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On the Derivation of the Time-Dependent
Equation of Schro� dinger
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Few have done more than Martin Gutzwiller to clarify the connection between
classical time-dependent motion and the time-independent states of quantum
systems. Hence it seems appropriate to include the following discussion of the
origins of the time-dependent Schro� dinger equation in this volume dedicated to
him.

1. INTRODUCTION

In all books which develop quantum mechanics from the Schro� dinger
equation it is considered that the time-dependent equation (TDSE) is more
``fundamental'' than the time-independent equation (TISE). In the TDSE

\HS(t)&i�
�
�t+ �S(t)=0 (1)

for some quantum system S it is usually pointed out that time is a
parameter, not enjoying the status of a quantum operator. However, it is
almost never pointed out that the time occurring in HS(t) always is a
classical time arising from the classical time development (according to
Newton or Maxwell equations) of external fields or material particles inter-
acting with the quantum system. In this sense the TDSE is, from the outset,
a mixed quantum-classical equation. Having postulated Eq. (1), the authors
of standard quantum mechanics text books then discuss the special case of
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a time-independent Hamiltonian, when the solution of Eq. (1) can be written
in the form

�S(t)=,S exp \ i
�

ESt+ (2)

to give the TISE

(HS&ES) ,S=0 (3)

The form of Eq. (3) enforces the assignment to the quantum system of a
wavefunction oscillating in time. For example, to quote Feynman and
Hibbs(1) ``for this special solution the wavefunction oscillates with a definite
frequency . . . which corresponds, in classical physics, to the energy.'' That
is, the student of quantum mechanics is asked to accept that all matter,
even though in stationary quantum states described by Eq. (3), have wave-
functions which oscillate in time. This disturbing property is only slightly
ameliorated by pointing out that in any expectation value of a measurable
quantity the phase factor cancels to give a time-independent value. Surely,
this suggests that the phase factor and indeed the time dependence in
Eq. (2) is redundant? However, there is a more serious objection to the
solution Eq. (2) and its Feynman�Hibbs interpretation. An oscillation
frequency is, by definition, positive definite. However, the quantity (ES��)
is not absolutely defined and can take on any value, negative or positive,
arbitrarily large, according to where the zero of energy is fixed.

As we will illustrate below, there are other serious problems in the
derivation and application of the TDSE to isolated quantum systems. In
a previous paper(2) we outlined an alternative point of view, well-known
in atomic collision physics(3, 4) from which to derive the TDSE, avoiding
many ad hoc assumptions made in standard texts. In Ref. 2, hereafter
referred to as paper I, the starting point is the TISE for a closed, energy
conserving, quantum object comprised of two parts, called the system and
the environment. In the limit that the environment can be treated classi-
cally, it provides a time variable with which to monitor the remaining
quantum system whose development, as viewed from the environment, is
governed by the TDSE for the system alone. This derivation shows
explicitly that the origin of the classical time in HS(t) is due to coupling
with the classical environment, and that the parametric derivative ���t
arises from the transition of environment variables from quantum to classical
behaviour.

In this paper we return to this problem in order to clarify issues raised
to us by several colleagues and to amplify certain aspects of the derivation
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given in paper I. In Sec. 2 we give an historical account of the origins of
the TDSE Eq. (1), since in our opinion this throws much light on the way
in which this equation has been introduced in generations of quantum
mechanics text books. In Sec. 3 we discuss the attempts that have been
made to remove the mixed classical-quantum nature of the TDSE by
elevating time to a quantum variable, rather than a parameter. In turn
these efforts have spawned a host of papers on the ``derivation'' of an
energy-time uncertainty relation and this problem is discussed also in
Sec. 3. In Sec. 4 we present the derivation of the TDSE with a more careful
description of the transition of the environment to classical behaviour than
was given in paper I. In Sec. 5 it is pointed out that a completely analogous
procedure has been suggested for the introduction of time in a Schro� dinger
representation of quantum field theory including quantisation of both
gravity and matter.

2. HISTORICAL DEVELOPMENT

It is not usually pointed out that, unlike the authors of most text
books, Schro� dinger derived first the TISE, not the TDSE. He used a varia-
tional argument.(5) This appears to us still the most simple and direct way
to introduce quantisation. Although not quite the way of Schro� dinger one
proceeds from the classical relation for a closed system at energy E

H( p, q)=E (4)

or constraint

(H&E )=0 (5)

to the quantum equivalent

(�| H� |�)=E(� | �) (6)

or constraint

(�| (H� &E ) |�) =0 (7)

In the quantum constraint Eq. (7) all classical variables ( p, q) from Eq. (4)
are replaced by quantum operators ( p̂, q̂). Variation of the state vector (�|
in Eq. (7) leads directly to the TISE

(H� &E ) |�)=0 (8)
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This derivation requires only that we replace measured quantities by expec-
tation values of the corresponding quantum operators.

Schro� dinger had much more difficulty with the TDSE. Indeed it is
very clear that he was looking for a second-order equation of form similar
to the electromagnetic wave equation in which matter waves are described
by time-dependent real wave amplitudes, exactly as the classical com-
ponents of the electromagnetic field. In his second communication of
1926, (6) in which he introduces the TDSE, very clearly Schro� dinger was
influenced by the well-known analogy between wave optics and the
Hamilton�Jacobi theory of classical mechanics and sought to deepen the
analogy in formulating a wave theory for matter in which Hamiltonian
classical mechanics would be the ``geometric optics'' limit. Hence his first
suggested TDSE has the form

2�&
1
u2

�2�
�t2 =0 (9)

identical to the classical wave equation with the phase velocity u given by

u=E |{W |&1=E(2(E&V ))&1�2 (10)

where W is Hamilton's characteristic action function. With Eq. (10) the
TDSE appears as

2�&
2(E&V )

E2

�2�
�t2 =0 (11)

and is clearly applicable to energy-conserving systems of total energy E.
This equation, together with the TISE Eq. (8) in the form

2�+
2(E&V )

�2 �=0 (12)

were introduced at the beginning of Schro� dingers fourth 1926 communica-
tion(7) as the fundamental equations of the new mechanics. We note in
passing that Eq. (11) does not contain � ! It is perhaps not uninteresting in
the context of the present paper to remark that Schro� dinger's motivation
in deriving an alternative TDSE to Eq. (11) was to eliminate the energy E
from the equation, so making the equation applicable to non-conservative
systems. In such systems Schro� dinger considered that the time dependence
arises from time-dependent potentials, in analogy to friction in classical
mechanics. As a postulate, he introduced a time dependence exp(&iEt��)

696 Briggs and Rost



into the wavefunction so that Eq. (11) leads to Eq. (12) after time differen-
tiation, i.e.,

�2�
�t2 =&

E2

�2 � (13)

Since Eq. (12) is linear in E, elimination using Eq. (13) leads to a TDSE of
fourth order. However, almost immediately Schro� dinger saw that by admit-
ting complex wavefunctions he could use

��
�t

=&
iE
�

� (14)

to arrive at what we now call the TDSE

2�&2V�= &2i�
��
�t

or \&
1
2

2+V+ �=i�
��
�t

(15)

The complexity of the ensuing wavefunction was a problem for
Schro� dinger who in the last paragraph of Ref. 7 suggests that Eq. (15) is
probably merely a surrogate for a fourth-order real wave equation applying
to non-conservative systems. In Sec. 4 we will return to this problem of
why the wavefunction is complex. The first application of Eq. (15) in Ref. 7
was to the interaction of an atom with a classical electric field to give a
time-dependent potential V(t), a problem also considered in the famous
``Dreima� nnerarbeit'' of Born, Heisenberg, and Jordan.(8) It is interesting
that at this stage in the development of quantum mechanics it was not
known how to quantise fields or even the free motion of particle beams.
Hence, in both Refs. 7 and 8 they are considered as external sources per-
turbing the stationary atom. Nevertheless, and very important for the
following, it was recognized that such a description is a classical treatment
of the external source, valid when its energy is much greater than atomic
energies. To quote the Dreima� nnerarbeit(8)

``In this sense one could, for example, treat the action of a strong alternating elec-
tromagnetic field on an atom entirely as the influence of an external force with
neglect of the reaction, since the field energy can be regarded as infinitely large
compared with that of the atom. The action of :-particles upon the electrons of an
atom could also be regarded as an `external force' as in classical theory . . . .''

To summarize, Schro� dinger saw the TISE as the fundamental equation of
wave mechanics, deriving it from a variational principle. The TDSE was
introduced in an ad hoc way with the aim of describing quantum systems
subject to a time-varying perturbation. It was clear to all the founding
fathers of quantum theory that such an external perturbation arises from a
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classical treatment of an external environment. Within a few years after
1926, techniques to quantise external electromagnetic fields and particle
beams were developed. Following work of Born, in 1931 Mott(3) described
the impact of :-particles on atoms by treating both atom and beam quan-
tum-mechanically with the TISE. Then he showed that for a high energy
beam he could describe its motion classically resulting in a time-dependent
Hamiltonian and TDSE for the atom alone. The generalisation of this
derivation of the TDSE given in paper I removes the necessity to postulate
a exp(&iEt��) dependence as done by Schro� dinger and, we feel, belatedly
completes the development of the TDSE from the TISE, which was begun
in his monumental 1926 papers.

In modern quantum mechanics text books little reference is made to
Schro� dinger's order of development or to his difficulties with the TDSE.
Rather the TDSE is simply presented as the fundamental equation of wave
mechanics from which the TISE (and hence a wavefunction with the
exp(&iEt��) factor) is derived as a special case for time-independent
Hamiltonians. No mention is made of the fact that time is entering only
from a classical interacting environment or that the TDSE does not
correspond to energy conservation (the fundamental equation of wave
mechanics violates the fundamental principle of physics).

The ``derivations'' of the TDSE given in text books fall into the three
main categories given below (the specific books quoted are to be taken as
exemplary only).

(1) The TDSE is simply postulated (Cohen�Tannoudji et al., (9)

Eder(10)). Here one can raise the objections to the TDSE
described above plus the fact that, unlike the postulated TISE
Eq. (8), the immediate connection of the TISE with classical
mechanics is not obvious.

(2) The correspondence principle is invoked to re-write the classical
equation Eq. (5) as

\H(&i� {q , q� )&i�
�
�t+ �=0 (16)

i.e., the correspondence

p� � &i� {q (17a)

E � i�
�
�t

(17b)

is assigned (Messiah(11)). Clearly this is somewhat problematic in
that E is a fixed energy in Eq. (5) but the derived Eq. (16) applies
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to systems without fixed energy. Somewhat better perhaps is the
assignment (Roman(12))

H � &i�
�
�t

(18)

i.e., treating the r.h.s of Eq. (18) as an operator (Bransden and
Joachain(13)). However, then one has the problem that, unlike
Eq. (17a) where p and q are both operators, H is a Hilbert-space
operator but t is merely an external parameter.

(3) One makes plausible that a free matter wave has the form of the
plane wave solution of a classical wave equation, i.e.,

�texp[ik9 r� &i|t] (19)

to remark that for E=�|=�2k2�2m, this is a solution of the
TDSE

\&
�2

2m
2&i�

�
�t+ �=0 (20)

for free motion (with constant energy E !). Then it is postulated
that the equation must also be valid in the general case where
a time-dependent potential appears in the Hamiltonian. This
approach is used by very many text books. Its origin lies of
course in Eq. (19) being the solution of the classical wave equa-
tion for a plane wave without dispersion. Then the dispersion
relation |=(��2m) k2 leads directly to Eq. (20). Note that this
argument is based entirely on the properties of an energy-con-
serving system with fixed energy E.

To summarize, all derivations of the TDSE presented in quantum
mechanics books known to us proceed according to one of the three
methods listed above, all of which rely on loose correspondence-principle
or other plausibility arguments. There is no precise explanation of the
origin of a time-dependent Hamiltonian or specification of the type of
quantum system to which the TDSE applies.

3. THE TIME OPERATOR, QUANTUM TIME AND THE
TIME-ENERGY UNCERTAINTY RELATION

The clear recognition by Born, Heisenberg, and Jordan, (8) also dis-
cussed in the introduction, that time enters the quantum Hamiltonian only
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when some external system is approximated by classical behaviour appears
to have been rapidly forgotten. The TDSE assumed the mantle of the
fundamental, wholly quantum dynamical equation. Nevertheless, over the
last seventy-odd years many physicists have been uncomfortable with the
way time is introduced into quantum mechanics and the fact that x� und p�
are Hilbert-space operators but t is apparently not. One strategy has been
to revise the theory so that t is also elevated to the status of an operator,
i.e., to use Dirac's designation, (14) to change time from a c-number to a
q-number.

The fundamental algebra of q-numbers distinguishing them from c-num-
bers is of course their non-commutivity as, for example,3

[x̂i , p̂i]=i� (21)

On the basis that H and t are canonically-conjugate variables, as are x�
and p� , it was sought to introduce a time operator t̂, such that

[H� , t̂]=i� (22)

Pauli raised a fundamental objection to the existence of such a relation by
pointing out that the eigenvalue spectrum of H� is bounded from below but
that of t̂ apparently not.(15) Despite this, prominent authors made sugges-
tions for the definition of t̂. For example, in 1961 Aharonov and Bohm(16)

used the classical relation between t, x and p for a particle of mass m

t=
mx
p

(23)

to suggest

t̂=
m
2

( p̂&1x̂+x̂p̂&1) (24)

the non-commutivity forcing the symmetrisation of the expression. As
recently as 1996, Grot et al.(17) suggested the more compact form

t̂=
m
2

( p̂&1�2x̂p̂&1�2) (25)

The main drawback of such operators is that they are singular in p-space,
surely a shameful attribute for such a blatantly non-singular quantity as
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time? Later, we will use the classical relation Eq. (23) to introduce time
into quantum mechanics as a classical quantity without the need to invoke
q-numbers such as Eqs. (24) or (25).

The most famous corollary of Eq. (21) is the proof of the uncertainty
relation

2xi 2p i���2 (26)

first derived by Heisenberg(18) on the basis of matrix mechanics. Heisenberg
himself postulated the existence of a similar relationship for energy and
time

2E 2tt� (27)

based on their classical conjugate relationship. The origin of Eq. (26) is the
general statement linking the uncertainty in the expectation values of any
two non-commuting observables A and B, i.e.,

2A 2B� 1
2 |([A� , B� ]) | (28)

The absence of a time operator has left generations of students, and the
authors of texts on quantum theory, bemused as to the origin of Eq. (27).
As in the derivation of the TDSE, most authors resort to the plausibility
argument based on E and t as classically conjugate variables (e.g., Roman(12)).
However, others do attempt to link the relation Eq. (27) to the act of
measurement using arguments first put forward by Mandelstam and Tamm(19)

described below. Although we believe this to be the correct point of view,
it still requires the TDSE for its proof, as do all the methods listed below.
In paper I we gave a derivation based on the TISE, using only the funda-
mental operator relation Eq. (28).

Over the years there have been many attempts to ``clean-up'' the
derivation of the time-energy relation from the TDSE. Some of the deriva-
tions are listed here simply to demonstrate, by the variety of these deriva-
tions, the fundamental difficulty of defining the role of time in quantum
mechanics (see Refs. 20, 21 and references therein).

1. Energy Wavepackets

In this approach one forms wavepackets bounded in time from an
integral over eigenstates of different energy, with an arbitrarily chosen
weight function. The relation Eq. (27) then arises from the mathematical
property of Fourier transforms of bounded functions in frequency and time

2| 2tt1
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and hence, in quantum mechanics

2E 2tt�

2. Time-Dependent Perturbation Theory

In 1931, Peierls and Landau(22) considered a quantum system subjected
to a constant perturbation and derived the probability of performing an
inelastic transition of energy change 2E as

P(t)t
sin2(2Et��)

(2E )2 (29)

The width of this function as 2E is varied gives the uncertainty relation
Eq. (27). This derivation is clearly based on an open system and the use of
first-order perturbation theory limits the applicability.

3. From the Position-Momentum Uncertainty Relation

Many books start from Eq. (26) for a closed system, use the relation
for a free particle of mass m

2E=
�E
�p

2p=v 2p (30)

and define 2t=2x�v to obtain

2x 2p=2E 2t���2 (31)

Not only does this method rely upon free motion, it is also required to
introduce the concept of velocity, a classical quantity alien to a quantum
system.

4. From the ``True'' Uncertainty Relation

In 1945, Mandelstam and Tamm(19) introduced a derivation based on
the operator relation Eq. (28). With B� =H� one has

2A 2E� 1
2 |([A� , H� ]) | (32)

Using the TDSE, one then proves that

d(A� )
dt

=
i
�

([A� , H� ]) (33)
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to define a time interval

2t=2A } d(A� )
dt }

&1

(34)

Then, from Eq. (32), one has

2t 2E���2

Although based on Eq. (28), this result is also a little unsatisfactory
since the definition of 2t, and hence the uncertainty 2E in the energy of the
quantum system, appears to depend upon some arbitrary other observable A.

5. From the Moments of Time

Wigner in 1972(23) suggested that one define moments of the time
distribution defined as

(tn)=
��

&� |�(x, t)| 2 tn dt

��
&� |�(x, t)|2 dt

(35)

and than constructed the time uncertainty

2t=((t2) &(t) 2)1�2 (36)

to derive the energy-time uncertainty relation from the TDSE. This method
has the difficulty that the moments are in principle position-dependent and
they do not necessarily correspond to convergent integrals.

6. From the Density Matrix

Eberly and Singh, (24) in 1973 proceeded from the TDSE to arrive at a
Liouville equation for the density operator \̂, i.e.,

d\̂
dt

=
i
�

[ \̂, H� ] (37)

They then showed that the stationarity of the ensemble is proportional to
2(d\�dt) and used this to define a time uncertainty

2tt_2 \d\
dt+&

&1

(38)

They then derived the time-energy uncertainty by use of Eq. (37).
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There have been many other derivations published, using variants of
the above methods.(21, 25) The plethora of proofs points to the uncertain
position occupied by the time-energy uncertainty relation in standard
quantum mechanics. We suggest that the problem is the failure to recognise
that the TDSE, on which the above proofs are based, is a mixed quantum-
classical equation and that 2E, like 2p and 2x is a property of the system
but 2t is fixed by the external environment and is not a property of the
system itself. From this point of view we feel that treatments interpreting
2t as the time taken for a measurement (the intrusion of a classical measur-
ing apparatus into the quantum system) are the valid ones. Similar remarks
can be made concerning the numerous attempts to define quantum times,
e.g., dwell times, lifetimes, tunnelling times, arrival times. Whilst doubtless
a useful practical concept for the description of the results of measurements
made with macroscopic devices, time, as velocity, is basically a concept
alien to quantum mechanics. As shown in paper I, time enters only when
the measuring device becomes so large that it can be treated to good
enough approximation as an object obeying classical mechanics.

4. THE DERIVATION OF THE TDSE FROM THE TISE

In paper I it was shown how the TDSE for a quantum system arises
from the TISE for the larger object of system plus environment in the limit
that the environment becomes large enough to be treated classically. In this
section we present a more detailed derivation of the TDSE with the aim of
showing how the initially entangled state of system and environment
becomes gradually disentangled in the limit that the back-coupling of the
system on the environment can be neglected. This occurs at various levels
of semi-classical approximation. One aspect of the back-coupling that will
be emphasized is the occurrence of generalized ``vector potentials,'' one
element of which are the geometric phases in the environment wavefunc-
tion /n(R).

The TISE for the quantum object comprising a system S and its environ-
ment E is written

H9=E9, i.e., (HE+HS+HI) 9=E9 (39)

where HI represents the interaction between S and E. The total wavefunc-
tion can be expanded

9(x, R)=:
m

/m(R) �m(x, R) (40)
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where [x] and [R] are system and environment variables respectively. The
environment Hamiltonian is HE=K+VE with

K=&
�2

2M
:
i

�2

�R2
i

=&
�2

2M
{2

R (41)

a form that is appropriate to environments consisting of charged particles
or quantized fields (photons or phonons).

Substitution of the expansion Eq. (40) into Eq. (39) and projection
onto a state �n(x, R) leads to the coupled TISE for the environment
wavefunctions /m , i.e.,

:
m

(�n |&
�2

2M
{2

R |�m) /m(R)+VE/n(R)

+:
m

(�n | HS+HI |�m) /m(R)=E/n(R) (42)

where integration is over system variables [x] only. The ``potentials''

Emn(R)=(�m | HS+HI |�n) (43)

depending upon the state of the quantum system provide energy surfaces
which decide the state of the environment. The rest of the coupling occurs
in the kinetic energy terms and can be conveniently written as

(�m |&
�2

2M
{2

R |�n) /n

=&
�2

2M
:
k

($mk{R+(�m | {R |�k) )($kn{R+(�k | {2
R |�n) ) /n

(44)

Defining

Amn(R)=i�(�m | {R |�n) , (45)

Eq. (42) can be written formally as

:
m _ 1

2M
(P

��

2)nm+Enm(R)& /m+VE/n(R)=E/n(R) (46)
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where,

P
��

=&i� \1{R&
i
�

A
�� +=(1PR&A

��
) or Pij=($ ijPR&Aij ) (47)

This is exact, the notation being chosen to emphasize that the kinematic
coupling A

��
appears as a vector potential. One notes that back-coupling

from the system to the environment occurs not only through the vector
potential but explicitly through the potentials Emn(R).

The companion set of equations to Eq. (46) for the system wavefunc-
tions is

:
m

/m(R) _HS+HI (x, R)&\E&VE(R)+
1

/m

�2

2M
{2

R /m+&
�2

2M
{2

R

&
1

/m

�2

M
{R/m } {R& �m(x, R)=0 (48)

which gives an effective equation for each state of the quantum system.
The key approximation in disentangling Eqs. (46) and (48) is to con-

sider that the environment becomes so large that changes in the system, i.e.,
the variation of the matrix elements Emn(R) and Amn(R), has no appreciable
effect on its dynamics. The first stage in this approximation scheme, equiv-
alent to a first-order perturbation theory, is to neglect in Eq. (46) all off-
diagonal matrix elements, to give

_ 1
2M

(PR&Ann(R))2+VE(R)+En(R)& /n(R)=E/n(R), (49)

where En(R)=Enn(R). In this approximation, there is simply a different
effective potential energy surface deciding the state of the environment
coupled to each state of the quantum system. The vector potential Ann ,
giving rise to a geometric phase, is zero for real wavefunctions �n(x, R) or,
since now diagonal, can be incorporated in the definition of an effective
environment momentum operator.

The next level of approximation is to use a semi-classical approximation
for each /n(R), i.e., one writes

/n(R)=an(R) exp(iWn(R)��) (50)

with

{R Wn=P9 n (51)

706 Briggs and Rost



where the classical momentum P9 n and position R9 n are decided by
Hamilton's equations

d
dt

P9 n=&{RH=&{R(VE+En) (52a)

d
dt

R9 n={Pn
H (52b)

For the standard kinetic energy P9 2�2M we use, one obtains from
Eq. (52b) that P9 n=M dR9 n �dt. It is at this level of approximation that time
first enters quantum mechanics, since to leading order in � we can write,
with Eq. (50)

�

iM
{R /n=

/n

an

�

iM
{Ran+/n

1
M

{R Wnr/n
dR9
dtn

(53)

For the system S the equations coupled to Eq. (49) read now

:
m

/m _HS+HI (x, R)&Em(R)&
�2

2M
{2

R&
dR9 m

dt
} {R& �m(x, R)=0 (54)

In paper I it was shown that the term (�2�2M ) {2
R in Eq. (54) involv-

ing higher-order gradient couplings can be neglected in comparison with

i�
dR9 n

dt
{R=i�

d
d{n

(55)

Hence Eq. (54) becomes

:
m

/m _HS+HI (x, {m)&Em({m)&i�
�

�{m& �m(x, {m)=0 (56)

where now the quantum R dependence has been replaced by a classical
time dependence.

In the approximation represented by Eqs. (51) and (56), the environ-
ment moves classically but its motion and hence the interaction time with
the quantum system is still governed by the state of the quantum system.
This is the last vestige of a quantum influence on the environment. It is
removed in the limit that the environment becomes fully disentangled from
the quantum system and therefore can function as an external clock reading
a unique time. This is achieved in the approximation that Eq. (50) becomes

/n(R)=an exp(iW(R)��) (57)
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valid if the variations in the potentials En in Eq. (52a) are negligible com-
pared to VE . Then we get from Eq. (57) the unique time derivative

{R W=M
dR9
dt

(58)

Recognising that the terms Em(t) in Eq. (56) can be removed by a purely
time-dependent phase transformation and writing �S(x)=�n an�n(x)
Eq. (56) becomes

_HS+HI (x, t)&i�
�
�t& �S(x, t)=0 (59)

the TDSE of Eq. (1) for the quantum system alone. This completes the dis-
entanglement of the environment from the system; the environment's
dynamics is defined by classical equations of motion unperturbed by
changes in the state, e.g., the energy, of the quantum system. Conservation
of energy has been abandoned at the price of introducing a unique time.
This is consistent with the derivation of the energy-time uncertainty rela-
tion given in paper I. By contrast, the quantum system interacts with the
environment through HI (x, t) and thereby can emit or absorb energy. As
a result of this interaction, its change of state can be monitored by the
environment clock. Note that this interaction, however small, is crucial,
since were it zero then the time dependence can be transformed away, the
quantum system is closed and the TDSE Eq. (59) becomes the TISE
Eq. (3).

Another aspect of quantum theory ``illuminated'' by the above deriva-
tion is the question as to why the wavefunction is a complex function. As
intimated in the introduction, Schro� dinger had initially some difficulty with
this point and discussions persist up to recent times.(26) The necessity for
complexity is usually explained as due to the factor ``i '' in the term ih(���t)
of the TDSE. However, we argue that this term only arises in a classical
approximation to the environment. When this approximation is not made,
the environment remains quantal and there appears no reason that the
solution to the TISE should not be real. Examination of our derivation
shows that the origin of the factor ``i '' in the TDSE lies in our semi-classical
approximation for the environment

/(R)ta(R) exp(iW(R)��) (60a)

Why is a complex solution necessary? The answer can be seen most simply
by taking the environment to be a single massive particle of constant
momentum k9 (no back-coupling from the quantum system, as we require).
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Then the semi-classical approximation Eq. (60a) becomes exact and we
have, for motion in the Z direction

/(R)=exp(\iKZ) (60b)

Hence one sees that this function, which is an eigenfuntion of the momen-
tum operator, is the origin of the factor ``i '' (the simple form Eq. (60b) is
exactly that used by Mott(3) in his original derivation). That such a phase-
matching of the real solutions sin(KZ) and cos(KZ) is necessary is very
nicely discussed by Merzbacher.(27) Thus we would argue that the origin of
the complexity of wavefunctions arises not from the TDSE but from the
construction of eigenfunctions of the p̂ operator in the TISE. It is the
expression of our ability to distinguish between motion to the left or to the
right (\k in Eq. (60b)) or expansion from contraction in the case of
spherical waves. It is also significant in this connection that what is usually
called ``time reversal'' invariance in quantum mechanics is in fact the
property of the system under momentum reversal.

5. THE TDSE IN QUANTUM GRAVITY

There is an approach to quantum field theory in which functional
Schro� dinger equations appear, i.e., wave functionals which depend on field
functions. Apart from this, the equations resemble Schro� dinger equations of
ordinary quantum mechanics. This approach has been much used in the
field of quantum gravity.(28) There one attempts to quantise gravity in a
way in which the classical limit produces the field equations of general
relativity. One begins with the ``Hamiltonian constraint'' of general relativity

H=0 (61)

and writes an operator version as the Wheeler�deWitt equation of quan-
tum gravity

H� �=0 (62)

The analogy to the quantisation of the classical constraint Eq. (5) to give
the TISE of quantum mechanics Eq. (8) is complete. The remarkable thing
is that Eq. (62) does not contain time. How one recovers the time to enter
the classical four-dimensional space-time is known as ``the problem of time
in quantum gravity'' (a very readable account is given by Kiefer(29)). An
even more remarkable thing is that the solution to this problem is to
proceed exactly as is done in atomic and molecular physics(28, 30) and as has
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been done in Sec. 4, to reduce the TISE for a composite system to the
TDSE for a part of the system whereby the remaining part has been treated
semi-classically. In atomic physics the quantum part is the electronic
motion and the motion of the heavy nuclei provides the classical time. In
the general case of Sec. 4 (see paper I) the quantum system has a classical
time provided by the large environment. In the case of quantum gravity,
matter fields in the universe are the quantum objects and the gravitational
field is treated in a semi-classical limit. As in Sec. 4, back-coupling of matter
fields on the gravitational three-metric is neglected and � is factorised

�(G, ,)r/(G) �(,, G) (63)

where G denotes gravitational and , matter fields. This corresponds exactly
to the single-channel version of Eq. (40). One sees that the gravitational
field plays the role of the environment and the matter field , that of the
quantum system.

Time arises when, exactly as in equation Eq. (50), the functional / is
approximated semi-classically

/(G)=a(G) exp \ i
�

W(G)+ (64)

where the functional W obeys the Hamilton�Jacobi equations for the
gravitational field alone (which are equivalent to the Einstein equations of
classical general relativity). The operator H� in Eq. (62) contains the
gravitational field operator and the operator H� m of the matter fields.
Substitution of Eqs. (63) and (64) into the TISE Eq. (62) then leads to the
TDSE for the matter fields alone i.e.,

i� {W } {�#i�
��
�t

rHm� (65)

again in complete analogy to Eq. (55).
One sees that the time entering the functional TDSE for the quantum

fields arises from a classical description of the ``environment'' and the time
parameter is that arising in the classical field equations for this environ-
ment.

6. CONCLUSIONS

We have presented a derivation of the time-dependent equation of
Schro� dinger. This derivation, unlike those presented in quantum mechanics
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text-books but in the spirit of Schro� dinger's original approach to the
problem, acknowledges that time enters quantum mechanics only when an
external force on the quantum system is considered classically. Starting
from a fully time-independent formulation of quantum mechanics (the
TISE) we systematically derive the TDSE for a quantum system, with
appropriate effective time-dependent Hamiltonian, in the approximation
that the environment is treated semi-classically.

Our derivation relies on the assumption of a closed object comprising
system plus environment. Only when the state of the environment is com-
pletely disentangled from that of the quantum system does a unique classical
time parameter, a clock, for that system appear. Our supposition that this
is how time always arises in quantum theory is supported by the observation
that this is precisely how time enters the functional Schro� dinger equation
of quantum gravity. Here, the time-independent functional Schro� dinger
equation for quantised space and matter (the whole universe) reduces to an
effective functional TDSE for matter fields only, in the limit that the gravity
field (the background environment for the quantised matter fields) is
treated semi-classically. Apart from the replacement of wavefunctions by
wave-functionals, the methods of derivation in the two cases are identical.
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