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Levinson-Like Theorem for Scattering from a Bose-Einstein Condensate
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A relation between the number of bound elementary excitations of an atomic Bose-Einstein
condensate and the phase shift of elastically scattered atoms is derived. Within the Bogoliubov model
of a weakly interacting Bose gas this relation is exact and generalizes Levinson’s theorem. Specific
features of the Bogoliubov model such as complex energy and continuum bound states are discussed and

a numerical example is given.
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Exact results in physics are rare. One such result is
Levinson’s theorem [1], relating the number of bound
states of a given potential to the accumulated scattering
phase shift at threshold. This theorem was first formu-
lated for the single-particle Schrodinger equation and in
general does not hold for many-body systems. Instead, a
generalization for multichannel scattering exists [2], re-
lating the cumulative sum of the phase shifts of all open
channels to the number of bound states. Little can be said
about phase shifts in individual channels.

In this Letter, we consider the scattering of identical
atoms from a spherically symmetric, weakly interacting
atomic Bose-Einstein condensate (BEC), held in a finite,
localized trapping potential. In this situation, the phase
shift 8'(k) of I-wave scattering at momentum k = 0 can
be related to the number n,. of bound elementary excita-
tions of the condensate by

8'(0) = m(n. + 8;p + 0/2), (1)

where o = 1 for a bound state exactly at the threshold
for s-wave scattering and o = 0 otherwise. Equation (1)
is the generalization of Levinson’s theorem to the
Bogoliubov equations describing the excitations of a
weakly interacting BEC and is the main result of this
Letter.

Scattering of cold atoms is a fundamental physical
process relevant to high-precision atomic spectroscopy
and quantum information processing. As temperatures
are lowered, condensation of bosonic atoms is inevitable
and the scattering of single atoms from condensates needs
to be understood. Scattering experiments involving con-
densates have already been demonstrated in the context of
four-wave mixing experiments [3,4]. With the develop-
ment of atomic lasers [5] as coherent matter wave sources
and with the flexibility introduced by trapping and guid-
ing of cold atoms with microfabricated electrical circuits
[6,7], precision measurement of scattering properties be-
comes feasible. Moreover, interferometric measurements
should allow a direct access of the phase shifts and
thereby confirm Levinson’s theorem experimentally in
contrast to the case of conventional atomic scattering
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experiments where usually intensities are measured
only. Theoretical attention has been given to identical
particle scattering from BECs at low energy where trans-
parency effects have been predicted [8] and at high energy
where density distributions [9] and quantum correlations
can be probed [10]. Very recently, negative time delays in
one-dimensional scattering from atomic BECs have been
predicted [11].

In the following, we will apply a multichannel scatter-
ing formalism to the Bogoliubov equations and prove the
relation (1) by contour integration. We will discuss special
situations that can occur such as unstable complex-energy
modes and continuum bound states. An instructive nu-
merical example of a realistic scattering situation is given
and the role of the condensate and channel coupling for
the Levinson theorem are discussed.

In the standard Bogoliubov approach [12], the weakly
interacting Bose gas is described by a condensate with a
small amount of coherent quantum depletion and a gas of
noninteracting quasiparticles describing thermal or exter-
nally induced excitations. The spectrum of these elemen-
tary excitations coincides with the small-amplitude
collective excitations of the condensate cloud obtained
from the time-dependent Gross-Pitaevskii equation [13].
The quasiparticles are mixtures of particle and hole ex-
citations as long as they are located in the condensate
region. Outside they just become free particles and can be
identified with elastically scattered identical atoms. The
Bogoliubov picture relies on the number N of condensate
atoms being large; indeed, the rate of inelastic scattering
on a BEC decays exponentially in the Born approxima-
tion as N grows large [9].

The quasiparticle energies €, and the particle (i)
and hole (v) amplitudes are obtained by solving the
Bogoliubov equations for each partial wave [ [8]:

(T + ViDu,(r) = Vipv,,(r) = (€, + wu,,(r),
(T + Vv, (r) = Vau,(r) = (—€, + p)v,(r),

where T, = —h*/(2m)d,, + I(I + 1)/(2mr?) is the kinetic
energy with the atomic mass m. The potential is the same
in both channels Vy; = Vy = Vi, (r) + 2gn(r) and so is

(2a)
(2b)
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the off-diagonal coupling Vi, = V,; = gn(r). The con-
densate density n(r) and the chemical potential u are
determined by solutions of the stationary radial Gross-
Pitaevskii equation:

l(r)I?

52
{_%arr + Vtrap(r) +gN 4

5 }so(r) = pe(r), 3)
Tr

where g = 4mh’a,/m, a, is the s-wave scattering length,
and the condensate order parameter ¢(r) is assumed real
and normalized to one. Here we make use of the scatter-
ing length approximation for the interatomic interaction
and assume zero temperature, where the density n(r) =
No¢(r)?/(4mr?). Both these assumptions are taken for
simplicity. Generalization to finite temperature Hartree-
Fock—Bogoliubov schemes and a more elaborate treat-
ment of interactions are possible and straightforward as
long as the structure of Egs. (2) is preserved [14]. The
trapping potential Vi,,(r) is a finite localized well that
falls off to zero sufficiently quickly for large » [15] and
traps the condensate, leading to a negative chemical
potential < 0. Formally, the Bogoliubov equations (2)
can be understood as scattering equations for two coupled
channels u and v. At €,; + w > 0 there is a scattering
continuum where the u channel is open and the v channel
is closed. At large distance r, therefore, the hole ampli-
tude v,;(r) decays exponentially while the asymptotic
form

u, — sinlkr + lw/2 + 8'(k)] as r—o0  (4)

of the particle amplitude defines the phase shift &'(k)
of the scattered atom with wave number k=
\2m/h*(e,; + u). Note that there is a second scattering
continuum for —e,; + w > 0 where the v channel is
open. It is related to the first continuum by the general
symmetry of the Bogoliubov equations (2) that allows
one to construct new solutions by interchanging u# and v
and simultaneously changing the sign of €. This property
can be traced to the invariance of the coupling matrix V
under the exchange of diagonally opposite matrix ele-
ments

VipeVy and Vi < Vi (5)

We now proceed with the proof of Eq. (1) for the special
case [ =0. To this end, we slightly generalize the
Bogoliubov equations (2) by introducing the channel
momenta k; and k, as independent variables and write
in matrix notation

(=0, 1+V)p =K@, (6)

where K = diag(k;, k,) and ¢ = [u,(r), v,(r)]". We have
now chosen units where /%/(2m) = 1 and dropped the
channel index [. Analytical properties of multichannel
scattering solutions are most conveniently discussed by
analyzing the Fredholm determinant A(k,, k,), which
generalizes the Jost function of single-channel scattering
[2]. We define the Fredholm determinant by A(ky, k) =
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detF with the Jost matrix F
F=1+ f " Ky (AD(K, ) dr, )
0

Here, the columns of the matrix ®(K,r) are regular
solutions of Eq. (6). ®(K, r) obeys the system of coupled
integral equations

K®(K,r)=sin(Kr) + fr sin[K(r — ) JV(r)D(K, r)dr'.
0
3)

The Fredholm determinant A(k, k,) is an entire function
of k; and k, for finite range couplings. Under weaker
conditions [15] the function A(ky, k,) is still analytic for
Skl > (0 and Sk2 > (0.

The function A(ky, k,) contains the complete informa-
tion about the physical scattering process and allows one
to construct the S matrix. In particular, if k; or k, are real

A(ky, ky) = |Ale™ 9

is directly related to the phase shift § of the open channel.
Furthermore, we have the symmetry

A(ky, ky) = A*(—k7, —k3), (10)

which follows for a real symmetric coupling matrix V;;,
and for Jk; = 0 and Ik, = 0, the relations

Alky, ky) = 1 as |kl [ky| — oo 1D
hold [2]. The symmetry
A(ky, ky) = Alky, ky) (12)

is a special property of the Bogoliubov equations and will
be instrumental for the proof of Eq. (1). Equation (12) can
be derived from the symmetry (5) using Eqgs. (7) and (8).

We now return to the Bogoliubov equations (2) where
the channel momenta k; and k, are not independent
variables but related through k% + k% = 2u. Resolving
for k;, we specifically choose

ka(ky) = izJK} = 2, (13)

where /- denotes the usual positive square root with a
branch cut along the negative real axis. If k, is given by
(13) we say that k; is in the physical sheet. The choice (13)
assures that Ik, > 0, whenever Jk; > 0. We see that
A(ky) = Alky, ky(k;)] is analytic in the upper complex
half plane, except for a branch point at k; = i\/—2u
and a cut along the imaginary axis where k,/i =
/—2u originating from the square root (13) as shown
in Fig. 1. This is exactly where k3 becomes positive, i.e.,
the v channel is open and supports scattering solutions.

Bound solutions of the Bogoliubov equations corre-
spond to zeros of A(k;) in the upper half of the physical
sheet where Jk; = 0. Solutions with positive quasipar-
ticle energies €,, the usual case for stable ground-
state condensates, are found on the imaginary axis at
ky/i € [0, /=—m]. Because of the symmetry (5) of the
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FIG. 1. Analytic structure of A(k;) in the upper half of the
physical sheet and integration contour C = Y3 | C; as detailed
in the text. The segments C;, C; and Cs, Cs lie exactly on the
real and imaginary axes, respectively.

Bogoliubov equations, every bound state at k;/i =
V€& -~ m</—@ has an image at k/i=
Ve, — > /= Physically, only the solution with
positive quasiparticle energy is meaningful. At k| =
i.,/—m corresponding to zero quasiparticle energy
€9 = 0, a trivial bound solution of the Bogoliubov equa-
tions causes a double zero of A(k;). This solution with
uy = vy < ¢(r) is proportional to the condensate order
parameter and does not describe a condensate excitation.
In fact, quasiparticle excitations are confined to the or-
thogonal complement of ¢(r).

We proceed by considering the following integral in
the complex k; plane over the closed contour C =
>8 | C; shown in Fig. I:

f dInA(ky) = 2min, = 2mwi(2n,. + 2), (14)
C

which counts the number n, of zeros of A(k;) with their
multiplicity within the region enclosed by C. From the
preceeding discussion it is clear that n, is given by twice
the number of bound excitations 7. enclosed by C plus the
contribution from the trivial solution. Note that the con-
tour C is more complicated than in the proof of the
ordinary Levinson theorem, due to the cut and the branch
point which has to be avoided.

We will now discuss contributions to the integral on the
left-hand side of Eq. (14). As in the usual proof of the
Levinson theorem, the contributions on the negative and
positive imaginary axis can be related to the scattering
phase shift 6 and with Eqgs. (9) and (10) we obtain

f dinA(k) = 21[5(s) — SR (15)
CtC,

The small semicircle Cg of radius & around the origin
gives a vanishing contribution for small & as do the
quarter circles C, and Cg¢ for large R due to Eq. (11).
The remaining contributions of the integrals over Cs,
C,4, and Cs along the imaginary axis can be related to the
contributions along the real axis due to the special struc-
ture of the Bogoliubov equations. In fact, Eq. (13) defines
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a conformal mapping, which maps the segments Cz, Cy,
and Cs of the k; plane onto the segments C;, Cg, and C,;
of the k, plane, respectively. With the symmetry (12) we
obtain fC; dInA(k)) = fC7 dInA(k,) and likewise fC4 =

Je,and [ = [c, -

We have now evaluated the left-hand side of Eq. (14),
which becomes 4i[ §(0) — §(c0)]in the limits e — 0 and
R — 0. Note that we can set §(o0) = 0 due to Eq. (11).
Thus we obtain Eq. (1) for / = 0 and under the assump-
tion that there are no zeros of A(k;) on the real axis. The
generalization of this proof for / > 0 is straightforward
within the partial-wave formalism. However, for [ > 0 all
zeros enclosed by the contour C correspond to elementary
excitations since the modes u and v are always orthogonal
to the condensate wave function ¢.

Finally, we consider the possibility of zeros of A(k;) on
the real axis. The specific case of a zero at the threshold
k; = 0 in the [ = 0 channel is known as a half bound
state and contributes 77/2 to the phase shift as it does in
usual single-channel scattering [2], hence the term o/2 in
Eq. (1). Additionally, we cannot exclude the possibility of
zeros of A(k,) at real k; # 0. If zeros of A(k;) on the real
axes exist (except the case k; = [ = 0 mentioned earlier),
they fully contribute a unit of 7 to a continuously mea-
sured phase shift in the same way as continuum bound
states do in conventional multichannel scattering theory
[2]. Physically, continuum bound states manifest them-
selves as infinitely sharp and hence invisible resonances.
Whether they can be constructed or observed in the
present case remains an open question.

So far we have assumed that the condensate is in a
stable ground state of the trap, in which case all bound
excitations described by the Bogoliubov equations have
finite pseudonorm 1 = [(lul> — |[v|*)dr # 0 and those
with n > 0 have positive quasiparticle energy e,.
However, this restriction is not necessary. For excited
states ¢(r) of the stationary Gross-Pitaevskii Eq. (3),
anomalous solutions of the Bogoliubov equation are pos-
sible with €, = 0 and 5 > 0. Such anomalous modes are
known to occur for solitons in highly elongated traps
[16,17] and for vortices [18]. Furthermore, bound solu-
tions with complex €, and n =0 may occur, which
correspond to zeros of A(k;) on the physical sheet but
off the imaginary axis. These solutions arise when the
condensate is in a stationary but unstable excited state of
the Gross-Pitaevskii equation and describe modes of ex-
ponential decay, predicted and seen, e.g., for dark solitons
[19,20] and attractive condensates [21]. These unstable
complex modes are not to be confused with scattering
resonances, which have zeros below the real axis and in
the unphysical sheet. Both anomalous and complex
Bogoliubov modes contribute to the contour integral
(14) and thus are predicted to be visible in the buildup
of the elastic scattering phase shift 6(0), which can, in
principle, be probed experimentally.

This is exemplified in Fig. 2 for a ground state BEC of
2000 rubidium atoms. Note that the relevant range of
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FIG. 2. Phase shifts &' from the full solution of Egs. (2)
(solid), simple potential scattering without coupling [V, = 0
in Egs. (2)] (dashed). In the example, 2000 Rubidium atoms are
held in a finite harmonic trap of frequency w = 27200 s~ ! and
depth V, = 8.0/iw resulting in the chemical potential u =
—3.34/iw and allowing for up to two bound elementary ex-
citations for 1 = [ = 5.

scattering energies corresponding to temperatures of the
order of 10 nK is within the accessible range of current
cold-atom experiments. For [ = 0 one bound excitation
and the trivial solution account for a phase shift at thresh-
old 8°(0) of 27r both in the full Bogoliubov equations
(solid) and in the potential scattering approximation
(dashed) where we have set Vi, =0 but kept V;; =
Vieap(r) + 2gn(r). Both solutions coincide in the absence
of a bound mode for 87(k;) which exhibits, instead, a
resonance caused by a zero of A(k;) with k; having a
small negative imaginary part. The interesting case is
62(k,) which indicates one more bound state in the full
solution compared to simple potential scattering.

The off-diagonal coupling V, is of an attractive nature
and binds extra states although the interparticle interac-
tion is repulsive in both examples. For large scattering
momenta and large angular momenta this coupling to the
v mode becomes less important, as the details of the
interaction region are hardly probed. Figure 3 shows the
number of bound states of a square well model system. As
the well is filled up with repulsive atoms, fewer excita-
tions are bound. Note that for I' > V,)/6 the trapped BEC
has bound quasiparticle states only due to the coupling
between hole and particle modes.

We have presented a Levinson theorem relating the
number of bound collectively excited states of an inter-
acting many-body system, a BEC, to the phase shifts of
single-particle scattering. With the possibilities of cold-
atom scattering and interference, we can expect to see a
direct experimental verification of a fundamental theo-
rem of mathematical physics. However, our derivation is
based on a weakly interacting Bose gas without inelastic
scattering processes. It should be seen as a challenge both
to experiments and theory to find the corrections to Eq. (1)
in a real interacting system. Dilute-gas atomic BECs are
an ideal system for this because the experimental setup is
stupendously manageable.
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V, = 10, 100, 1000 /i2/ma?, respectively, and radius a with a
Thomas-Fermi approximation for the wave function as a func-
tion of the nonlinear coupling I' = Na,/a. Full solution (sym-
bols), potential scattering (dashed) as in Fig. 2.

Note added in proof—After submission we learned
about a different proof of the Levinson theorem for
strictly 1D Bogoliubov scattering [22].
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