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The emergence of chaotic motion is discussed for hard-point like and soft collisions between two particles
in a one-dimensional box. It is known that ergodicity may be obtained in hard-point like collisions for specific
mass ratios !=m2 /m1 of the two particles and that Lyapunov exponents are zero. However, if a Yukawa
interaction between the particles is introduced, we show analytically that positive Lyapunov exponents are
generated due to double collisions close to the walls. While the largest finite-time Lyapunov exponent changes
smoothly with !, the number of occurrences of the most probable one, extracted from the distribution of
finite-time Lyapunov exponents over initial conditions, reveals details about the phase-space dynamics. In
particular, the influence of the integrable and pseudointegrable dynamics without Yukawa interaction for
specific mass ratios can be clearly identified and demonstrates the sensitivity of the finite-time Lyapunov
exponents as a phase-space probe. Being not restricted to two-dimensional problems such as Poincaré sections,
the number of occurrences of the most probable Lyapunov exponents suggests itself as a suitable tool to
characterize phase-space dynamics in higher dimensions. This is shown for the problem of two interacting
particles in a circular billiard.
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I. INTRODUCTION

The investigation of the origin of chaotic motion in stan-
dard billiard models !such as the Sinai billiard #1$, the Buni-
movich stadium #2$, or the Annular billiard #3$", has played a
pioneering role since the very beginning of chaos theory.
Usually, in such models, ballistic chaotic motion !single-
particle dynamics" is a consequence of the spatial billiard
geometry. For interacting many-particles systems, which ap-
pear in many areas of physics, chaotic motion can be gener-
ated from the combined effect of external forces and mutual
interactions. In order to understand how chaotic motion
emerges as a consequence of the interaction between par-
ticles, a simple billiard—namely, a one-dimensional !1D"
box—will be used. Since in this case the boundary alone
cannot induce irregular motion of the two particles inside,
the role of the interaction for the generation of chaotic mo-
tion becomes clear.

Interacting particles inside billiards can be used to model
electrons in quantum dots. Electrons are confined inside a
disk and are affected by the surrounding material which
composes the semiconductor #4$. In fact, the composition of
the surrounding material may destroy the long Coulomb re-
pulsion between electrons and also change the effective mass
between particles #5$. The influence of both effects on quan-
tum energy levels and/or electrons dynamics is not obvious.
However, they can be studied in detail for a physical model
where the kinetic and potential energy of the particles can be
varied independently. This is achieved by a parameter which
controls the range of interaction between the particles !elec-
trons" and by varying the mass ratio !=m2 /m1 of the par-
ticles.

In this paper we will study the classical dynamics of two
interacting particles inside a one-dimensional billiard as a
function of ! and as a function of the interaction range be-
tween particles. A Yukawa interaction between particles is

assumed. Such a system has been considered classically #6$
and quantum mechanically #7$ for the case of equal masses.
In order to calculate the spectrum of Lyapunov exponents
!LEs", the dynamics in tangent space is determined explic-
itly. In the limit of a very short range of interaction, this
system should approach the hard-point collision case ana-
lyzed originally by Casati and Ford #8$. Despite ergodic dy-
namics for the case of pointlike collisions at specific !, van-
ishing LEs are a consequence of the linear instability of this
system #9$. Such linear-unstable systems have become a
topical problem in statistical mechanics #10$ !see also about
the origin of diffusion in nonchaotic systems #11$".

In the case of a Yukawa interaction, the repulsion between
particles at collisions with the walls are shown to generate
positive LEs. This is shown explicitly by determining the
dynamics in tangent space. While the mean value of the larg-
est finite-time LE only quantifies the degree of chaoticity of
the system, the number of occurrences of the most probable
LE, extracted from the distribution over initial conditions, is
shown to give significant information about regular struc-
tures and sticky !or trapped" #12$ trajectories in phase space.
This distribution is determined numerically as a function of
!.

The plan of the paper is as follows. Section II reviews the
main results from the problem of two hard-point particles in
a one-dimensional box. In Sec. III chaotic motion emerges
with the introduction of the soft Yukawa interaction between
the particles. Positive LEs can be generated from analytical
expressions obtained for the dynamics in tangent space. The
distribution of the largest finite-time LE calculated over the
phase space of initial conditions is used to reveal the under-
lying dynamics. Section III discusses the distribution of the
largest finite-time LE for the case of two interacting particles
in a circular billiard. The paper ends with conclusions in
Sec. V.
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II. TWO PARTICLES IN A 1D BOX WITH
HARD-POINT-LIKE COLLISIONS

Two particles in a 1D box with hard-point like collisions,
also called two-particle hard-point gas, can also be treated as
a particular case of the motion of three particles on a finite
ring #13,14$, which can be mapped onto the motion of a
particle in a triangle billiard #15$. In such systems the
Lyapunov exponent is zero #9$ and the whole dynamics can
be monitored by changing the angles of the triangle billiard.
These angles are functions of the masses ratio between par-
ticles. Such triangle billiards have also been applied to study
energy diffusion in one-dimensional systems #9$. Although
the connection to the triangle billiard is very useful to gain
insights into the collision properties of the particles, it is not
needed for the purpose of the present work.

As follows, we summarize the main results obtained by
Casati and Ford #8$, which are similar to those observed in
the triangle billiard. Using Poincaré sections they #8$ showed
that the dynamics is nonergodic if " is a rational multiple of
#, where

cos!"" =
1 − m2/m1

1 + m2/m1
=

1 − !

1 + !
= $ . !1"

More specifically, writing "= m
n #, where m and n are inte-

gers, at most 4n distinct velocity values occur. On the other
hand, when " is an irrational multiple of #, the velocities
become uniformly dense #16$ in velocity space. As a conse-
quence, it is at least possible for the two-particle hard-point
gas to be ergodic in velocity space if " /# is irrational. Al-
though Casati and Ford #8$ did not show explicit results for
irrational multiples of #, they argued that their numerical
results provide evidence supporting ergodic behavior for ir-
rational " /# by demonstrating that an increasing number of
velocities is observed for a sequence of rational " /# ap-
proaching an irrational " /# value. Note, however, that for
irrational " /# infinite time may be required to observe all
velocities.

Although there are infinitely many mass ratios which give
rational values of " /#, some of them are special. First, the
integrable cases #17$ !=1,3 !or 1/3", which have "= 1

2# and
"= 2

3# !or # /3", respectively. Relating Eq. !1" with results
for the triangle billiard #18$ !or even to the polygonal billiard
#19–21$", it is possible to show that for the integrable cases
the genus is equal, g=1 !the invariant surface of the billiard
flow is a torus". For all other rational " /# the dynamics is
pseudointegrable #14$ and the invariant flow is not a torus
!1%g&'". For genus g=2, the possible values of " are #18$
1
5# , 2

5# and the mass ratios are !%0.1 and !%1.9, respec-
tively. As the genus increases, the invariant surface gets more
and more complicated. Therefore, besides the integrable
cases, the third special case, which has a “simpler” invariant
surface, is expected for the pseudointegrable case !%1.9
!we do not use !%0.1 because we are interested in values of
! in the interval #1,4$". Later we will come back to the spe-
cial values !=1.0,1.9,3.0.

The momentum distribution looks quite different for irra-
tional mass ratios. Although the motion can be ergodic, the
number of momenta increases very slowly with longer sys-

tem evolution #22$. However, this aspect is not in our present
focus.

III. TWO PARTICLES IN A 1D BOX
WITH YUKAWA INTERACTION

It is adequate to introduce the center-of-mass and relative
coordinates

R =
m1q1 + m2q2

M
and r = q1 − q2, !2"

respectively, with the total mass M =m1+m2 and the reduced
mass (=m1m2 / !m1+m2". In these new coordinates, the
equations of motion describe a single composite particle in
the hyperspace !r ,R", called a hyperbilliard #7$. The Hamil-
tonian in relative coordinates is given by

H =
P2

2M
+

p2

2(
+ V0

e−)r

r
= E , !3"

where the Yukawa potential V!r" has strength V0 and the
parameter )*0 gives the interaction range r0=1/). Using
scaled coordinates defined by !)!0"

r = r0r̃, p = p̃&E, R = r0R̃ ,

P = P̃&E, dt =
r0

&E
d+ ,

and dividing Eq. !3" by E, the scaled new Hamiltonian is

H̃ =
P̃2

2M
+

p̃2

2(
+ Ṽ!r̃" = , = 1, !4"

with

Ṽ!r̃" = Ṽ0
e−r̃

r̃
, Ṽ0 =

V0

r0E
, !5"

and scaled energy ,=1. When )=0 !r0→'" the transforma-

tion is independent of r0 and Ṽ0=
V0

E . Under Ṽ!r̃" the compos-

ite’s particle relative motion is subject to the force Q̃!r̃"
=−"Ṽ /"r̃ while its center-of-mass motion in R̃ is free. For
the case of equal masses the chaotic motion of !3" was al-
ready analyzed #6$.

A. Dynamics in tangent space, Lyapunov exponents,
and the origin of chaotic motion

This section is dedicated to the analytical calculation of
the Lyapunov spectrum. LEs are very useful to describe the
dynamics in complex systems #23$. When the motion is cha-
otic, at least one LE is positive. Its value is determined
through the dynamics in tangent space, as will be shown
below.

Between collisions with the walls, the equations of mo-
tion have the form
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F̃!!̃" = !ṙ̃,R̃
˙
, v̇̃,Ṽ

˙ "t = „ṽ,Ṽ,Q̃!r",0…t, !6"

and it is easy to see that center-of-mass momentum MR̃
˙

is a
constant of motion. In relative coordinates, the composite
particle moves under the influence of the force Q̃!r̃". This is
a one-dimensional motion, which is regular and integrable.
Collisions with left and right walls cause a breaking of the
translational symmetry of the system, and as a consequence,
the center-of-mass momentum is not a constant of motion
anymore. The effect of left !right" wall collisions lead to the
following change in the phase-space point !̃i= !r̃i , R̃i , ṽi , Ṽi"
before the collision to !̃ f = !r̃ f , R̃f , ṽ f , Ṽf" after the collision

!̃ f = D̃k!̃i, with

D̃k = !− 1"k'
1 0 0 0

0 1 0 0

0 0 − $ 2

0 0 2 (
M $

( , !7"

where $= !m1−m2" /M. The label k=1!2" is used for particle
1!2". Since the two particles can never pass each other in the
one-dimensional billiard, it is assumed without loss of gen-
erality that particle 1!2" never collides with the right !left"
wall. The complete time evolution in phase space can be
formulated by integrating the equation of motion between
collisions with the walls and by taking into account !̃ f from
Eq. !7" each time the composite particle collides with the
walls.

In order to calculate Lyapunov exponents, the time evo-
lution of an infinitesimal path difference !the nearby trajec-
tory" in the scaled tangent space !-!̃" must be determined,
given by

-!̃!+" = M̃!+"-!̃!+0" , !8"

with the scaled monodromy matrix

M̃!+" =
d!̃!+"
d!̃!+0"

. !9"

Lyapunov exponents are the average rates of growth or
shrinkage of such infinitesimal changes that are the eigen-
vectors of M̃,

.̃i = lim
+→'

ln (̃i!+"
+

, !10"

where (̃i!+" is the ith eigenvalue of M̃. The matrix M̃ can be
written itself as a product of matrices for small time steps.
Since the motion between collisions is regular, the Lyapunov
exponents are zero. The situation is different for collisions of
the composite particle with the walls. We follow the algo-
rithm developed by Dellago et al. #24$ to formulate the equa-
tions in the scaled tangent space according to

-!̃ f =
"C̃

"!̃i
-!̃i + ) "C̃

"!̃i
F̃!!̃i" − F̃„C̃!!̃i"…*-+ f , !11"

where C̃= D̃k!̃i gives the transformation at collisions with the
walls with D̃k from Eq. !7". -+ f is the delay in the collision
time of the !infinitesimal" nearby trajectory with respect to
the collision time of the reference trajectory. Between the
collision time of the main trajectory and the collision time of
the nearby trajectory, the composite particle moves under the
influence of the force Q̃!r" and the delay time can be deter-
mined from

tk =
"Sk

"E
= mk+

qk
0

qk
n " q̇k

"E
dqk = +

qk
0

qk
n dqk

q̇k
, !12"

where Sk is the action of the k particle, qk
0 is the position of

the nearby trajectory when the main trajectory collides with
the wall, and qk

n is the collision point of the nearby trajectory.
The energy dependence for q̇k, q̇1=&2m1!E− 1

2m2q̇2
2−V0

e−)r

r
",

is obtained from the energy conservation. Using Eqs. !2" we
have

q1!2" = R −
!− "1!2"m2!1"

M
r , !13"

q̇1!2" = V −
!− "1!2"m2!1"

M
v , !14"

and Eq. !12" can be written as

tk = +
R0

Rn MdR

MV − !− "1!2"m2!1"v

− !− "1!2"+
r0

rn m2!1"dr

MV − !− "1!2"m2!1"v
. !15"

Since V and v does not depend on R, the integral in R can be
determined analytically. After the integration of Eq. !15",
terms proportional to -Ri=R0−Rn and -ri=r0−rn will appear
#quadratic terms !-R"2 and !-ri"2 can be neglected in the
linear analysis$ and it can be written in scaled relative coor-
dinates as

− -+ f = t̃k =
t

&E
= Ãk-R̃i + B̃k-r̃i, !16"

where

Ã1!2" =
M

MṼi − !− "1!2"m2!1"ṽi
,

B̃1!2" =
− !− "1!2"

-r̃i +
r̃0

r̃n m2!1"dr̃

MṼ − !− "1!2"m2!1"ṽ
.

Finally, using Eqs. !6", !7", and !16", in !11", the collision of
the composite particle in tangent space with left !k=1" and

right walls !k=2" under a force Q̃!r̃"=−"Ṽ /"r̃ takes the form

-!̃ f =M̃k-!̃i with
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M̃k = !− "k'
− $ 2 0 0

2 (
M $ 0 0

− $kQ̃B̃k − $kQ̃Ãk − $ 2

− 2 (
M Q̃B̃k − 2 (

M Q̃Ãk 2 (
M $ ,

( , !17"

where $k=−#$+ !−1"k$. The determinant of M̃k is equal to 1
and eigenvalues are also equal to ,1,. However, the matrix
elements proportional to $k, Q̃, Ãk, and B̃k generate positive
LEs when the global monodromy matrix M̃ is constructed.
Therefore, the presence of the interaction force Q̃ and terms
Ãk and B̃k, related to the time delay in the tangent-space
collision dynamics, are essential for the chaotic properties of
the system. Otherwise, if Q̃=0, no positive LE can be ob-
tained.

Two limiting situations can be discussed. !a" The long-
range interaction !)=0.0, r0→'": at each collision with the

wall, the interaction force Q̃!r" is finite and positive LEs are
generated. !b" The short-range interaction !r0/1": in general

Q̃!r" is close to zero if particles are sufficiently separated and
the LEs are zero. However, the dynamics becomes chaotic
due to a double-collision process—for example, assuming
that particles 1 and 2 are moving close together toward the
left wall with a mutual repulsion close to zero due to the
short-range nature of the interaction. As particle 1 collides
with the left wall, it changes its direction and moves toward
particle 2, interacting with it. If such a double collision oc-
curs infinitely close to the wall, the terms Q̃B̃k and Q̃Ãk are
not necessarily zero, a positive LE is generated, and chaotic
motion appears. This crucial role of double collisions to gen-
erate chaotic motion was also observed in another model of
two interacting particles #22$. The chaotic motion induced by
the soft potential will be discussed in more detail in the next
section.

B. Signatures of regular motion in the distribution
of largest finite-time Lyapunov exponents

From the description of the dynamics by the monodromy
matrices as constructed in the last section, it is clear that
chaotic dynamics is generated in the presence of a soft inter-
action potential. The interesting question, however, is if any
signatures of nonergodicity from the hard-point collision, or
stickiness, can be identified. To this end we have investigated
the distribution P!0t ,!" of the finite-time largest Lyapunov
exponents #25$ 0t as a function of the mass ratio !. In gen-
eral, for infinite time, the LEs 0' are well defined and do not
depend on initial conditions. This holds also true for reason-
ably large finite times if the motion is ergodic and the
Lyapunov spectrum has good convergence properties. In
quasiregular systems, however, where the chaotic trajectory
may approach a regular island and can be trapped there for a
while, the value of the local LE can decrease. This will affect
the convergence of 0t, which depends now on the initial
conditions. On the other hand, it implies that the distribution
P!0t", calculated over many initial conditions, contains in-
formation about the amount of regular motion !and sticky

trajectories" in phase space. Usually, for fully chaotic sys-
tems P!0t ,!" has a Gaussian distribution !see, for example,
#26$ and references therein".

The mean -0t., shown in Figs. 1!a" and 1!b", decreases
monotonically from roughly 0.9 to 0.54 in Fig. 1!a" !r0
→'" and from 0.80 to 0.53 in Fig. 1!b" !r0=0.1" over a
change of ! from 1.0 to 4.0. This means that the dynamics is
getting more and more regular as expected since !→' con-
stitutes an integrable limit with the heavy particle at rest.
Figure 2 shows the finite-time distribution of the largest LE,
P!0t ,!", for the case of long-range interaction !r0→'". It
reveals two indications for increasingly regular motion with
growing mass ratio: !a" the value of -0t!!". itself decreases
and !b" an increasing number of initial conditions lead to
0t!!" close to zero !related to sticky trajectories" or converge
exactly to zero !regular islands". At !=4.0, for example,
about 15% of the initial conditions lead to 0t=0. The gray
points below the main curve are related to chaotic trajecto-
ries which were trapped for a while close to regular islands.
Some examples will be given below. An interesting feature in
Fig. 2 is the change of the width of P!0t ,!" around the most
probable 0t

p defined through
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FIG. 1. Mean value of the finite-time largest Lyapunov exponent
calculated over 400 trajectories up to time t=104 and at scaled
energy ,=1, for !a" long interaction range !r0→'"—i.e.,
Ṽ0=0.1—and !b" short-range interaction !r0=0.1"—i.e.,
Ṽ0=1.0—with the hard walls located at q= ±1. For each trajectory
the largest LE is evaluated over 105 initial conditions.
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FIG. 2. !Color online" Finite-time distribution of the largest
Lyapunov exponent P!0t ,!" calculated over 400 trajectories up to
time t=104 and for r0→'. With increasing P!0t ,!" the color
changes from light to dark !white over yellow and blue to black".
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/ "P!0t,!"
"0t

/
0t=0t

p
= 0. !18"

For a mass ratio between !%1.5 and !%2.2, many initial
condition lead to the same 0t. In this region, 0t

p!!" has a
maximum as a function of !. In other words, almost all ini-
tial conditions converge to the same LE and the dynamics
should approach an “ergodiclike” motion. In fact, in this re-
gion the gray points !related to sticky or trapped trajectories"
below the main curve almost disappear.

A similar behavior is found in the short interaction limit
!r0=0.1" shown in Fig. 3. Compared to Fig. 2, two main
differences can be observed: first, the maximum for 0t

p!!"
from Fig. 2 !between !%1.5 and !%2.2" is divided into two
maxima, one close to 1.5 and the other one close to 2.4.
Therefore, a minimum of 0t

p!!" appears in between !!
%1.9", where trapped trajectories are expected to occur more
often if compared with the two maxima !%1.5 and 2.4.
Second, the abrupt appearance of many gray points below
the main curve close to !%2.7, which may indicate that a
regular island is born. This will be shown in more detail
below.

A more systematic way to uncover this trend is to follow
P!0t

p ,!"0 P0!!" as a function of the mass ratio ! shown in
Fig. 4 !top". If P0 is large, a large fraction of initial condi-
tions lead to the same 0t and trapped trajectories are rare.
For example, the maximum of P0!!" in Fig. 4 !top, r0→',
black curve" close to !%1.9, is the region in Fig. 2 where
gray points below the main curve are rare. The fast variation
of P0!!" is due to statistical fluctuations in the determination
of 0t over the 400 initial conditions. However, two main
valleys can be identified in the black curve of Fig. 4, one
close to !=1 and the other close to !=3. These are exactly
the mass ratios for which the hard-point like collision dy-
namics !Sec. II" is integrable. The gray curve of Fig. 4 for
the short interaction !r0=0.1", which is closer to the limit of
hard-point collisions, presents an additional little valley at

!%1.9. This is the pseudointegrable case with genus g=2
which appears in the hard-point collision. In other words, if
! is close to values for which the dynamics in the pointlike
gas is integrable !g=1" or “simpler” !g=2", then the disper-
sion around 0t

p increases so that P0!!" decreases, and signa-
tures of nonergodicity are expected under additional Yukawa
interaction. Another interesting observation is that the mini-
mum at !%1.9 !see gray curve from Fig. 4" disappears in the
long interaction limit r0→' !see black curve from Fig. 4". It
means that the regular motion from the integrable cases of
the hard-point collision survives longer under the perturba-
tion of the soft interaction than the regular motion from the
pseudointegrable case.

For fully chaotic systems the quantity P0!!" is just the
maximum of a Gaussian distribution and it should increase
linearly with t, since the variance 1= !-0t

2− -0t.2."1/2 for
such systems goes with 1/ t. This behavior of 1 has been
observed by studying ergodicity in high-dimensional sym-
pletic maps #27$ and used for the detection of small islands
in the standard map #28$. For our case we found that the time
dependence of P0!!" goes with %t0.3, which means that a
significant number of islands is present. In order to compare
1 with P0!!", Figs. 4!a" and 4!b" show the behavior of 1 as
a function of !. Each time trapped trajectories are present, 1
should has a maximum, exactly the opposite behavior from
P0!!". In Fig. 4!a" we see two maxima, one close to !
=1.0, which corresponds to the minima of P0!!" for the
same value of !, and the other one at !%3.5, which as no
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FIG. 3. !Color online" Finite-time distribution of the largest
Lyapunov exponent P!0t ,!" calculated over 400 trajectories up to
time t=104 and for r0=0.1. With increasing P!0t ,!" the color
changes from light to dark !white over yellow and blue to black".
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FIG. 4. !Color online" Top: normalized distribution P0!!" of the
most probable Lyapunov exponent 0t

p for r0→' !black" and r0
=0.1 !gray". Bottom: 1 for !a" r0→' and !b" r0=0.1.
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analog for P0!!". For Fig. 4!b" we again see two maxima,
one close to !=1.0 and the other one located between !
%3.0 and !%3.5. Besides the peaks at !=1.0, the other
peaks are not located at the integrable !!=3.0" and pseudo-
integrable !!%1.9" cases from the hard-point like collisions
cases. The peak around !%3.0 in Fig. 4!b" is correct, but by
far not precise. This shows that the quantity 1 is not sensible
enough to detect signatures of the regular dynamics from the
hard-point collision case. The reason for this is that 1 is not
able to detect small regular islands which appear in the phase
space, such as, for example, the points related to zero LEs in
Fig. 3 for !=1.9. It is worth mentioning that the maxima and
minima from P0!!" do not change significantly with the
number of initial conditions.

We can conclude that signatures from regular structures in
phase space exist and are uncovered by the dispersion of the
largest Lyapunov exponent 0t most clearly visible along the
cut P0!!" defined by the number of occurrences of the most
probable Lyapunov exponent 0t

p #Eq. !18"$. No such signa-
tures, however, are visible in less sensitive quantities such as
the mean Lyapunov exponent -0t. or the fluctuation 1.

The interpretation of the Lyapunov properties are sup-
ported by the relevant Poincaré surfaces of section !PSS".
Figure 5 !top" shows PSS for interaction r0→' and cases
!=3.0 and !=4.0, where P0!!" has a minimum and maxi-
mum !see black curve in Fig. 4", respectively. Although the
system is more chaotic for !=3.0 than for !=4.0, trapped
trajectories appear near the island for !=3.0 #see the corre-
sponding magnification in Fig. 5 !top, right"$. Such trapped
motion near regular islands, which does not appear for !
=4.0 #see Fig. 5 !bottom, right"$, affects P!0t

p ,!" and, con-
sequently, P0!!" has a minimum near !=3.0. Another ex-
ample is shown in Fig. 6 for r0=0.1. For !=1.5 !top, left",
which has a maximum in Fig. 4 !top, gray curve", no trapped
trajectories are found up to the time propagated. For !=1.8

!top, right", which has a minimum in Fig. 4 !top, gray curve",
trapped trajectories start to appear. Moreover, the abrupt ap-
pearance of gray points for !%2.7 below the main curve of
Fig. 3 can be nicely explained using the PSS. Figure 6 com-
pares the PSS for !=2.6 !bottom, left" with !=2.8 !bottom,
right", where gray points appear in Fig. 3. Clearly, it can be
seen that when a regular island is born trapped trajectories
start to appear around the island and, as a consequence, many
initial conditions with lower LE are obtained !gray points in
Fig. 4". The regular island is related to a period-4 orbit,
which has the following property: for each second hit of
particle 1 with the left wall, particle 2 is at rest. There is a
similar periodic orbit for the hard-point collision case #20$.

Note that although P0!!" is determined only from trajec-
tories with positive 0t, it provides information about the
amount of regular structure in phase space through chaotic
trajectories which are trapped close to regular islands. Since
trapped trajectories are characteristic for mixing in phase
space, P0!!" provides a tool to analyze phase-space mixing.

IV. TWO PARTICLES IN A CIRCULAR BILLIARD
WITH YUKAWA INTERACTION

In order to show the utility of P0!!" for systems with
higher dimensions, we discuss now the case of two interact-
ing particles in a circular billiard. The interaction between
particles is still of Yukawa type. The chaotic motion is now
generated by the combined effect of the curvature of the
walls from the circular billiard and the double collisions dis-
cussed in last section. The phase space is eight dimensional,
and it is not possible to construct an adequate PSS which
allows us to look at the underlying dynamics. Trajectories
will fill out any chosen PSS, and no information about details
of the dynamics can be obtained. Sticky trajectories, for ex-

FIG. 5. Poincaré surfaces of section for r0→' and !a" !=3.0
and !c" !=4.0. !b" and !d" are the corresponding magnifications of
the quasiregular regions. FIG. 6. Magnification of the Poincaré surfaces of section with

r0=0.1 for !a" !=1.5, !b" !=1.8, !c" !=2.6, and !d" !=2.8.
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ample, which may cause nonergodicity due to a partial fo-
cusing of trajectories #30$, are difficult to detect. In such
partial focusing, an infinitesimal family of nearby trajectories
that starts out parallel will lead to Lyapunov exponents
which converge very slowly in time. This is a typical behav-
ior in high-dimensional quasiregular systems. In this section
we show the effectiveness of P0!!" to obtain relevant infor-
mation in high-dimensional quasiregular systems.

Figure 7!a" shows the finite-time distribution of the larg-
est LE for the case of long-range interaction !r0→'" in the
circular billiard. The value of the mean LE calculated with
the 400 initial conditions decreases by growing the mass
ratio and the regular motion increases. This is the only infor-
mation we can get from the LE about the complicated dy-
namics of the two interacting particles inside the billiard.
However, the gray points below the main curve of Fig. 7!a"
are related to chaotic trajectories which were trapped for a
while close to regular islands. Therefore some additional in-
formation about sticky trajectories and the amount of quasi-
regular motion in phase space may be obtained from P0!!".
This is shown in Fig. 7!b". One minimum is observed close
to !%1.0 where trapped trajectories and partial focusing of
trajectories in phase space are expected. On the other hand, a
more ergodiclike motion is expected for !%3.0, where
P0!!" has a maximum. This is different from the results for
the 1D box from the last section !see the minimum for r
→' at !=3.0 in Fig. 4, top". In other words, we clearly see
that signatures from the integrable case !=3.0 from the 1D
hard-point like collision case disappear in the two-
dimensional case. This tells us that the dynamics from the
integrable case !=3.0 is a consequence of the fact that par-
ticles cannot pass each other in the 1D case. As the mass
ratio increases to !=4.0, the LE decreases and the system is
more regular. In this case P0!!" also decreases slowly and
the amount of regular islands, and the motion around them,
increases.

V. CONCLUSIONS

Usually, chaotic motion is generated through nonlinear
equations of motion. As a consequence, exponential diver-

gence of nearby trajectories occurs, which can be quantified
by positive Lyapunov exponents. Another source of chaotic
motion emerges even for linear equations of motion through
boundary conditions. The advantage of such systems is the
possibility to obtain rigorous mathematical results. One ex-
ample is a point particle moving among high-dimensional
cylindrical scatterers #29$, which is similar to the high-
dimensional Lorentz gas. In these systems, strongly chaotic
motion is generated due to the convex curvature of hard
disks or spheres. In fact, the collision time delay between
nearby trajectories due to the curvature of the surface is re-
sponsible for the chaotic motion.

Curved boundaries are not present in the one-dimensional
confinement considered in this paper. For the hard-point like
collision case nonergodic motion is generated when the mass
ratio gives a " value #from Eq. !1"$ which is a rational mul-
tiple of #. Ergodic motion, on the other hand, may be ob-
tained for irrational multiples of " /#. We have shown that
for additional soft Yukawa interactions between the two par-
ticles, chaotic motion is obtained for any mass ratio. Double
collisions of particles, which occur very close to the walls,
are essential to generate positive LEs in the short-interaction-
range limit. The collisional time delay in tangent space, to-
gether with the soft Yukawa interaction, is responsible for the
chaotic motion. The mean of the largest finite-time LE, -0t.,
decreases smoothly as the mass ratio increases and does not
provide detailed information about the phase-space structure.
This type of information is provided by the probability dis-
tribution of the largest finite-time Lyapunov exponent
P!0t ,!". It reveals that the dispersion around -0t. increases
when trapped trajectories are present in the phase space. We
have shown that a cut through P!0t ,!" along the number of
occurrences of the most probable Lyapunov exponent P0!!"
gives a quantitative measure of the influence of regular mo-
tion in mixed phase space. Specifically for the system stud-
ied here, we have shown that P0!!" decreases when the
structure in phase space is more regular and the mass ratio is
close to the integrable cases !=1,3 !genus g=1" or to the
“simpler” dynamics !pseudointegrable at !%1.9, with g=2"
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from the hard-point like collision. We also observed that the
regular motion of the integrable cases from the hard-point
collision survives longer under perturbation of the soft inter-
action than regular motion from the pseudointegrable case.
Hence, the dynamics under the additional Yukawa interac-
tion, although in principle chaotic, “remembers” the inte-
grable and pseudointegrable dynamics in the system without
the soft Yukawa interaction. This is certainly a subtle effect
and, therefore, we expect that in general the number of oc-
currences of the most probable Lyapunov exponent provides
a sensitive tool to probe details in phase-space dynamics. We
have also shown that this quantity is much more sensitive if
compared with the mean-square fluctuations of the LE. In
contrast to Poincaré sections this tool is easily applicable in
higher-dimensional systems, where trapped trajectories may
cause nonergodicity due to a partial focusing of trajectories
#30$. In order to show this we calculated P!0t ,!" for two

interacting particles in a circular billiard, where the phase
space is eight dimensional and it is not possible to the con-
struct an adequate Poincaré section to analyze the dynamics.
We show that by increasing the mass ratio, the mean LE
decreases and the system becomes more regular. Further-
more, for a minimum of P0!!" at !%1.0 trapped trajectories
are expected and for a maximum at !%3.0 ergodiclike mo-
tion is expected. Therefore, P0!!" can be used in higher-
dimensional systems as a tool to characterize the dynamics.
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