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Abstract. We calculate and analyse S-wave resonances of helium up to an ¢nergy of —0.02 au
applying the complex rotation technique, Rydberg series converging to the hydrogenic thresholds
of the He* ion are analysed by quantum defact theory. For moderately excited inner electrons the
series converging to different thresholds begin to overlap resulting in perturbed Rydberg series.
We find that approximate quantum numbers as well as propensity rules governing the decay
of the resonances and the perturbation scheme of the Rydberg series prevail. With increasing
excitation of the inner electron however, only series whose states tend to extreme interelectronic
angles (cosé) = =1 remain regular.

1. Introduction

Since the first experiment by Madden and Codling (1963) doubly excited states of helium
have attracted the interest of theoreticians and experimentalists. Recent experiments study
with high resolution the photoabsorption of helium to doubly excited states (Domke et al
1991, 1992, 1995). Numerous theoretical investigations have improved our understanding
of the electron—electron correlation which prevents an analytical solution for the helium
atom. The classification of isolated resonances according to approximate quantum numbers
is now well established and has emerged from different approaches (Herrick 1983, Lin
1986, Feagin and Briggs 1986). The classification is accompanied by propensity rules
which govern the autoionization pattern of the resonances (Rost and Briggs 1990). Hence
the low and intermediate lying region appears to be well understood and highly accurate ab
initio calculations are available.

Various methods have been applied to obtain the resonance parameters theoretically.
Bathia and Temkin (1975, 1984) used a Feshbach projection formalism whereas a close
coupling approximation was employed by Oza (1986). The multi-configurational Hartree—
Fock method was extended to autcionizing states by Froese-Fischer and Indrees (1990),
and Tang et al (1992) used a hyperspherical close coupling method based on a numerical
basis set. Miiller et al (1994) applied the stabilization method of Mandelshtam ez al (1993)
to calculate 'S¢ states of helium. The complex rotation technique, which is also used in
this work, makes it possible to use bound state methods to calculate autoionizing states.
This method was extensively used by Ho and co-workers (1979, 1980, 1981, 1983, 1986)
with a Hylleraas-type basis set. Lindroth (1994} applied the complex rotation method with
a finite numerical basis set built on solations of the discretized one-particle Hamiltonian
(Salomonson and Oster 1989).

More recently interest has shifted to very high excitation and to the guestion whether
the approximate quantum numbers and propensity rules prevail up to the fragmentation
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threshold £ = 0 of helium. For this purpose the present work supplies very accurate
numerical data {for high excitation of both eiectrons with principal quantum numbers of the
inner (V) and outer (n) electron up ton 2 N = 10.

The accuracy and the large amount of our data allows us to analyse the spectrum of
the § states of helium up to energies where series converging to different thresholds of the
He™ ion strongly overlap. Using a quantum defect analysis (Seaton 1983, Wintgen and
Friedrich 1987) we are able to identify deviations from the regular Rydberg behaviour very
clearly. For moderate excitation, autoionization transitions obey the propensity rules derived
by Rost and Briggs (1990, 1991) in the molecular orbital description of the He atom. We
find that these propensity rules break down for very highly doubly excited states far from
the quasi-classical regime,

Surprisingly, however, this does not imply a change in the autoionization mechanism on
which the propensity rules are based. On the contrary this mechanism together with the so
called perturber states (to be defined later) can be used to show that most Rydberg series are
strongly mixed with respect to the channels defined by the approximate quantum numbers,
Since the propensity rules connect just these ‘pure’ chanpels, their violation for highly
excited Rydberg series indicates that these states are no longer built of pure channels but
of mixtures of those. We will discuss the evolution of the channel mixing as a function of
excitation energy in detail. We will also relate our results to recent semiclassical descriptions
of the two—electron atom (Ezra et al 1991, Richter and Wintgen 1991, Richter et af 1992,
Miiller et af 1992).

The paper is organized as follows. In section 2 we present the Hamiltonian of the
problem in the coordinates we use and discuss our method of solution. As an example
for the accuracy we achieve we present some energies of singly excited states. Section 3
deals with the tools used to classify and analyse doubly excited resonances. Approximate
quantum numbers (for the classification) and some aspects of quantum defect theory (for
the analysis) are briefly discussed. In section 4 we present our results for the resonance
spectrum of helium in detail with an emphasis on singlet states. Some examples for triplet
Rydberg series are also reported to illustrate the qualitative similarity between singlet and
triplet series. Section 5 contains the summary and conclusion.

2. Hamiltonian in perimetric coordinates and method of solution

2.1. Analytic matrix representation of the Hamiltonian

The non-relativistic Hamiltonian for the relative motion of a two-electran atom or ion with
nuclear charge Z reads (atomic units are used throughout the paper)

He-i_Yi_ z z, 1 M

Here, ¥V, and V5 are the momentum operators in position representation, r| and r; the
distances of the electrons from the nucleus, and rj3 = |[r; — 1| is the inter-electronic
distance. The mass of the nucleus is assumed to be infinite.

The wavefunction of the two-electron system is conveniently written as (Breit 1930,
Wintgen and Delande 1993, Pont and Shakeshaft 1995)

Yypi(r,m) = Z D (W, 6, 9y ur(r1, 12 112) s 2)
—LEMSL

where the Df,,,. (.6, ¢) are the rigid-top wavefunctions describing the rotation from a
iaboratory frame to a body fixed frame with the Euler angles ¥, 8, ¢. In this paper we
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restrict ourselves to L = 0 states for which the dynamics in the plane spanned by the
three particles does not depend on its orientation in space. Hence we can restrict our
considerations to this plane described by three variables only. Formally this corresponds to
DY, = constant in (2).

The full solution of the corresponding Schiddinger equation remains nevertheless a
nontrivial problem. We use a transformation of the Schrodinger equation to perimetric
coordinates as defined by Coolidge and James (1937). Even though this coordinate set
has already been used for numerical ground state calculations as early as 1958 (Pekeris),
its power and simplicity for the calculation of highly doubly excited states was not fully
recognized in the past. The perimetric coordinates have the great advantage that they
produce, together with an appropriately chosen basis set, 2 matrix representation of the
hamiltonian which is sparse and of banded structure and therefore allows for an efficient
diagonalization. The perimetric coordinates are defined as follows:

X= ri+rn-—-ra
y= n—rn+m x¥.z220. 3
g==ri+rn+m
In these coordinates the Hamiltontan (1) reads
He Y a PP (x.y.2) .2 22, 2
x+yx+z2)v+2) x+y x+z y+z

Li=XLY.2

4)

The Pf) in (4) are polynomials of degree 3 of the variables x, y, z and can be found in the
appendix. (The dagger with the partial derivative in (4) means that this operator acts to the
left.)

We expand the wavefunction for each degree of freedom in 2 complete Sturmian basis set
and {anti-) symmetrize the product functions (the exchange of the two electrons corresponds
to an exchange of the y and z coordinates). An element of this basis then reads

@ (5, ¥, 2) = dalax) [dn(By)be(y2) £ iy Y)em(B2)] (5)
with ¢, (1) defined as
$n(u) = Lo(uye™/* (6)

where the L,(u) are the usual Laguerre polynomials. The volume element

8 2
v = 3—”2(): + )+ 2 + 2 dx, dy, dz 7

cancels the singularities in the Hamiltonian (4) if matrix elements are calculated.
Orthonormalization and recursion relations of the Laguerre polynomials guarantee that most
of the matrix elements between basis states vanish, This leads to the sparse and (under
appropriate order of the basis elements) banded structure of the matrix representation of the
Hamiltonian. The calculation of the non-vanishing matrix elements is simple and can be
done algebraically using fast and accurate integer arithmetic.

The eigenvalues of the matrix do not depend on the parameters o, B, ¥ in (5) if a
complete basis is used, In numerical calculations, however, only a finite basis can be
implemented on the computer because of limited storage capacities. We use truncated basis
sets up to a maximum node number w = n + m 4 k = 64, corresponding to 24 497 basis
states. The convergence is checked with respect to increasing basis size. This convergence,
however, is sensitive to the choice of our scaling parameters «, 8, ¥. We rewrite them
as o = af and ¥ = ¢B and choose a and ¢ to be real. For states where both electrons
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are approximately symmetrically excited, ¢ = 1 is the natural choice. This leads to a
further reduction of the bandwidth of the matrix since there are even more matrix elements
exactly vanishing due to the orthonormalization relations of the Laguerre polynomials,
For asymmetrically excited states, ¢ should be approximately equal to the quotient of the
principal hydrogenic quantum numbers of the two electrons in the independent-electron limit
to obtain a rapid convergence. However, in this case the bandwidth is significantly larger
than in the ¢ == 1 case, which not only increases the computation time but also lowers the
maximum basis size that can be implemented under the same storage capacities {w = 42
instead of 64). Hence we have used ¢ 3 1 only for moderately excited states. A good choice
for a is @ = 1+ ¢ which gives the correct asymptotic behaviour in the independent-electron
limit.
With these parameters the Schrodinger equation (4} has the matrix form
(BT + gV — ENyw =0, (8)

The matrices 7, V. N of the kinetic energy T, the potential energy V and the unit operator
N are real symmetric and depend on a and ¢, but not on S.

For real 8 the matrix equation (8) represents a real variational problem leading to real
eigenenergies of the hamiltonian. Hence, with real B the real energies of singly excited
states can be calculated. Resonances, however, are described by complex energies,

Es = Er —il/2. (9)

To calculate those complex energies, we apply the complex rotation technique (Reinhardt
1982, Ho 1983). 1t is implemented by using a complex variational parameter 8 in (8),

B = be”? (10)

with real b, ¢. A typical choice for & is b = 1/N or smaller (¥ is the principal quantum
number of the He™ ion to which the Rydberg series converges).

By solving (8) we get a large number of converged complex eigenvalues that represent
the doubly excited resonances.

2.2. Numerical computation of resonances

The actual computation of the eigenvaltues of (8) is performead in two steps. In a first step
a certain number of eigenvalues is calculated around a (complex) energy by using a fast
Lanczos algorithm (Delande er al 1991). In this way we get 2 number of candidates with
one program call. The eigenvalues are checked for convergence by systematically increasing
the basis size. Note that at this stage the parameter 8 is not optimized but remains the same
for all eigenvalues calculated at the same time.

In a second step the complex matrix equation (8) is solved using an inverse iteration
method on an LDLT decomposition of the matrix (8) with the results from step one as
starting values. This program also calculates some expectation values, using the expansion
coefficients of the eigenstate in the basis set. For each state we use an iterative algorithm to
optimize the complex scaling parameter g such that the complex energy becomes stationary,
dE/3f = 0. The wavefunction then fulfils the complex virial theorem —2{T) = (V} =2E
(Ho 1983). Here we also check the convergence of the complex eigenvalues with respect
to the basis size and the partial derivative dE /8a, which should also vanish for an exact
eigenfunction. It turns out that most of the (well converged) eigenvalues obtained by
the Lanczos algorithm fulfil the specified accuracy after only a few (sometimes only one)
iterations so that in most cases the results of our first step are good enough if one is only
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interested in the resonance energies. This can be interpreted as a signature of a weak
dependence of the energy on 8 for large basis sets.

2.3. Accuracy

To demonstrate the accuracy of this method we list here our results for the energies of
singlet and triplet singly excited states of the He atom (table 1). All converged digits are
shown. The numbers in parentheses give the maximum uncertainty in the last digit(s). For
comparison, we show (in italics) the hitherto most accurate data we are aware of (Drake
1988).

The energies for doubly excited states can be calculated as accurately as for moderately
singly excited states. In the following we will present our resonance energies with an
accuracy of 107 au although most of the data are better converged. In the worst cases the
uncertainty is not larger than 2 in the last digit quoted.

Table 1. Energies of the singly excited Rydberg series labeled by independent electron guantum
numbers. The numbers in italics are the results obtained by Drake (1988) using a set of Hylleraas
type basis functions. The numbers in parentheses denote the accuracy in the lfast digit(s).

state ~£('8) —E(8)
Isls  2.903724 377034 119 589(5) -
2,903 724377034 15(28)
Es2s  2.145974 046 054 412(3) 2.175 229 378 236 791 300(8)
2.145 974046054 28(11) 2175229378236 791 0(3)
Is3s  2.06127198974087(2) 2,068 689 067 472 454(6)

Isds  2.03338671688(17) 2036512083008 1(3)

1855 2.021 176851 15(6) 2022618872 30(1)
1s6s  2.014563097 4(6) 2.01537745299(1)
1s7s  2.010625 775 3(4) 2011129919511
1s8s 2008093619 1{5) 2008427 121 99(16)
1595 2006369551 1{10) 2.00660151645(21)
1510 2.005 142987 4(27) 2.005310794 1(8)

Islls  2.004239408(4) 2,004 310794(4)

Is12s  2.003554611(7) 2.003650618(8)
1s13s  2,003023271(8) 2.003098 445(16)
Islds  2.002602732(10} 2.002662 66(4)

1s15s  2.002264 191(11)
Islés 2,001 987 2(3)

2.00231267(8)

3. Representation of the resonance parameters

As mentioned in the introduction the goal of this paper is twofold, firstly to provide
numerical data of high quality for two-glectron resonances over a wide range of energy, and
secondly to examine the current understanding of two-electron resonances in terms of their
classification by approximate quantum numbers (Herrick 1983, Lin 1986, Feagin and Briggs
1988) and in terms of the predicted propensity rules for autoionization (Rost and Briggs
1990, 1991). We will also comment on the role of classical orbits for the understanding
of two-electron resonances in particular for high excitations (Ezra et a/ 1991, Miiller ez af
1992, Wintgen et al 1994).
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However, for the presentation of the enormous data material in some ordered fashion
we need a ‘neutral’ tool which does not anticipate the possible classification according to
the aforementioned schemes. Our principal tool will be single- and multi-channel quantum
defect theory. At high energies an ordering according to the quantum defects as we derive
themn from our data is not unique and we need an additional criterion to determine to which
subseries the resonance should belong. In these cases we use the expectation value {cosB}
of the inter-electronic angle as a guideline.

3.1, Labelling and quantum numbers

The complex eigenvalues obtained by the method described above can be characterized
by three indices, £ = Eyyn. The first index N denotes the principal quantum number of
the electron in the remaining He™ ion once the outer electron is ionized. For successively
higher excitation of the outer eleciron with principal quantum number # the corresponding
Rydberg series converge to the threshold Ey = —Z%/2N? in the limit n — oo. There are
N different Rydberg series of singlet states converging to each threshold because there are
N different possibilities to couple the single particle angular momenta to L = 0. Note,
however, that those single particle angular momenta are no longer good quantum numbers
as in the independent-electron picture because of the strong electron—electron correlation.

Each of these Rydberg series converging to the same threshold is labelled by the
index & which asymptotically (n — c©0) determines the parabolic quantum numbers of
the Stark—type state in which the inner electron resides (Rost and Briggs 1991}, The index
kok=—-N+1-N+3,...,N -3 N —1,is therefore related to the expectation value of
cosé, where 4 is the angle between the two electron position vectors r; and ry

2 k
(COS > n:;: —ﬁ- H (11)

‘We see from (11) that for extremely high excitation N -+ oo of the inner electron we
get two collinear configurations with minimum angle {(cos8} — (N — 1)/N = 41 which
corresponds to a configuration with both electrons on the same side of the nucleus (8 = 0°,
the ‘frozen planet states’, Richter ez af (1992)) and {cos8) — —(N —1)/N = —1 where the
electrons are localized on different sides of the nucleus (8 & 1807, an ‘asymmetric stretch’,
Rost et al (1991)). These two collinear configurations can be represented classically by
characteristic periodic orbits which surprisingly are stable for the & 2 0° case and moderately
unstable for the 8 ~ 180° case (Ezra et a/ 1991, Richter and Wintgen 1991).

In what follows we use the nomenclature (N, k), to identify a single state and (N, k) to
specify a whole series. However, this classification is only unique in the limit n — oo where
perturbation theory can be applied and the He*-electron interaction can be diagonalized in a
stark basis of the He* ion (Gailitis and Damburg 1963). It has been a puzzle for a fong time
that the asymptotic (n — 00) classification holds also for states where both electrons are
equally excited (# = N). This was first realized by Herrick in a group theoretical approach
(Herrick 1983). His set of quantum numbers consists of (N, K,T,n) where (N, K ,n)
corresponds to our labels (N, &k, n) and T is the projection of the total angular momentum
on the inter-electronic axis (related to M’ in our nomenclature, see (2)). Of course for L = 0
we have T'= M’ = 0. To specify the character of the electron exchange symmetry (Pauli
principle) one needs a fifth quantum number which is according to Lin (1986) commonly
referred to as A = &1 (Herrick himself called it v}. In the case of L = 0 states 4 = +1
corresponds to 'S states and A = —1 to *S states. For the relation to other classification
schemes see e.g. Rost and Briggs (1991).
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3.2, Quantum defects

To the extent to which the separation of the resonances into series holds, the {complex)
energies can be conveniently parameterized by the ansatz

A (Z — 1)?
N 202 N T 2~ p)?

where v, is an effective quantum number for the outer electron and gy, is its quantum
defect, According to this ansatz the total energy of the system consists of the energy of the
inner (outer) electron in the field of the unshielded (shielded) nucleus only; all discrepancies
from this simple picture are collectively described by the py,. Note that since the Enga
are complex for doubly excited states, v, and p,, are also complex. The real part of the
quantum defect determines the energy shift (in units of the nodal number #) whereas the
imaginary part gives the rescaled width v, .

The discrete points i, lie on a continuous curve w(E). For unperturbed Rydberg series
the quantum defect is a slowly varying function of the energy (Seaton 1983, Wintgen and
Friedrich 1987). Already for moderate excitation of the inner electron, however, Rydberg
series converging to different thresholds of the He't ion begin to overlap leading to a
perturbation of the Rydberg series (Biirgers and Wintgen 1994). This can be described within
a three-channel quantum defect theory (3Q0DT) where the first channel contains one state (the
5o called perturber), the second one the unperturbed Rydberg series under consideration,
and the third channel is open (Wintgen and Friedrich 1987). The real and imaginary part
of the quantum defect is then parameterized as follows:

(12)

Enpn =

Re u(E) = i(E) — ;I;arctan G) (13)

(g + €)*

1+e2’
where € = (E — Eg)/(I'/2) measures the energy with respect to the location Eg of the
perturber in units of its half width I'/2. The quantities fi(E) and ¥(E) are slowly varying
backgrounds of the quantum defect (real part} and the reduced width (imaginary part), %
is the amplitude of the Fano—type modulation in (14) (Fano 1961, Wintgen and Friedrich
1587).

The perturbing state itself does not appear as an isolated state but becomes an additional
member of the perturbed Rydberg series. All the states in a confined region in the vicinity
of the perturber (and also the perturber itself) are shifted due to the interaction between the
corresponding channels. Far from the perturbed zone the series remains unperturbed, but
since one state has been added the numbering has changed and the quantum defect increases
by unity. The location and width of such a perturber can be determined by fitting (13) and
(14) to the resonance data.

This picture also holds for more than one perturber resulting in several arctan-shaped
‘jumps’ provided the perturbers do not interfere. If they do the picture becomes more
compiicated since the interaction of the perturbers significantly changes both the location
and the width of the pseudoresonant jumps {Friedrich 1991).

Since the pseudoresonant perturber is not a true resonant state it does not appear in
a converged numerical calculation as a single (complex) eigenvalue, This remains true
even for non-converged calculations as long as, in the truncated basis, the dense Rydberg
states forming the pseudocontinuum are well represented. However, if one deliberately
chooses the basis parameters ¢, ¢, 8 so that the Rydberg states are badly represented, the

Imu(E)=y(E)+r (14)



3170 A Biirgers et al

pseudocontinuum no longer ‘exists’ and the perturber itself occurs as an isolated state.
These states are only fairly well converged since enlarging the basis size also improves
the representation of the pseudocontinuum. The situation becomes better the closer the
perturber is to the corresponding ionization threshold. Hence by using a ‘detuned’ basis we
can calculate directly the location and width of the perturbers and compare them to those
values obtained by a 3QDT fit.

4. The spectrum of the He atom

4.1. Overview

We have calculated doubly excited states for the helium atom for both singler and triplet
symmetry up to N = 10, Qur calculations have been performed for infinite nuclear mass
{M — o). A non-perturbative inclusion of the finite nuclear mass, however, does not lead
to any difficulties and is already implemented in our computer code,
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Figure 1. Sketch of the helium doubly excited spectrum for L = 0. We only show the lowest
state for each threshold up to N = 10. The varlous states lie in the range indicated by the
rectangles. Both the singlet and the triplet system are showq,

Figure 1 schematically shows the spectrum of the He atom for both the singlet (left) and
the triplet (right) symmetry. Only the lowest state and the thresholds are shown, indicating
the energy range of the (resonant) states. For small N {N < 4 in the singletcase and N < 6
in the triplet case) the Rydberg series converging to different thresholds are energetically well
separated and the spectrum is rather simple. Hence the quantum defects of the respective
series should be slowly varying functions of the energy.

For larger N the Rydberg series converging to different thresholds begin to overlap
energetically and we find that the Rydberg series are perturbed. As already shown in
Biirgers and Wintgen (1994) the perturbation scheme for moderately excited series follows
the propensity rules derived by Rost and Briggs (1990, 1991) in a2 molecular orbital approach.
For very highly excited sates and & = 0, that is far from a collinear configuration, it is no
longer clear whether a k& index can still be assigned and the propensity rules break down.

In the following we will present our results in detail. For the sake of clarity we will
focus on the series with singlet symmetry. In general, singlet and triplet spectra show
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the same features. However, since triplet manifolds are energetically more separated than
singlet manifolds (see figure 1) the phenomena of perturbed Rydberg series start for higher
N in the tniplet case.

4.2. The unperturbed Rydberg series (N = 2,3)

Table 2. Erergies for the (2, k) Rydberg series (in au).

state s 38
N k n —-Re E —ImE —Re E -ImE
2 1 2 0777867636 0.002270653 —_ e
3 0589894682 0000681239 0.602577505 0.000003325
4 0544881618 0000246030 0.548840858 0.000001] 547
5 0526686857 0.000109335 0.528413972 0.000000771
6 0517641112 0000056795 0.518546375 0.000000428
7 0512513488 0000032992 0.513046496  0.000 000260
3 0.509332686 0.000020795 0.509672798  0.000000 [69
9  0.507225835 0000013936 0507456056 0000000116
10 0505759104 0000002790 0.505922151 0.000 600082

0621927254 0.000107818 — —

0.548085535 0.000037392 0.559746626  0.000000 130
0.527716640 0.000023101 0.53250534%9  0.000000072
0518104252 0.0000148%4  0.52054919%  0.000 000041
0512763242 0.000002570 0.514180356  0.000000025
0.509483569 0.000006918 0510378174  0.000000016
0.507324340  0.000004959  0.50792514%  0.000000011
0505827143  0.000003657 0.50625007%  0.000 000008
0504746388 0.000002766 0.505055341  0.000 000006

Lo B0 IR BT I o U B )

The data calculated for the (2, %) and (3, k) series are given in table 2 and table 3,
respectively. As can be seen, the triplet states lie a little below the corresponding singlets.
This is clear because the node in the triplet wavefunction at r; = r; = 0 reduces the
electron—electron repulsion. As a consequence, the widths of the triplet states are about two
orders of magnitude smaller than those of the corresponding singlet states. The character
of the wave function on the Wannier saddle ry = r; is essential for the decay mechanism
(Rost and Briggs 1990} and for the separation of different Rydberg series labeled by k (see
above).

In principle we could extend our calculation for these states both to obtain more accuracy
and for higher n values. However, at this stage relativistic effects should become significant
which have not been included yet. Moreover, high r states can be calculated with almost
the same accuracy by simply fitting the quantum defects as a function of #.

4.3. Simply perturbed Rydberg series (N = 4, 5): confirmation of the propensity rules

We now come to the region where the Rydberg series converging to different thresholds
of the He' ion begin to overlap energetically, This has a drastic effect on the complex
resonance energies which is obvious in the quantum defect pigy,.

Figure 2 shows the real part of the quantum defect for the four Rydberg series converging
to the N = 4 threshold. The quantum defects of the three energetically higher Rydberg
series (k = 1, —1, —3} are smooth functions of the energy. The quantum defect for the
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Table 3. Energies for the (3, k) Rydberg series (in au).

state Is g
N k n ~Re E —ImE —Re £ —ImE

3 0.353538536  0.001 504906 — C—_

4 0281072703 0000750733 0287277138  0.000014914
5 0255972114 0000350036 0.258133976 0.000009748
6 0243824049 0000179510 0.244807489  0.000005 801
7
8

0237147099 0000102160 0237672213 0.000003578

0233121363 0.000062881 0233433327 0.000002322
9 0230519146 0000041369 0230719088 0.000001578
10 0228744234 0.000028755 0.228880000  0.00000f 117
11 0227481269 0.0000207%4 0.2275778 0.0000008
12 0226551500 0.0000154592

0 3 0317457836  0.003 329920 — —
4 0263383312 0.00120935% 0.270283614 0.000023308
5 0246634603 0.000565481 0.249000418  0.000006 848
6 0238524104 (.000318437 0239696887  0.000004 600
7 0233898812 0.000196262 0.234569038 0.000003061
& 0231001524 Q000120185 0231421646 0.000002100
9 02290645386 0.000089418 0229345782 0.00000]1 491
10 0227705232 0.000064398 0227902914  0.000001 091
11 022671442 0.000047 89 0.226 859 0.000001
-2 3 0257371610 0.000010564 — —_
4 0244324739  0.000021400 0249964616  0.000006789
5 0237311202 0000017021 0240314494  0.000003 490
6 0233173689 0000012347 0234969582  0.000002042
7 0230531347 0.000008810 0231692116 0.000001300
8 0228741812 0.000006247 0.22953570]1  0.000000830
9 0227473958 0.000004545 0.228040873  0.000000623
10 022654299 0.000003 42 0.226 962 0.000 001

(N, k) = (4,3) Rydberg series, however, increases rather suddenly by unity around 0.04
au below the N = 4 threshold (which is located at —0.125 au). This pseudoresonant jump
is caused by the lowest doubly excited state of the N = 5 Rydberg series, namely the
(N,k)s = (5, 4)s state, which does not appear as an individual state but compresses the
dense spectrum of the (4, 3) Rydberg series (Biirgers and Wintgen 1994),

In figure 3 both the real and imaginary part of the quantum defect of the (4, 3} Rydberg
series are shown, The solid lines are fits to (13) and (14), respectively, where j(E) is fitted
by a polynomial of degree 2 and (E) by a polynomial of degree 1. The data are obviously
in excellent agreement with the predictions of the 3QDT. This indicates that the (5, 4)s state
mixes with the (N, k) = (4, 3) Rydberg series and not with the 4, 1}, (4, —1[) or (4, -3)
series.

Furthermore, the lifetime of the states energetically close to the pseudoresonant jump
is drastically enhanced. Although the width of the states affected does not vanish the fitted
Fano profile has an approximate zero between the (4, 3);; and (4, 3)2 states (Biirgers and
Wintgen 1994). Such a behaviour can only be expected if there is effectively only one open
channel for the perturbed series to decay to, though in principle there should be six. The data
hence confirm the propensity rules for the non-radiative decay (Rost and Briggs 1990, 1991)

AN = -1 Ak = —1. (13)
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Figure 2. Quantum defect (real part) for the (4, k) Rydberg series (singlet symmetry). The

location of the perturber is marked by a small solid line (a).
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Figure 3. Real and imaginary part of the quantum defect of the (4, 3) Rydberg series {(singlet
symmetry}). The solid line here represents a 3Q0T fit to our data (see text). The location of the

perturber is marked by the small solid tine (a).

Another confirmation of the propensity rules (15) is provided by the comparison of
the location Ep and width T' of the perturber obtained by the fit of the 3QDT functions to
the complex eigenvalue obtained by the ‘exact’ calculations. Whereas the fit to the 3QDT
gives the partial width of the perturber for the decay into the Rydberg series, the complex
rotation calculation gives its total decay width for non—radiative decay. Both widths are
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Table 4. Energies for the (4, k) Rydberg series (in au).

state Is 3g
N Ok n —Re E —ImE —ReE -ImE
4 3 0200989572  0.000969 178 — —

4
5 016573402) 0000605047 0169306635 | 0.00002]1006
6 0.150824382 0.000320293 0.152122029 0.000016799
7 0.142602474 0.000 169806 0.143175987 0.00001138)
8 0.137685346 0.000092512 0.13795)324  0.000007 642
9 (,134551108 0000049711 0.134679533  0.000005256
10 0.132451935 04000023393  0.132490651  0.000003725
[T 0130999124 0000005799 0.130962374 0000002717
12 0.129993447 0.000002704 0.129855235 0.000002035
13 0.129322969 0.006033799 (.129028519 0.000001 559
14 0.128776594 0.000054043 0.128395405  0.000001 219
I5  0.128262189 0.000039756 (.127900092 0.000000970
16 012781573 0.00002743 0.127 50544 0.00000G79
17 Q1274461 0.0000200 0.127 1860 0.0000006
18 01271415 0.0000152

4 0.187834626 0002458380 - -

5 0056904051 0001377256 0.161480663 0.00005!1%80

6 0145397764 0.000808943 0.147 168813  0.000037 116

7 0439182480 0000475268 0.139998046  0.000020 176

8 0135437358 Q.000289889 (Q.135857413 0.000015013

9 0.132996200 0.000183%14 0133230435 0.000016505
10 Q131319807 0.000120624 0.131456986  0.000007547
1l 013012005t 0.000080068 0.130202295 0.000005577
12 0129224756 0000057660 0.129281536  0.000004 228
13 0.128551852 0.000041001 0.128585657 0.000003276
14 0.128025335 0.000027559 0.128046838 0.000002588
15  0.027605478 0000019886 0.127621073  0.000002078
16 0127267459 0400015312 0.127278774  0.000001 694
17 01269912 0.0000123 0.1269993 0.000001 4

the same within the accuracy of the fit; the fitted value is £ = —0,129 24 — i0.000 63, the
numerically converged value is £ = —0.12943 —10.00069. From this we conclude that
the decay is effectively only according to the propensity rufes (15).

The energies of the {4, k) series are listed in table 4 for both symmetries. Note that the
{4, 3) triplet series is still unperturbed. Also, the width for the series with the minimum
k = —(N — 1) = —3 is in both cases considerably smaller than for the other series
belonging to the same symmetry. This is a general trend (see also the (3, —2) series in
table 3) and can also be undersicod in terms of the propensity rules: The favoured decay
channel (N — 1,k — 1) does not exist for these states which must hence decay with a
smaller rate to less favourite channels. This effect will become even more pronounced with
increasing N. Note that these states are just the ‘frozen planet’ states described classically
and semiclassically in (Richter and Wintgen 1991, Richter et al 1992).

Figure 4 shows the real part of the quantum defect of the Rydberg series converging to
the N = 3 threshold of the He™ ton. The lowest state of the (5, 4) series does not really
exist as an isolated state. The quantum defect of the perturber is shown instead (indicated by
the open symbol lying below the N = 4 threshold which is indicated by the dotted line). In
figure 4 we see already three pseudoresonant jumps in the lower lying sertes withk =4, 2,0
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Table 4. Continued.
state lg 3g
N k n —Re £ —ImE —Re & -ImE

4 0168261328 0.001086186 — -

5 047266965 0.000416449 0.151176420  (.000022408
6 0.139840342 0.00023%815 0.141691356 0.000014696
7 0.135728512 0000160253 0.136787119  0.000009622
& 0133141846 0000111361 0.133811711  0.000006493
9 0.131396547 0.000080331 0.131849211 0.000004 540
[0 0130150039 0.000059877 0.130480976 0.000003283
[l 0.129251251 0.000046022 0.129487225 (.000002444
12 0128562811 0.000036493 0.128742039  0.00000! 867
13 0.128025833 0.000031311 0.[28168616  0.000001 457
14 0127610012 0.000025737 0.127717807 (.000001 i58
15 0.127271404 0.00002066% 0127356918  0.000000935
16 0.1269944 0.0000166 0.1270635¢  0.00000077

=3 4 0.141064156 0.000011739 — —

5 (.13708822% 0.000002490 (.140088484  0.000 004409
6 0.134228598 0.00000271F 0.135975513  0.000001 752
7 0132212660 0.000003293 0.133329246  0.00000] 340
& 0130772717 0000003289 0.131533731 0.000001087
9 0129717890 0.000002986 0.130261 370  0.000 000886
10 0.128925097 0.000002597  0.129327395  0.000000724
1} 0128315304 0000002218 0.128621731  ¢.000000593
12 0127836684 0.00000188] 0Q.128075620 0.00000048%
13 0127454353 0.000001595 0.127644351  0.000000407
[4 0127144218 0.000001356 0.127297839 0.000000341
15  0.12688926 0.000001 I8 0.12701524 0.00000029

where the jump in the (N, %) = (5, 0) series takes place very close to the N = 6 threshold
and is not completely visible ir figure 4. The jumps stem from the three different perturbers
of the N = 6 series with k = 5, 3, 1, respectively. Although each perturber (indicated as
a vertical line in figure 4) is energetically close to states from different series (5, k) the
perturber (6, k)¢ influences only states from the (5.% — 1), series. Hence the pertarbation
scheme is regular obeying the propensity rules (15) for antoionizing decay. Here again the
location and width of the several perturbers can be obtained either by fitting (13) and (14)
to the data or by a direct calculation. Again, the results agree within the accuracy.

An adiabatic description for the three-body dynamics, in particular the molecular orbital
(MO), allows for an alternative interpretation of the propensity rules (15). The major coupling
scheme between adiabatic MO channels comes from avoided crossings which are caused by
the saddle in the potential for fixed adiabatic separation of the electrons (Rost and Briggs
1991). The MO Potentials are characterized uniquely by the spheroidal quantum numbers
(15, n,, m). On the other hand the coupling mechanism through the saddle of the potential
is not restricted to a MO adiabatic representation. It can also be seen from the widely used
hyperspherical adiabatic representation for which the prolate spheroidal quantum numbers
do not apply. If we denote an adiabatic channel more generally by Herrick's quantum
numbers as |V KT} 1 (Herrick 1983), then (15) is an expression for the dominant coupling

t The relation between Herrick's and the MO quantum numbers is: T = [m|, K = [#,/2] —ny, N =
ny 4+ iny /28 & imi 4 1 where [x] denotes the integer value of x.
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Figure 4. Quanturn defect (real part) for the (5, k) Rydberg series (singlet symmetry). Note that
the lowest state of the (5, 4) series is the perturber of the (4, 3) series, it is therefore marked by
an open circie. The locations of the perturbers of the (5, &) series are marked: a = (6, 8), b
= (6, 3, ¢ = (6, bs.

between adiabatic channels and should read
AN = -1 AK =-1. (16)

Hence, the existence of the propensity rule according to (15) is a strong indication that
the Rydberg series shown in figures 2 and 4 can each be represented by a single adiabatic
channel INkM') = INKT). A violation of the propensity rules (15) indicates from this
perspective that the respective Rydberg series is no longer a pure adiabatic [N KT} channel
but a mixture of those: |NkM") = ¥, a;|N;K;T}). For S states, M’ and the T} are zero.
We will drop them in the following and write (N, k) for [Nk M = 0).

4.4. Few channel interferences (N=6, 7)

Figure 5 shows the real part of the quantum defect for the Rydberg series converging to the
N = 6 threshold of the He™ ion (singlet symmetry). The lower lying (6, 5) and (6, 3) series
are already twice perturbed, although only the beginning of the second perturbation of the
(6, 3) series is slightly visible in our data. The corresponding perturbers can be labelled as
(7, 6)3, (7,06)5, (7,4)y, and (7, 4)g respectively, where the Jast one can only be determined
by a direct calculation in a ‘detuned’ basis (see section 3.2). The other three can also be
fitted; the results again agree within their accuracy., On the other hand the two energetically
highest series (6, ~3) and (6, —5) display the normal behaviour of unperturbed Rydberg
series. So far, the perturbation pattern is consistent with the propensity rules (15) and hence
with pure adiabatic channels.

However, in the (6, 1} and (6, —1) series a new behaviour occurs. The quantum defect
in the (6, 1) series increases by more than unity (by 1.2 roughly}, whereas the quantum
defect in the (6, —1) series increases by less than one (about 0.8), giving a total ‘jump’
of two. A closer inspection of the (6, 1) series shows that the jump here actually consists
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Figure 5. As in figure 3, but for the (6, &) Rydberg series. The perturbers are: a = (7,6)7, b
=T 4. c=(027,d=(707e=(7,6) = (7.4)s.

of two parts, a first one by unity and a smaller one. This first jump is located at the
energy of the (7, 2); perturber, The second ‘jump’ coincides energetically with the location
of the (7, 0); perturber that, according to (15), should only couple to the {6, —1) series.
Obviously, the (7, 0)7 perturber affects the (6, I} and the (6, —1) Rydberg series, violating
the propensity rules (15).

This behaviour indicates in the context of our discussion in section 4.3 that the index
k as a guantum number is no longer ‘pure’ for channels with £ = . Apparently the
pure K = +1 and K = —1 channels are mixed resulting in the observed (6, 1} and
{6, —1) Rydberg series. Through this admixture the (7, 0); perturber which according to
the propensity rales (16) should couple to the X = —1 adiabatic channel affects both, the
(6, 1) and (6, —1) series. Hence, the perturbation can be viewed as a sensitive tool probing
the components of effective Rydberg series in terms of their pure K components.

Note that the perturbation pattern caused by the (7, 0} perturber can still be described
by a quantum defect theory, adding another Rydberg series and continuum to which the
perturber is coupled. A model calculation of the corresponding 5QDT reveals a similar
behaviour as the real atom if the coupling of the perturber to the two Rydberg series is of
about the same magnitude.

‘We do not discuss in detail the Rydberg series (7, k) which show qualitatively a similar
behaviour as the (6, k) series.

4.5. Breakdown of the propensity rules (N 2 8)

Figure 6 shows the real part of the quantum defect belonging to the (8, k) Rydberg series
of singlet symmetry. The N = 7 threshold is denoted by a dotted line. The open symbols
below that threshold represent the perturbers.

The two lowest lying series ((8,7) and (8, 5)) are again perturbed Rydberg series that
can be described by means of a FQDT. Note that the fourth perturbatton of the (8, 7) series
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Figure 6. As in figure 5, but for the {8, k) Rydberg series.

is very narrow. The reason is that the (9, 8) series perturbing it is itself already perturbed
by the lowest state of the (10, 9) series, namely (10, 9)10. The propensity rules (I5) are
fulfilled for these series which hence can be regarded as pure K series. This is also true
for the two energetically highest series (8, —5) and (8, —7) which display the behaviour of
unperturbed Rydberg series.

The series in between (k = 3, ..., —3) show rather irregular behaviour. Obviously these
are no pure K channels. Hence, the calculated (8, k) Rydberg series as shown in figure 6
are mixtures of those pure K channels as discussed above. For these series also the first
states occur whose reduced width (Im u) is larger than one, which means that their width
is larger than their mutual spacing. These are the (8, 1)) state (Im 2 = 1.50751) and the
(8, —1}14 state (Impu = 1.27883).

The behaviour of the (9, k) and (10, k) series (shown in figure 7) is similar. For the
energetically lowest series (larger &) we find Rydberg series perturbed according to (15),
which can be described by an FQDT. For the energetically highest series (lower k) we find,
as before, the typical behaviour of unperturbed series.

In between, however, we have the region where the series obviously consist of mixtures
of pure K channels resulting in a rather complicated perturbation scheme. Here a FQDT
analysis from our data is no longer possible. This is demonstrated by looking at the
expectation value of the cosine of the inter-electronic angle, {cos8). It is connected with the
quantum number K through {(cosd} = —K /N as n — co (see also (11)). We have plotted
{cosd) against vy, for the (10, k) series in figure 8. Obviously the pattern is rather irregular,
which also stresses that the actual states consist of complicated mixtures in terms of the
pure K channels. The region for which this admixtures occur is located near k =~ 0 and
becomes the wider, the larger N. This can be understood in terms of the adiabatic approach
{Rost and Briggs 1991) since the separation of the adiabatic potentials for different k¥ goes
with k/N leading to a greater possibility for the channels to couple. Assigning a & index
to the calculated resonances in this region obviously becomes rather arbitrary. Hence it
is problematic to speak of k as a quanturn number for these states, Note that the £ =~ 0
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Figure 7. As in figure 5, but for the (10, &) Rydberg series.
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Figure 8. Expectation values for cos 8 versus the effective quantum number Re v for the (10, k)
Rydberg series {singlet symmeiry}. The lings connect states which belong to the same & series.
Here the & index is assigned by the requirement that the quantum defect should not cross. An
assignment of % according to equation {11) is not possible since the asymptotic limit » 3> N of
the series has not been reached. It illustrates that the affected states are admixtures of pure K
states even for n as high as 2N,

states are just those states whose configuration is far from being collinear and hence do not
approach one of the classical limits discussed above. This might explain why they do not
behave in a regular fashion for increasing N.

4.6. Triplet states

In general the spectrum for the triplet states (A = —1) looks quite similar to that of
singlet symmetry (A = +1). The qualitative difference is the additional node on the saddle
(r1 = ry) for triplet symmetry. This leads to wider avoided crossings in the corresponding
adiabatic potentials than in the singlet case and hence the probabilities for auto—ionization
and for K mixing are reduced (Rost and Briggs 1991), Furthermore, the different (4 = —1)
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adiabatic channels start to interact at higher quantum numbers than the (A = +1) channels.
As a consequence the first perturbed triplet series are the (6, 5), (6, 3), and (6, 1) series
while the first perturbed singlet series occurs with the (4, 3) series already in the N = 4
manifold.

100 120

80

Re

Figure 9. Quantum defect (real part) for the (10, &) Rydberg series. Open symbols mark the
perturbers of the underlying series,

Figure 9 shows the real part of the quantum defect for the (10, k) triplet Rydberg series.
Here, violations of the propensity rules (15} oceur for the (10, —3) and (10, —5) Rydberg
series indicating that these are also mixtures of pure K adiabatic channels. However, the
pattern looks much simpler than for the (10, k) singlet series. This confirms that the mixing
of K channels for states with triplet symmetry is much weaker than in the singlet case.

4.7, Propensity rules versus selection riles

The propensity rules (15) are not selection rules. This can be demonstrated by a closer
inspectton of our data even for the case where the propensity rules are fulfilled to a very
good approximation, namely for the very lowest case of a perturbed Rydberg series.

In figure 10 we again show the quanturmn defect of the singlet (4, k) Rydberg series, but
now we subtract multiples of unity from the quantum defect to display possible degeneracies.
The region where the quantum defects cross is enlarged in the upper right part of figure 10,
The (4, 1) series shows little deviation from the regular behaviour close to the location of
the perturber of the (4, 3) series. Though this perturbation is very weak it indicates a small
coupling of the (5, 4)s perturber to the (4, 1) series. This is, however, a marginal effect.
The non-radiant decay is still mainly according to the propensity rules (15).

5. Summary and Cenclusion

To sum up we have calculated more than thousand doubly excited states for the He atom
for both singlet and triplet symmetry of the wavefunction using the full non-relativistic
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Figure 10. Quantum defects of the (4, ) Rydberg series modulo | (see text). The upper right
figure is an enlargement of the region marked by the rectangle.

Hamiltonian.

‘We have used the complex rotation technique to calculate resonance energies and widths
of these states in an almost complete basis set of Sturmian type functions using perimetric
coordinates as introduced by Coolidge and James (1937).

Our highly accurate data for the spectrum of helium confirm the known propensity
rules (15) generally for moderate excitation. For very high excitations of the inner electron,
however, the propensity rules are only valid for near-to-collinear configurations (mimimum
and maximum k). For series with maximum k values the spectrum can be described
by means of a few-channel gquantum defect theory (FQDT). This is the region where a
semiclassical description uvsing pericdic orbit theory and cycle expansions (Richter et af
1992, Wintgen er al 1994) or adiabatic quantum ansitze (Rost and Briggs 1990, 1991,
Sadeghpour 1991} are also valid.

For minimum %, the regular behaviour of unperturbed Rydberg series is observed. In
this region a semiclassical EBK quantization (Richter and Wintgen 1991} is also possible.

For very hhighly doubly excited states far from a collinear configuration (k close to 0),
the situation becomes much more complicated. The spectrum can no longer be described by
a simple FQDT and the index k no longer has the meaning of a quantum number. Note that
this region far from a collinear configuration is also inaccessible for both the semiclassical
and the adiabatic approaches.

However, in the transition region of still identifiable Rydberg series we have shown
how one can determine the pure adiabatic K-components of a perturbed series by linking
the perturber states with the help of (16) to the K-compenents of these states.
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Appendix 1. Transformation to perimetric coordinates

The transformation of the Hamiltonian (1) into perimetric coordinates (4) is done in two
steps. In a first step the cartesian coordinates are transformed into the three distances ry,
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rz, and r)3 (Hylleraas 1929} and the three Euler angles v, 6, ¢. Neither the kinetic energy
nor the potentials depend on the angles, so they only contribute to the volume element by a
factor of 8. The three distances ry, ra, and r2 are then in a second steg: transformed to the
perimetric coordinates, giving the Hamiltonian in the form (4). The P;;” are (for M — oo):

PR =202y 4 xy? + x%z + x2°)
PR =202x%y + 2xy% + y*z + y2 + 2xy2)

‘3’ =2(2x%z + 2xz% + y%z + yz? + 2xy2)
Pf” PR =2xy(x+ )

P(B) _ P(3) =2x1(x + Z)
P('*) P(3) =0,
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