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Abstract. We calculate and analyse S-wave resonances of helium up to an energy of -0.02 au 
applying the complex rotation technique. Rydkrg series converging to the hydrogenic thresholds 
of the Het ion are analysed by quantum defect theory. For moderately excited inner electrons the 
series converging to different thresholds begin to overlap resulting in perturbed Rydberg series. 
We find that approximate quantum numbers as well as propensity rules governing the decay 
of the resonances and the perturbation scheme of the Rydberg aeries prevail. With increasing 
excitation of the inner electran however, only series whose stiltes tend lo extreme interelectronic 
angles (cos0) = + I  remain regular. 

1. Introduction 

Since the first experiment by Madden and Codling (1963) doubly excited states of helium 
have attracted the interest of theoreticians and experimentalists. Recent experiments study 
with high resolution the photoabsorption of helium to doubly excited states (Domke et al 
1991, 1992, 1995). Numerous theoretical investigations have improved our understanding 
of the electron-electron correlation which prevents an analytical solution for the helium 
atom. The classification of isolated resonances according to approximate quantum numbers 
is now well established and has emerged from different approaches (Herrick 1983, Lin 
1986. Feagin and Briggs 1986). The classification is accompanied by propensity rules 
which govern the autoionization pattern of the resonances (Rost and Briggs 1990). Hence 
the low and intermediate lying region appears to be well understood and highly accurate ab 
initio calculations are available. 

Various methods have been applied to obtain the resonance parameters theoretically. 
Bathia and Temkin (1975, 1984) used a Feshbach projection formalism whereas a close 
coupling approximation was employed by Oza (1986). The multi-configurational Hartree- 
Fock method was extended to autoionizing states by Froese-Fischer and Indrees (1990). 
and Tang et ai (1992) used a hyperspherical close coupling method based on a numerical 
basis set. Muller er ai (1994) applied the stabilization method of Mandelshtam et al (1993) 
to calculate 'Se states of helium. The complex rotation technique, which is also used in 
this work, makes it possible to use bound state methods to calculate autoionizing states. 
This method was extensively used by Ho and co-workers (1979, 1980, 1981, 1983, 1986) 
with a Hylleraas-type basis set. Lindroth (1994) applied the complex rotation method with 
a finite numerical basis set built on solutions of the discretized one-particle Hamiltonian 
(Salomonson and Oster 1989). 

More recently interest has shifted to very high excitation and to the question whether 
the approximate quantum numbers and propensity rules prevail up to the fragmentation 
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threshold E = 0 of helium. For this purpose the present work supplies very accurate 
numerical data for high excitation of both electrons with principal quantum numbers of the 
inner ( N )  and outer ( E )  electron up to n > N = IO. 

The accuracy and the large amount of our data allows us to analyse the spectrum of 
the S states of helium up to energies where series converging to different thresholds of the 
Hec ion strongly overlap. Using a quantum defect analysis (Seaton 1983, Wintgen and 
Friedrich 1987) we are able to identify deviations from the regular Rydberg behaviour very 
clearly. For moderate excitation, autoionization transitions obey the propensity rules derived 
by Rost and Briggs (1990, 1991) in  the molecular orbital description of the He atom. We 
find that these propensity rules break-down for very highly doubly excited states far from 
the quasi-classical regime. 

Surprisingly, however, this does not imply a change in the autoionization mechanism on 
which the propensity rules are based. On the contrary this mechanism together with the so 
called perturber states (to be defined later) can be used to show that most Rydberg series are 
strongly mixed with respect to the channels defined by the approximate quantum numbers. 
Since the propensity rules connect just these 'pure' channels, their violation for highly 
excited Rydberg series indicates that these states are no longer built of pure channels but 
of mixtures of those. We will discuss the evolution of the channel mixing as a function of 
excitation energy in detail. We will also relate our results to recent semiclassical descriptions 
of the two-electron atom (Ezra et al 1991, Richter and Wintgen 1991, Richter et al 1992, 
Muller et al 1992). 

The paper is organized as follows. In section 2 we present the Hamiltonian of the 
problem in the coordinates we use and discuss our method of solution. As an example 
for the accuracy we achieve we present some energies of singly excited states. Section 3 
deals with the tools used to classify and analyse doubly excited resonances. Approximate 
quantum numbers (for the classification) and some aspects of quantum defect theory (for 
the analysis) are briefly discussed. In section 4 we present our results for the resonance 
spectrum of helium in detail with an emphasis on singlet states. Some examples for triplet 
Rydberg series are also reported to illustrate the qualitative similarity between singlet and 
triplet series. Section 5 contains the summary and conclusion. 

2. Hamiltonian in perimetric coordinates and method of solution 

2.1. Analytic matrix representation of the Hamiltonian 

The non-relativistic Hamiltonian for the relative motion of a two-electron atom or ion with 
nuclear charge Z reads (atomic units are used throughout the paper) 

Here, VI and Vz are the momentum operators in position representation, rl and rz the 
distances of the electrons from the nucleus, and r1z = [TI - i-21 is the inter-electronic 
distance. The mass of the nucleus is assumed to be infinite. 

The wavefunction of the two-electron system is conveniently written as (Breit 1930, 
Wintgen and Delande 1993, Pont and Shakeshaft 1995) 

where the 'DhM,($. 8. $) are the rigid-top wavefunctions describing the rotation from a 
laboratory frame to a body fixed frame with the Euler angles $, 8 ,  $. In this paper we 
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restrict ourselves to L = 0 states for which the dynamics in the plane spanned by the 
three particles does not depend on its orientation in space. Hence we can restrict our 
considerations to this plane described by three variables only. Formally this corresponds to 
Pm = constant in (2). 

The full solution of the corresponding Schrodinger equation remains nevertheless a 
nontrivial problem. We use a transformation of the Schmdinger equation to perimetric 
coordinates as defined by Coolidge and James (1937). Even though this coordinate set 
has already been used for numerical ground state calculations as early as 1958 (Pekeris), 
its power and simplicity for the calculation of highly doubly excited states was not fully 
recognized in the past. The perimetric coordinates have the great advantage that they 
produce, together with an appropriately chosen basis set, a matrix representation of the 
hamiltonian which is sparse and of banded structure and therefore allows for an efficient 
diagonalization. The perimetric coordinates are defined as follows: 

x =  r l + r 2 - r 1 2  

y =  r l - r 2 + r n  x , y , z > O  
z = -rl + r2 + 112 

In these coordinates the Hamiltonian (1) reads 

(3) 

The P,?) i n  (4) are polynomials of degree 3 of the variables x, y .  z and can be found in the 
appendix. (The dagger with the partial derivative in (4) means that this operator acts to the 
left.) 

We expand the wavefunction for each degree of freedom in a complete Sturmian basis set 
and (anti-) symmetrize the product functions (the exchange of the two electrons corresponds 
to an exchange of the y and z coordinates). An element of this basis then reads 

(5 )  

@.(U) = L,(u)e-"'* (6) 

@L(x. y ,  z) = @"(ffX) [9,(Py)9dyz) f @kWY)9"(BZ)] 

with & ( U )  defined as 

where the L,(u)  are the usual Laguerre polynomials. The volume element 

(7) 

cancels the singularities in the Hamiltonian (4) if matrix elements are calculated. 
Orthonormalization and recursion relations of the Laguerre polynomials guarantee that most 
of the matrix elements between basis states vanish. This leads to the sparse and (under 
appropriate order of the basis elements) banded structure of the matrix representation of the 
Hamiltonian. The calculation of the non-vanishing matrix elements is simple and can be 
done algebraically using fast and accurate integer arithmetic. 

The eigenvalues of the matrix do not depend on the parameters a, p, y in (5)  if a 
complete basis is used. In numerical calculations, however, only a finite basis can be 
implemented on the computer because of limited storage capacities. We use truncated basis 
sets up to a maximum node number w = n + m + k = 64, corresponding to 24497 basis 
states. The convergence is checked with respect to increasing basis size. This convergence, 
however, is sensitive to the choice of our scaling parameters 01, ,3, y .  We rewrite them 
as 01 = ap and y = cp and choose a and c to be real. For states where both electrons 
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dV = -(x + Y ) ( X  + Z)(P + z)dx ,  dy. dz 
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are approximately symmetrically excited, c = I is the natural choice. This leads to a 
further reduction of the bandwidth of the matrix since there are even more matrix elements 
exactly vanishing due to the orthonormalization relations of the Laguerre polynomials. 
For asymmetrically excited states, c should be approximately equal to the quotient of the 
principal hydrogenic quantum numbers of the two electrons in the independent-electron limit 
to obtain a rapid convergence. However, in this case the bandwidth is significantly larger 
than in  the c = 1 case, which not only increases the computation time but also lowers the 
maximum basis size that can be implemented under the same storage capacities (w = 42 
instead of 64). Hence we have used c # 1 only for moderately excited states. A good choice 
for a is a = 1 + c which gives the correct asymptotic behaviour in the independent-electron 
limit. 

With these parameters the Schrodinger equation (4) has the matrix form 

(,!?*T+ pp - E N ) $  = 0 .  (8 )  
The matrices T ,  p. N of the kinetic energy T ,  the potential energy 1' and the unit operator 
N are real symmetric and depend on a and c ,  but not on p.  

For real p the matrix equation (8) represents a real variational problem leading to real 
eigenenergies of the hamiltonian. Hence, with real p the real energies of singly excited 
states can be calculated. Resonances, however, are described by complex energies, 

To calculate those complex energies, we apply the complex rotation technique (Reinhardt 
1982, Ho 1983). It is implemented by using a complex variational parameter ,8 in (8). 

(10) p = b  eib 

with real b,  B. A typical choice for b is b = l / N  or smaller ( N  is the principal quantum 
number of the HeC ion to which the Rydberg series converges). 

By solving (8) we get a large number of converged complex eigenvalues that represent 
the doubly excited resonances. 

2.2. Numerical computation of resonances 

The actual computation of the eigenvalues of (8) is performed in two steps. In a first step 
a certain number of eigenvalues is calculated around a (complex) energy by using a fast 
Lanczos algorithm (Delande er a1 1991). In this way we get a number of candidates with 
one program call. The eigenvalues are checked for convergence by systematically increasing 
the basis size. Note that at this stage the parameter p is not optimized but remains the same 
for all eigenvalues calculated at the same time. 

In a second step the complex matrix equation (8) is solved using an inverse iteration 
method on an LDL' decomposition of the matrix (8) with the results from step one as 
starting values. This program also calculates some expectation values, using the expansion 
coefficients of the eigenstate in the basis set. For each state we use an iterative algorithm to 
optimize the complex scaling parameter @ such that the complex energy becomes stationary, 
aE/ap  = 0. The wavefunction then fulfils the complex virial theorem -2(T) = ( V )  = 2 E  
(Ho 1983). Here we also check the convergence of the complex eigenvalues with respect 
to the basis size and the partial derivative aE/aa. which should also vanish for an exact 
eigenfunction. It turns out that most of the (well converged) eigenvalues obtained by 
the Lanczos algorithm fulfil the specified accuracy after only a few (sometimes only one) 
iterations so that in most cases the results of our first step are good enough if one is only 
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interested in the resonance energies. This can be interpreted as a signature of a weak 
dependence of the energy on p for large basis sets. 

2.3. Accuracy 

To demonstrate the accuracy of this method we list here our results for the energies of 
singlet and triplet singly excited states of the He atom (table I). All converged digits are 
shown. The numbers in parentheses give the maximum uncertainty in the last digit(s). For 
comparison, we show (in italics) the hitherto most accurate data we are aware of (Drake 
1988). 

The energies for doubly excited states can be calculated as accurately as for moderately 
singly excited states. In the following we will present our resonance energies with an 
accuracy of au although most of the data are better converged. In the worst cases the 
uncertainty is not larger than 2 in the last digit quoted. 

Table 1. Energies of the singly excited Rydberg series labeled by independent electron quantum 
numbers. The numbers in italics are the results obtained by Drake (1988) using a set of Hylleras 
type basis functions. The numbers in parentheses denote the accuracy in the last digitk). 

state - U ' S )  --E13S) 

lsls 

lS2S 

IS3S 
ls4s 
lS5S 
ls6s 
lS7S 
ls8s 
ls9s 

ISlOS 
l s l l s  
IS12S 
lS13S 
ls14s 
lS15S 
ls16s 

2.903724377034 119589(5) 
2.90372437703415f28) 
2.145974046054412(3) 
2.145 974046054 28111) 2.1752293782367910(3) 
2.061 27 I 989 740 87(2) 
2.033 586 716 8807) 
2.021 176851 15(6) 
2.014 563097 4(6) 
2.010 625 775 3(4) 
2.008093619 l(5) 
2.006 36955 I I( 10) 
2.005 1429874(27) 
2.004239408(4) 
2.00355461 l(7) 
2.003023271(8) 
2.002602732( IO) 
2,002264 l91(Il) 
2.001 9872(3) 

2.175 229 378 236791 300(8) 

2.068 689067472454(6) 
2.036512083098 1(3) 
2.02261887230(1) 
2.01537745299(1) 
2.011 12991951(1) 
2,008427 121 99(16) 
2.006601 5 l645(21) 
2.005 3 IO 794 l(8) 
2.004 3 IO 794(4) 
2.003 650 61 8(8) 
2.003 098 445(16) 
2.002662 66(4) 
2.W2 3 I2 67( 8) 

3. Representation of the resonance parameters 

As mentioned in the introduction the goal of this paper is twofold, firstly to provide 
numerical data of high quality for two-electron resonances over a wide range of energy, and 
secondly to examine the current understanding of two-electron resonances in terms of their 
classification by approximate quantum numbers (Herrick 1983, Lin 1986, Feagin and Briggs 
1988) and in terms of the predicted propensity rules for autoionization (Rost and Briggs 
1990, 1991). We will also comment on the role of classical orbits for the understanding 
of two-electron resonances in particular for high excitations (Ezra et al 1991, Muller et a[ 
1992, Wintgen er al 1994). 
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However, for the presentation of the enormous data material in some ordered fashion 
we need a 'neutral' tool which does not anticipate the possible classification according to 
the aforementioned schemes. Our principal tool will be single- and multi-channel quantum 
defect theory. At high energies an ordering according to the quantum defects as we derive 
them from our data is not unique and we need an additional criterion to determine to which 
subseries the resonance should belong. In these cases we use the expectation value (cos0) 
of the inter-electronic angle as a guideline. 

3.1. Labelling and quantum numbers 

The complex eigenvalues obtained by the method described above can be characterized 
by three indices, E = EHX". The first index N denotes the principal quantum number of 
the electron in the remaining He+ ion once the outer electron is ionized. For successively 
higher excitation of the outer electron with principal quantum number n the corresponding 
Rydberg series converge to the threshold E N  = - Z 2 / 2 N 2  in the limit n -+ 03. There are 
N different Rydberg series of singlet states converging to each threshold because there are 
N different possibilities to couple the single particle angular momenta to L = 0. Note, 
however, that those single particle angular momenta are no longer good quantum numbers 
as in the independent-electron picture because of the strong electron-electron correlation. 

Each of these Rydberg series converging to the same threshold is labelled by the 
index k which asymptotically (n + 00) determines the parabolic quantum numbers of 
the Stark-type state in which the inner electron resides (Rost and Briggs 1991). The index 
k ,  k = - N  + 1, -N + 3, . . . , N - 3, N - I ,  is therefore related to the expectation value of 
cos8, where 8 is the angle between the two electron position vectors rI and r2 

(11) 

We see from (1  1) that for extremely high excitation N -+ 00 of the inner electron we 
get two collinear configurations with minimum angle (cosO) -+ ( N  - l ) /N % + I  which 
corresponds to a configuration with both electrons on the same side of the nucleus (8 % 0", 
the 'frozen planet states', Richter eral  (1992)) and (cos8) -+ -(N - 1 ) / N  % - 1  where the 
electrons are localized on different sides of the nucleus (0 180", an 'asymmetric stretch', 
Rost et al (1991)). These two collinear configurations can be represented classically by 
characteristic periodic orbits which surprisingly are stable for the O % 0" case and moderately 
unstable for the 0 % 180' case (Ezra et a/ 1991, Richter and Winlgen 1991). 

In what follows we use the nomenclature ( N ,  k ) ,  to identify a single state and ( N ,  k )  to 
specify a whole series. However, this classification is only unique in the limit n -+ 00 where 
perturbation theory can be applied and the He+-electron interaction can be diagonalized in a 
stark basis of the Het ion (Gailitis and Damburg 1963). It has been a puzzle for a long time 
that the asymptotic (n -+ 03) classification holds also for states where both electrons are 
equally excited ( n  % N ) .  This was first realized by Henick in a group theoretical approach 
(Herrick 1983). His set of quantum numbers consists of (N.K,T,n) where (N,K,n)  
corresponds to our labels ( N ,  k .  n )  and T is the projection of the total angular momentum 
on the inter-electronic axis (related to M' in our nomenclature, see (2)). Of course for L = 0 
we have T = M' = 0. To specify the character of the electron exchange symmetry (Pauli 
principle) one needs a fifth quantum number which is according to Lin (1986) commonly 
referred to as A = rtl  (Herrick himself called it  v) .  In the case of L = 0 states A = t l  
corresponds to ' S  states and A = -1 to 3S states. For the relation to other classification 
schemes see e.g. Rost and Briggs (1991). 

k 
n-w N (COSO) + - -.  : 



Highfy doubly excited S states 3169 

3.2. Quantum defects 

To the extent to which the separation of the resonances into series holds, the (complex) 
energies can be conveniently parameterized by the ansatz 

where ukn is an effective quantum number for the outer electron and pin is its quantum 
defect. According to this ansatz the total energy of the system consists of the energy of the 
inner (outer) electron in the field of the unshielded (shielded) nucleus only; all discrepancies 
from this simple picture are collectively described by the &n, Note that since the ENkn 
are complex for doubly excited states, ukn and pkn are also complex. The real part of the 
quantum defect determines the energy shift (in units of the nodal number n )  whereas the 
imaginary part gives the rescaled width r&. 

The discrete points pkn lie on a continuous curve p ( E ) .  For unperturbed Rydberg series 
the quantum defect is a slowly varying function of the energy (Seaton 1983, Wintgen and 
Friedrich 1987). Already for moderate excitation of the inner electron, however, Rydberg 
series converging to different thresholds of the Het ion begin to overlap leading to a 
perturbation of the Rydberg series (Burgers and Wintgen 1994). This can be described within 
a three-channel quantum defect theory (3QDT) where the first channel contains one state (the 
so called perturber). the second one the unperturbed Rydberg series under consideration, 
and the third channel is open (Wintgen and Friedrich 1987). The real and imaginary part 
of the quantum defect is then parameterized as follows: 

R e p ( E )  = n ( E )  - 'arctan ?I (:) 

where E = ( E  - E R ) / ( T / Z )  measures the energy with respect to the location ER of the 
perturber in units of its half width r/2. The quantities ,%(E) and ? ( E )  are slowly varying 
backgrounds of the quantum defect (real part) and the reduced width (imaginary part), yo 
is the amplitude of the Fano-type modulation in (14) (Fano 1961, Wintgen and Friedrich 
1987). 

The perturbing state itself does not appear as an isolated state but becomes an additional 
member of the perturbed Rydberg series. All the states in a confined region in the vicinity 
of the perturber (and also the perturber itsel0 are shifted due to the interaction between the 
corresponding channels. Far from the perturbed zone the series remains unperturbed, but 
since one state has been added the numbering has changed and the quantum defect increases 
by unity. The location and width of such a perturber can be determined by fitting (13) and 
(14) to the resonance data. 

This picture also holds for more than one perturber resulting in several arctan-shaped 
'jumps' provided the perturbers do not interfere. If they d o  the picture becomes more 
complicated since the interaction of the perturbers significantIy changes both the location 
and the width of the pseudoresonant jumps (Friedrich 1991). 

Since the pseudoresonant perturber is not a true resonant state it  does not appear in 
a converged numerical calculation as a single (complex) eigenvalue. This remains true 
even for non-converged calculations as long as, in the truncated basis, the dense Rydberg 
states forming the pseudocontinuum are well represented. However, if one deliberately 
chooses the basis parameters a ,  c ,  ,9 so that the Rydberg states are badly represented, the 
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pseudocontinuum no longer 'exists' and the perturber itself occurs as an isolated state. 
These states are only fairly well converged since enlarging the basis size also improves 
the representation of the pseudocontinuum. The situation becomes better the closer the 
perturber is to the corresponding ionization threshold. Hence by using a 'detuned' basis we 
can calculate directly the location and width of the perturbers and compare them to those 
values obtained by a 3QDT fit. 

4. The  spectrum of the He atom 

4.1. Overview 

We have calculated doubly excited states for the helium atom for both singlet and triplet 
symmetry up to N = IO. Our calculations have been performed for infinite nuclear mass 
(M -+ 00). A non-perturbative inclusion of the finite nuclear mass, however, does not lead 
to any difficulties and is already implemented in our computer code. 

Figure 1. Sketch of the helium doubly excited Spectrum for L = 0. We only Show the lowest 
stale for each threshold up to N = IO. The various stales lie in the range indicated by the 
rectangles. Both the singlet and the viplet system me shown, 

Figure 1 schematically shows the spectrum of the He atom for both the singlet (left) and 
the triplet (right) symmetry. Only the lowest state and the thresholds are shown, indicating 
the energy range of the (resonant) states. For small N ( N  c 4 in the singlet case and N < 6 
in the triplet case) the Rydberg series converging to different thresholds are energetically well 
separated and the spectrum is rather simple. Hence the quantum defects of the respective 
series should be slowly varying functions of the energy. 

For larger N the Rydberg series converging to different thresholds begin to overlap 
energetically and we find that the Rydberg series are perturbed. As already shown i n  
Burgers and Wintgen (1994) the perturbation scheme for moderately excited series follows 
the propensity rules derived by Rost and Briggs (1990, 1991) in a molecular orbital approach. 
For very highly excited sates and k % 0, that is far from a collinear configuration, i t  is no 
longer clear whether a k index can still be assigned and the propensity rules break down. 

In the following we will present our results in detail. For the sake of clarity we will 
focus on the series with singlet symmetry. In general, singIet and triplet spectra show 
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the same features. However, since triplet manifolds are energetically more separated than 
singlet manifolds (see figure I )  the phenomena of perturbed Rydberg series start for higher 
N in  the tnplet case. 

4.2. The unperturbed Rydberg series (N = 2 ,3 )  

Table 2. Energim for the (2, k) Rydberg series (in m). 

state 
N k n  

'S 
-Re E -ImE 

3s 
-Re E -1m E 

2 1 2  
3 
4 
5 
6 
7 
8 
9 

10 

-I 2 
3 
4 
5 
6 
7 
8 
9 

I O  

0.777867636 0.002270653 
0.589894682 0.000681 239 
0,544881 618 0.000246030 
0.526686857 0.000 109335 
0.517641 112 0.000056795 
0.5 12513 488 0.000 032992 
0,509332686 0.000020795 
0.507225 835 0.000 013 936 
0,505159 104 0.000009790 

0.621927254 0.000 107818 
0.548085 535 0.000037392 
0.527716640 0.000023 101 
0.518104252 0.000014894 
0.512763242 0.000009970 
0.509483569 0.000006918 
0.507 324 340 0.000 004 959 
0.505 827 143 0,000 003 657 
0.504 146 388 0.000 002 766 

- - 
O.bO2517505 0.OW 003325 
0.548840858 0.000OfJI 547 
0.528413972 0.000000771 
0.518546375 0.000000428 
0.513046496 0.000000260 
0.509672798 0.000000 169 
0.507456056 0.000000 116 
0.505922 151 0.000000082 

- - 
0.559746626 0.000000 130 
0.532505 349 0.000000072 
0.520549 199 0.000000041 
0.514 180356 0.000000025 
0.510378 174 0.000000016 
0.507925 149 0.000000011 
0.506250079 0.000000008 
0.505055341 0.000000006 

The data calculated for the (2, k) and (3, k) series are given in table 2 and table 3, 
respectively. As can be seen, the triplet states lie a little below the corresponding singlets. 
This is clear because the node in the triplet wavefunction at rj = rz = 0 reduces the 
electron4ectron repulsion. As a consequence, the widths of the triplet states are about two 
orders of magnitude smaller than those of the corresponding singlet states. The character 
of the wave function on the Wannier saddle r )  = rz is essential for the decay mechanism 
(Rost and Briggs 1990) and for the separation of different Rydberg series labeled by k (see 
above). 

In principle we could extend our calculation for these states both to obtain more accuracy 
and for higher n values. However, at this stage relativistic effects should become significant 
which have not been included yet. Moreover, high n states can be calculated with almost 
the same accuracy by simply fitting the quantum defects as a function of n. 

4.3. Simply perturbed Rydberg series (N = 4,5): con3rmation of the propensity rules 

We now come to the region where the Rydberg series converging to different thresholds 
of the He+ ion begin to overlap energetically. This has a drastic effect on the complex 
resonance energies which is obvious in the quantum defect pg. 

Figure 2 shows the real part of the quantum defect for the four Rydberg series converging 
to the N = 4 threshold. The quantum defects of the three energetically higher Rydberg 
series (k = I ,  -1, -3) are smooth functions of the energy. The quantum defect for the 
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Table 3. Energies for the (3. k )  Rydbex series (in 3u). 

state 
N k n  

'S 
-Re E -Im E 

3s 
-Re E -Im E 

3 2 3  
4 
5 
6 
7 
8 
9 

10 
I1  
12 

0 3  
4 
5 
6 
7 
8 
9 

10 
11 

-2 3 
4 
5 
6 
7 
8 
9 
IO 

0,353538536 0001 SM906 
0281072703 0000750733 
0255972 114 0000350036 
0.243924049 0000 179910 
0231117099 0000102160 
0233 I21 363 0.000062881 
0?30519146 0000041 369 
0228744234 0000028755 
0227.181 269 0.000020791 
0.226551 500 0.000015 192 

0.317457836 0.003329920 
0263388312 0.001 20935.1 
0.246634603 0.000565481 
0,238524 IM 0.000318U37 
0.233898812 0.000 196?6? 
0.231 001 524 0000 129 I85  
0 229064S86 0.000089418 
0 227705232 0 00006-1398 
0,22671142 0.00001789 

0 25731 I610 0000010564 
0 244 324 739 
0 237 31 I202 

0.000 02 I400 
0 000017 021 

0.233 173689 0.000012347 
0.230531~347 0,000 008 810 
0.228741 812 0.000006247 
0.227473 958 0.000004545 
0.22654299 0.00000342 

-~ ~- 
0.~87277~38 o.oooo149~4 
0.258 133976 0,000009748 
0.244807489 0.000005801 
0.231672213 0.000003578 
0.233433 327 0.000002322 
0.230719088 0.000001578 
0.228880000 0.000001 117 
0.227 577 8 0,000 000 8 

- - 
0.270283614 0.000023 308 
0.249000418 0.000006848 
0.239696 887 0.000 004 600 
0.234569038 0.000003061 
0.231421646 0.000002 100 
0.229345782 0.000001 491 
0.227902 9 14 0,000 001 09 I 
0.226859 0.000001 

- - 
0.249964616 0.000006789 
0.240314494 0.000003490 
0.234969582 0.000002042 
0.231692116 0.000001300 
0.229535701 0.000000880 
0.228040873 0.000000623 
0,226 962 0.000001 

( N ,  k )  = (4,3) Rydberg series, however, increases rather suddenly by unity around 0.04 
au below the N = 4 threshold (which is located at -0.125 au), This pseudoresonant jump 
is caused by the lowest doubly excited state of the N = 5 Rydberg series, namely the 
(N, k), = (5,4)5 state, which does not appear as an individual state but compresses the 
dense spectrum of the (4,3) Rydberg series (Biirgers and Wintgen 1994). 

In figure 3 both the real and imaginary part of the quantum defect of the (4,3) Rydberg 
series are shown. The solid lines are fib to (13) and (14), respectively, where ; ( E )  is fitted 
by a polynomial of degree 2 and ? ( E )  by a polynomial of degree 1. The data are obviously 
in excellent agreement with the predictions of the 3QDT. This indicates that the (5 ,  4)5 state 
mixes with the (N, k )  = (4 ,3)  Rydberg series and not with the (4, 1). (4 ,  - I )  or (4, -3) 
series. 

Furthermore, the lifetime of the states energetically close to the pseudoresonant jump 
is drastically enhanced. Although the width of the states affected does not vanish the fitted 
Fano profile has an approximate zero between the (4.3), ,  and (4,3)12 states (Burgers and 
Wintgen 1994). Such a behaviour can only be expected if there is effectively only one open 
channel for the perturbed series to decay to, though in principle there should be six. The data 
hence confirm the propensity rules for the non-radiative decay (Rost and Briggs 1990, 1991) 

A N = - I  Ak = -1. (15) 
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Figure 2. Quantum defect (real pm) for the (4. k) Rydberg 
location of the perturber is marked by a small solid line (a). 

series (singlet symmetry). The 

Figure 3. Real and imaginary pan of the quantum defect of the (4, 3) Rydberg series (singlet 
symmetry). The solid line here represents a 3Qm fit to our data (see text). The location of the 
perturber is marked by the small solid line (a). 

Another confirmation of the propensity rules (15) is provided by the comparison of 
the location ER and width r of the perturber obtained by the fit of the 3QDT functions to 
the complex eigenvalue obtained by the ‘exact’ calculations. Whereas the fit to the 3QDT 
gives the partial width of the perturber for the decay into the Rydberg series, the complex 
rotation calculation gives its total decay width for non-radiative decay. Both widths are 
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Table 4. Energies far the (4, k) Rydberg series (in au) 

state ’ S  3s 
N k n  -Re E -Im E -Re E -Im E 

4 3 4 0.200989572 0.000969178 - - 
5 0.165734021 0.000605047 0.16930663S , 0.000021006 
6 0,150824382 0.000320293 0.152 122029 0.000016799 
7 0.142602474 0.000 169806 0.143 175987 0.000011 381 
8 0.137685346 0.000092512 0.137961 324 0.000007642 
9 0.134551 108 0.000049711 0.134679532 0.000005256 
IO 0.132451 935 0.000023393 0.132490651 0.000003725 
11 0,130999 124 0.000005799 0.130962374 0.000002717 
12 0,129993447 0.000002704 0,129855236 0.0000020~5 
13 0,129322969 0.000033799 0.129028519 0.000001 559 
14 0,128776594 0.000054043 0.128395405 O.QOOOO1 219 
15 0.128262 189 0.000039756 0.127900092 0.000000970 
16 0.12781573 0.00002743 0.127 50544 0.00000079 
17 0.1’274461 0.0000200 0.127 I860 O.OOOW06 
18 0.127 1415 0.0000152 

1 4 0.187834626 0.002458380 - - 
5 0.156904051 0.001 377256 0.161 480663 0.000051980 
6 0,145397764 0.000808943 0.147 168813 0.000037 116 
7 0.139 189490 0.000475268 0,139998046 0.000020 176 
8 0. I35 437398 0.000289 889 0.135 8574 I3 0.00001 5 013 
9 0. I32 996200 0.000 I83 914 0.133 7.30 435 0.000010 505 

10 0.131319807 0.000120624 0.131456986 0.000007547 
I I 0.130 120051 0,000080068 0.130202295 0.000005577 
12 0.129224756 0.000057660 0.129281 536 0.000004228 
13 0.128551 852 0.000041 001 0.128585657 0.000003276 
14 0.128025335 0.000027559 0,128046838 0.000002588 
15 0,127605478 0.000019886 O.IZ7621073 0.000002078 
16 0. I27267 459 0.000015312 0. I27 278774 0.00000l694 
17 0,1269912 0.0000123 0.1269993 0.0000014 

the same within the accuracy of the fit: the fitted value is E = -0,12924 - iO.00063, the 
numerically converged value is E = -0.12943 - iO.00069. From this we conclude that 
the decay is effectively only according to the propensity rules (15). 

The energies of the (4, k) series are listed in table 4 for both symmetries. Note that the 
(4,3) triplet series is still unperturbed. Also, the width for the series with the minimum 
k = - ( N  - 1) = -3 is i n  both cases considerably smaller than for the other series 
belonging to the same symmetry. This is a general trend (see also the (3, -2) series in 
table 3) and can also be understood in terms of the propensity rules: The favoured decay 
channel ( N  - 1, k - I )  does not exist for these states which must hence decay with a 
smaller rate to less favourite channels. This effect will become even more pronounced with 
increasing N. Note that these states are just the ‘frozen planet’ states described classically 
and semiclassically in (Richter and Wintgen 1991, Richter et al 1992). 

Figure 4 shows the real part of the quantum defect of the Rydberg series converging to 
the N = 5 threshold of the He+ ion. The lowest state of the (5,4) series does not really 
exist as an isolated state. The quantum defect of the perturber is shown instead (indicated by 
the open symbol lying below the N = 4 threshold which is indicated by the dotted line). In 
figure 4 we see already three pseudoresonant jumps in the lower lying series with k = 4.2,O 
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sb le  ‘ S  3s 
N k n  -Re E -1m E -Re E -Im E 

4 - I  4 0.168261328 0.001086186 - - 
5 0.147266965 0.000416449 0.151 176420 0.000022408 
6 0. I39 840 342 0.000239 815 0.141 691 356 0.000014696 
I 0.135728512 0.000160253 0.136787119 0.000009622 
8 0.133 141 846 0.000111 361 0.133811711 0.000006493 
9 0.131 396547 0.000080331 0.131 849211 O.WOOO4540 

10 0,130 160039 O.WO059877 0.130480976 0.000003283 
11 0.129751 251 0.000046022 0,129487225 0.000002444 
12 0.128562811 0.000036493 0,128742039 0.000001 867 
13 0.128 029 833 0.000031 3 1 I 0.128 I68 616 0.000 001 457 
14 0,127610012 0.000025737 0.127117801 0.000001 158 
15 0.127271 404 0.000020669 0.127356918 0.000000935 
16 0.1269944 0.0000166 0.12706350 0.00000077 

-3 4 0.141064156 0.000011739 - - 
5 0.137088229 0.000002490 0.140088484 O.OWW4409 
6 0,134228598 0.000002711 0,135975513 0,000001752 
7 0.132212660 0,000003293 0.133329246 0,000001340 
8 0.130772717 0.000003289 0.131533131 0,000001087 
9 0. I29 117 890 0.000 002 986 0. I30 261 370 0.000 000886 

10 0.128925097 0,000002597 0.129327395 0.000000724 

12 0,127836684 0.00OOOI 881 0.128015620 0.000000489 
13 0.127454353 0.000001 595 0.127644351 0.000000407 
14 0.127 144218 0.000001356 0,127297839 0.000000341 
15 0.12688926 0.000001 18 0,12701524 0.00000029 

1 1  0.128315304 0 . ~ 0 0 0 2 2 ~ 8  0.1286zii31 0.000000593 

where the jump in the (N, k )  = (5,O) series takes place very close to the N = 6 threshold 
and is not completely visible in figure 4. The jumps stem from the three different perturbers 
of the N = 6 series with k = 5, 3, 1 ,  respectively. Although each perturber (indicated as 
a vertical line in figure 4) is energetically close to states from different series ( 5 ,  k )  the 
perturber (6, k)6 influences only states from the (5 ,  k - I), series. Hence the perturbation 
scheme is regular obeying the propensity rules (15) for autoionizing decay. Here again the 
location and width of the several perturbers can be obtained either by fitting (13) and (14) 
to the data or by a direct calculation. Again, the results agree within the accuracy. 

An adiabatic description for the three-body dynamics, in particular the molecular orbital 
(MO), allows for an alternative interpretation of the propensity rules (15). The major coupling 
scheme between adiabatic MO channels comes from avoided crossings which are caused by 
the saddle in the potential for fixed adiabatic separation of the electrons (Rost and Briggs 
1991). The MO Potentials are characterized uniquely by the spheroidal quantum numbers 
(n i ,  n, .  m). On the other hand the coupling mechanism through the saddle of the potential 
is not restricted to a MO adiabatic representation. It can also be seen from the widely used 
hyperspherical adiabatic representation for which the prolate spheroidal quantum numbers 
do not apply. If we denote an adiabatic channel more generally by Henick’s quantum 
numbers as INKT) t (Herrick 1983). then (15) is an expression for the dominant coupling 

t The relation between Henick’s and the MO quantum numbers is: T = lml, K = [nu/2] - n i .  N = 
n i t  \n,/21 t Jm/ t I where [XI denotes the integer value of x. 
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Figure 4. Quantum defect (real pan) for the ( 5 ,  k) Rydberg series (singlet symmetry). Note that 
the lowest slate of the (5.4) series is fhe perturber of the (4,)) series. it is therefore mum by 
an open circle. The locations of the perturben of the (5. t )  series are marked: a = (6. 5)6. b 
= (6. 316. c = (6. l ) 6 .  

between adiabatic channels and should read 

A N  = ~ - 1  A K = - - l .  (16) 
Hence, the existence of the propensity rule according to (15) is a strong indication that 

the Rydberg series shown in figures 2 and 4 can each be represented by a single adiabatic 
channel INkM') = INKT). A violation of the propensity rules (15) indicates from this 
perspective that the respective Rydberg series is no longer a pure adiabatic INKT) channel 
but a mixture of those: 1NA.M') = C , a i I N , K ; T , ) .  For S states, M' and the T, are zero. 
We will drop them in the following and write (N,k) for I N k  M' = 0). 

4.4. Few channel interferences (N=6, 7) 

Figure 5 shows the real part of the quantum defect for the Rydberg series converging to the 
N = 6 threshold of the Het ion (singlet symmetry). The lower lying (65) and ( 6 3 )  series 
are already twice perturbed, although only the beginning of the second perturbation of the 
(6 ,3)  series is sIightly visible in our data. The corresponding perturbers can be labelled as 
(7,6)7, (7,6)8, (7,4)7, and (7,4)8 respectively, where the last one can only be determined 
by a direct calculation in a 'detuned' basis (see section 3.2). The other three can also be 
fitted; the results again agree within their accuracy. On the other hand the two energetically 
highest series (6, -3) and (6, -5) display the normal behaviour of unperturbed Rydberg 
series. So far, the perturbation pattern is consistent with the propensity rules (15) and hence 
with pure adiabatic channels. 

However, in  the (6, I) and (6, - I )  series a new behaviour occurs. The quantum defect 
in the (6, 1) series increases by more than unity (by 1.2 roughly), whereas the quantum 
defect i n  the (6, -1) series increases by less than one (about 0 8 ,  giving a total 'jump' 
of two. A closer inspection of the (6, I )  series shows that the jump here actually consists 
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Figure 5. As in figure 5. but for fhe (6, k )  Rydberg series. The perturbers are: a = (7.6)7, b 
= (7,417. c = (7.2)7, d = (7. oh,  e = (7,6)8, f = (7.4)s. 

of two parts, a first one by unity and a smaller one. This first jump is located at the 
energy of the (7, 2)7 perturber. The second 'jump' coincides energetically with the location 
of the (7, 0)7 perturber that, according to (15), should only couple to the (6, -1) series. 
Obviously, the (7,0)7 perturber affects the (6. 1) and the (6, -1) Rydberg series, violating 
the propensity rules (15). 

This behaviour indicates in the context of our discussion in section 4.3 that the index 
k as a quantum number is no longer 'pure' for channels with k - 0. Apparently the 
pure K = + I  and K = -1 channels are mixed resulting in the observed (6. 1) and 
(6, -1) Rydberg series. Through this admixture the (7,0)7 perturber which according to 
the propensity rules (16) should couple to the K = - I  adiabatic channel affects both, the 
(6, 1) and (6, -1 )  series. Hence, the perturbation can be viewed as a sensitive tool probing 
the components of effective Rydberg series in terms of their pure K components. 

Note that the perturbation pattern caused by the (7, 0)7 perturber can still be described 
by a quantum defect theory, adding another Rydberg series and continuum to which the 
perturber is coupled. A model calculation of the corresponding SQDT reveals a similar 
behaviour as the real atom if the coupling of the perturber to the two Rydberg series is of 
about the same magnitude. 

We do not discuss in detail the Rydberg series (7, k) which show qualitatively a similar 
behaviour as the (6, k) series. 

4.5. Breakdown of the propensity rules (N 2 8) 
Figure 6 shows the real part of the quantum defect belonging to the (8, k) Rydberg series 
of singlet symmetry. The N = 7 threshold is denoted by a dotted line. The open symbols 
below that threshold represent the perturbers. 

The two lowest lying series ((8,7) and (8,s)) are again perturbed Rydberg series that 
can be described by means of a FQDT. Note that the fourth perturbation of the (8,7) series 
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Figure 6. As in figurr 5. but for Ihe (8. k) Rydberg series 

is very narrow. The reason is that the (9,8) series perturbing it is itself already perturbed 
by the lowest state of the (10,9) series, namely (10,9)10. The propensity rules (15) are 
fulfilled for these series which hence can be regarded as pure K series. This is also true 
for the two energetically highest series (8, -5) and (8, -7) which display the behaviour of 
unperturbed Rydberg series. 

The series in between (k = 3, . . . , -3) show rather irregular behaviour. Obviously these 
are no pure K channels. Hence, the calculated (8. k )  Rydberg series as shown in figure 6 
are mixtures of those pure K channels as discussed above. For these series also the first 
states occur whose reduced width ( Imp)  is larger than one, which means that their width 
is Iwger than their mutual spacing. These are the (8, state ( I m p  = 1.50751) and the 
(8, -1)!4 state ( I m p  = 1.27883). 

The behaviour of the (9, k )  and (IO, k )  series (shown in figure 7) is similar. For the 
energetically lowest series (larger k )  we find Rydberg series perturbed according to (15), 
which can be described by an FQDT. For the energetically highest series (lower k )  we find, 
as before, the typical behaviour of unperturbed series. 

In between, however, we have the region where the series obviously consist of mixtures 
of pure K channels resulting in a rather complicated perturbation scheme. Here a FQDT 
analysis from our data is no longer possible. This is demonstrated by looking at the 
expectation value of the cosine of the inter-electronic angle, (CO&). It is connected with the 
quantum number K through (cos8) -+ -K/N as n -+ CO (see also (11)). We have plotted 
(cos@) against ukn for the (IO, k )  series in figure 8. Obviously the pattern is rather irregular, 
which also stresses that the actual states consist of complicated mixtures in terms of the 
pure K channels. The region for which this admixtures occur is located near k c 0 and 
becomes the wider, the larger N. This can be understood in terms of the adiabatic approach 
(Rost and Briggs 1991) since the separation of the adiabatic potentials for different k goes 
with k / N  leading to a greater possibility for the channels to couple. Assigning a k index 
to the calculated resonances in this region obviously becomes rather arbitrary. Hence it 
is problematic to speak of k as a quantum number for these states. Note that the k c 0 
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Fimre 7. As in figure 5,  but for the (10. k) Rydkrg series. 
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Figure 8. Expectation values for cas B versus the effective quantum number Rev for the (IO, k )  
Rydberg series (singlet symmetry). The lines comect states which belong to the same k series. 
Here the k index is assigned by the requirement that the quantum defect should not cross. An 
assignment of k according to equation (I 1) is not possible since the asymptOtiC limit n >> N of 
the series has not been reached. It  illuseares that the affected states are admixtures of pure K 
states even for n as high as 2 N .  

states are just those states whose configuration is far from being collinear and hence do not 
approach one of the classical limits discussed above. This might explain why they do not 
behave in a regular fashion for increasing N. 

4.6. Triplet states 

In general the spectrum for the triplet states ( A  = -1) looks quite similar to that of 
singlet symmetry ( A  = + I ) .  The qualitative difference is the additional node on the saddle 
(rl = rz )  for triplet symmetry. This leads to wider avoided crossings in the corresponding 
adiabatic potentials than in the singlet case and hence the probabilities for auto-ionization 
and for K mixing are reduced (Rost and Briggs 1991). Furthermore, the different ( A  = -1) 
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adiabatic channels start to interact at higher quantum numbers than the (A = + I )  channels. 
As a consequence the first perturbed triplet series are the (6,5), (6. 3),  and (6, 1) series 
while the first perturbed singlet series occurs with the (4.3) series already in the N = 4 
manifold 

Figure 9. Quantum defect (real pm) for the (IO. k) Rydberg series. Open symbols mark the 
perturbers of the underlying series. 

Figure 9 shows the real part of the quantum defect for the (IO, k )  triplet Rydberg series. 
Here, violations of the propensity rules (15) occur for the (10, -3) and (10, -5) Rydberg 
series indicating that these are also mixtures of pure K adiabatic channels. However, the 
pattern looks much simpler than for the (IO, k )  singlet series, This confirms that the mixing 
of K channels for states with triplet symmetry is much weaker than in the singlet case. 

4.7. Propensiry rules versus selection rules 

The propensiv rules (15) are not selection rules. This can be demonstrated by a closer 
inspection of our data even for the case where the propensity rules are fulfilled to a very 
good approximation, namely for the very lowest case of a perturbed Rydberg series. 

In figure 10 we again show the quantum defect of the singlet (4, k) Rydberg series, but 
now we subtract multiples of unity from the quantum defect to display possible degeneracies. 
The region where the quantum defects cross is enlarged in the upper right part of figure 10. 
The (4, 1) series shows little deviation from the regular behaviour close to the location of 
the perturber of the (4,3) series. Though this perturbation is very weak it indicates a small 
coupling of the (5,4)5 perturber to the (4, 1) series. This is, however, a marginal effect. 
The non-radiant decay is still mainly according to the propensity rules (15). 

5. Summary and Conclusion 

To sum up we have calculated more than thousand doubly excited states for the He atom 
for both singlet and triplet symmetry of the wavefunction using the full non-relativistic 
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Figure 10. Quantum defects of the (4. k) Rydberg series modulo I (see text). The upper right 
figure is an enlargement of the r e ~ o n  maked by the rectangle. 

Hamiltonian. 
We have used the complex rotation technique to calculate resonance energies and widths 

of these states in an almost complete basis set of Sturmian type functions using perimetric 
coordinates as introduced by Coolidge and James (1937). 

Our highly accurate data for the spectrum of helium confirm the known propensity 
rules (15) generally for moderate excitation. For very high excitations of the inner electron, 
however, the propensity rules are only valid for near-to-collinear configurations (minimum 
and maximum k) .  For series with maximum k values the spectrum can be described 
by means of a few-channel quantum defect theory (FQDT). This is the region where a 
semiclassical description using periodic orbit theory and cycle expansions (Richter et a1 
1992, Wintgen et al 1994) or adiabatic quantum ansatze (Rost and Briggs 1990, 1991, 
Sadeghpour 1991) are also valid. 

For minimum k ,  the regular behaviour of unperturbed Rydberg series is observed. In 
this region a semiclassical EBK quantization (Richter and Wintgen 1991) is also possible. 

For very hhighly doubly excited states far from a collinear configuration (k  close to O), 
the situation becomes much more complicated. The spectrum can no longer be described by 
a simple FQDT and the index k no longer has the meaning of a quantum number. Note that 
this region far from a collinear configuration is also inaccessible for both the semiclassical 
and the adiabatic approaches. 

However, in the transition region of still identifiable Rydberg series we have shown 
how one can determine the pure adiabatic K-components of a perturbed series by linking 
the perturber states with the help of (16) to the K-components of these states. 
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Appendix 1. Transformation to perimetric coordinates 

The transformation of the Hamiltonian ( I )  into perimetric coordinates (4) is done in two 
steps. In a first step the Cartesian coordinates are transformed into the three distances q, 



3182 A Burgers et a1 

r2, and rI2 (Hylleraas 1929) and the three Euler angles +, 8. q5. Neither the kinetic energy 
nor the potentials depend on the angles, so they only contribute to the volume element by a 
factor of 8z. The three distances I , ,  r2, and 1 1 2  are then in a second ste lransformed to the 
perimetric coordinates, giving the Hamiltonian in the form (4). The Ptj 07 are (for M --f a?): 

P;:) = 2 ( x 5  + x y  + x z z  + XZZ) 

P:p .. = 2(2xZy + 2xy2 + y*z + yzz + 2 x y z )  

P:;" = 2(2xZz + 2 r z 2  + y2z + yzz + Z x y z )  
P X Y  0) - - P(3) y x  = 2 x y ( x  + y) 

P;:) = P;;) = Zxzfx + 2) 
pc3 = PO) = 0, 

Y Z  ZY 
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