accurate compared to
the “exact” value of −2.903 a.u. For the L = 1, 2 states
we have used only sp or sd configurations.

To test the convergence of our basis we have used all
the 465 basis states at first, up to 27 a.u. energy. Our
results clearly demonstrate that the channels above 3 a.u.
contribute very little to the ionization probabilities. The
low lying singly and doubly excited states used in our
calculations are listed in Table 1.

Between the first ionization threshold (−2.0 a.u.) and
the lowest autoionizing bound state (−0.6931 a.u. for
L = 1) our basis contains 22 states providing the major
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contribution for single ionization. Below the double-
ionization threshold (0.0 a.u.) autoionizing bound states
(such as 2s2) are embedded in the low lying single-electron
continuum. Our basis describes the lowest 11 autoionized
listed in Table 1. These resonances are important to de-
scribe ionization quantitatively.

We restrict ourselves to linearly polarized laser pulses
whose coupling to the atomic electrons we describe in the
length gauge and in dipole approximation,

V̂ (t) = −
∑

i=1,2

E(t) · ri , (13)

where the electric field is defined through the vector po-
tential

E(t) = − ∂

∂t
A(t). (14)

The velocity gauge was used for convergence test calcula-
tions only. At laser intensities larger than 2×1014 Wcm−2

we can verify the calculations of [7], the deviation between
the two gauges is less than a factor of two.

The laser pulse we use is polarized along the z-axis and
has a sin2 envelope,

A(t) = A0

(
sin

πt

T

)2

sin(ωt)ez. (15)

3 Results and discussion

Having solved the time-independent Schrödinger equa-
tion as described we get the ionization probabilities by
numerically solving for the coefficients aj(t) from (5) in
time. To this end the coupling matrix (6) is calculated
at 820 different points in time and interpolated with a
quadratic spline first. Then the coupled-channel equa-
tions (5) are solved numerically by using a Runge-Kutta-
Fehlberg method of order five, embedding a fourth-order
automatic time step regulation algorithm. The pulse du-
ration is kept constant at 3.8 fs (158.3 a.u.) and the peak
intensity at 2.96 × 1014 Wcm−2 (0.0084 a.u.) as well.

We compare our results for ionization in Figure 1 with
the calculations of [7,8] for a range of photon energies.
Overall the agreement with the two other calculations is
good. A more detailed look at high photon energies re-
veals that around and above the single photon ionization
threshold (0.9 a.u.) all three results are in good agreement.
At ω ≈ 0.78 a.u. the resonant one photon 1s → 2p excita-
tion takes place. This facilitates a two-photon absorption
which takes the electron into the single electron contin-
uum at E = −1.343 a.u. If the numerical representation
has not enough states in this region the corresponding cal-
culations underestimates the ionization probability which
explains the dip in the results of [7]. Our results are much
better at this energies. but still a factor of 1.5 lower than
the involved calculation of [8].

At small photon energies between 0.2–0.3 a.u. all three
calculations differ from each other indicating the differ-
ent representations of the electron continuum. In general,
small photon energy means that more photons must be

Fig. 1. Ionization probabilities of the helium atom with
a sin2-shaped pulse of 3.8 fs duration and peak intensity
2.97 × 1014 Wcm−2. The dashed line is the work of [7], the
short dashed line shows the results obtained in [8] and the
solid line represent our calculations. The arrows indicate
the different photon ionization thresholds.

Fig. 2. Ionization and excitation probabilities of the helium.
Notation is the same as in Figure 1.

absorbed for ionization and and a higher density of states
in the continuum is required. As a rule of thumb the in-
verse of the density of states must be smaller then the
bandwidth of the laser, here about ∆ω ≈ 0.1.

Figure 2 shows a comparison for ionization plus exci-
tation. The parameters of the pulse and the basis used is
the same as before. The three different calculations show
good agreement again. Differences at low energies have the
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same reason as explained for ionization. One can see the
Rabi-like oscillations at ω = 0.72 photon energy. At the
resonant one photon 1s1s → 1s2p transition (ω = 0.78)
the excitation probability is close to unity. Above this res-
onance frequency all the three calculations show a slowly
decreasing behaviour. At photon energies between 0.3–
0.36 a.u. and 0.5–0.64 a.u. no significant excitation can
occur due to a lack of excited states which can be popu-
lated. Therefore, Figures 1 and 2 show the same (ioniza-
tion) probabilities.

4 Summary and outlook

We have presented coupled-channel calculations for ioniza-
tion and excitation of helium in ultra short laser pulses.
Linearly polarized laser pulses were applied in the length
gauge. The velocity gauge was used to check the conver-
gence only. As pulse shape we used sin2-function with du-
ration of 3.8 fs and peak intensity of 2.96×1014 Wcm−2 for
photon energy 0.2 ≤ ω ≤ 1.2. The channel functions were
built up by Slater functions mainly to describe the bound
state and regular Coulomb wavepackets to approximate
the continua. The accuracy we achieve lies in between the
elaborate calculations by [8] and the simpler calculations
by [7]. Therefore, in combination with the speed of the
code, the method described appears to be suitable to sim-
ulate optimal control with genetic codes which we plan for
the future.
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