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Abstract
We account for the different symmetries of the 2 1,3S helium excited states in a
quasiclassical description of the knockout mechanism augmented by a quantum
shake-off contribution. We are thus able to formulate the separate contributions
of the knockout and shake-off mechanisms for double photoionization for
any excess energy from the 2 1,3S states. Photoionization ratios and single-
differential cross sections calculated for the 2 1,3S excited states of helium are
found to be in very good agreement with recent theoretical results.

1. Introduction

A two-electron transition in an atom after the absorption of a single photon is only possible
due to electron–electron correlations. The study of two-electron transitions in helium, the
simplest atomic target with two electrons, probes the role of electron–electron correlations in
their purest form. As a result, there has been extensive experimental and theoretical study of
double photoionization from the ground state of the helium atom.

In addition to the role of electron–electron correlations, the study of two-electron escape
by a single-photon absorption from the singlet, 2 1S, and triplet, 2 3S, excited states of helium
probes the role of symmetry in the two-electron dynamics. This is particularly important for
quasiclassical approximations where symmetries and quantum interferences are difficult to
include. With the exception of a few earlier studies in the high-energy limit [1, 2], it is only
recently that the study of double photoionization from the 2 1,3S excited states of helium has
attracted considerable theoretical interest. Experimental measurements of photon absorption
cross sections from the helium excited states still remain a challenge. In these recent studies
sophisticated fully numerical ab initio methods, namely the R-matrix method [3] and the
convergent close-coupling method [4], are used to compute integral double-ionization cross
sections, double-to-single ratios, and, only very recently, the time-dependent close-coupling
method is used to compute single- and triple-differential cross sections as well [5]. However,
due to the numerical nature of these sophisticated ab initio calculations, approximate methods
are also essential in uncovering the underlying mechanism of the two-electron dynamics in the
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double-escape process. Such approximate methods have been successfully developed for the
double photoionization from the helium ground state [6, 7]. The current work focuses on an
approximate method to describe double photoionization from the helium excited states.

In the double-photoionization process the redistribution of the energy, following the photon
absorption, is often discussed in terms of two mechanisms, that is, knockout and shake-off
dominant in the low- and high-energy limits, respectively. In the knockout mechanism, often
referred to as the TS1 (two-step-one) process, one electron, the primary, absorbs the photon
and undergoes a hard collision with the secondary electron, thus knocking it out of the atom.
The knockout mechanism dominates at low energies where the interaction time of the two
electrons is large and can be described classically [6, 8]. For knockout, electron correlations
are essential in the final continuum state. On the other hand, in the shake-off mechanism the
primary electron absorbs the photon and leaves the atom very fast without undergoing a direct
interaction with the secondary electron. The secondary electron feels the sudden change in
the atomic field and relaxes in one of the bound or continuum eigenstates of the remaining
ion. The shake-off mechanism is quantum mechanical in nature and prevails at high energies
where the interaction time of the two electrons is short. For shake-off, electron correlations
are important in the initial state before the photon is absorbed.

In the following, we formulate the explicit but separate contributions of the two
mechanisms for double photoionization from the 2 1,3S helium excited states for any excess
energy by extending the model developed to separate the contribution of the two mechanisms
for the helium ground state in [6]. The separation is achieved by a quasiclassical formulation
of the knockout process. By construction it is free from any shake-off contribution which
is purely quantum mechanical. This separation not only facilitates the calculation of double
photoionization but offers considerable insight into the process concerning for example the
similarity with electron impact ionization of He+. Compared to the ground state, formulating
the separate contributions of the two mechanisms from the helium excited states is a much
harder problem, since the different symmetry of the 2 1,3S states has to be accounted for in the
model.

We express the two steps of the double-photoionization process from the helium excited
states, absorption of the photon and subsequent redistribution of the energy, as

σ ++
X = σabs P++

X , (1)

where X stands for either knockout or shake-off and P++
X is the double-electron-ionization

probability. In what follows we discuss how to obtain P++
KO and then P++

SO for the 2 1,3S helium
states.

2. Knockout ionization

After the photon absorption by the primary electron, we describe the subsequent evolution of the
two electrons using the classical-trajectory Monte Carlo (CTMC) phase space method. CTMC
has been successfully used to describe charged particle impact processes [9–13]. We model the
initial phase space of the trajectories quantum mechanically using a Wigner distribution [14].
To do so, we first find the initial two-electron wavefunction. Since electron correlations are
not important in the initial state of the knockout mechanism, we choose our initial state as the
independent-electron wavefunction

�0(r1, r2) = φ
Z1s
1s (r1)φ

Z2s
2s (r2), (2)

where φ
Z1s
1s (r1) = (Z 3

1s/π)1/2e−Z1sr1 and φ
Z2s
2s (r2) = (Z 3

2s/(8π))1/2(1 − Z2sr2/2)e−Z2sr2/2 are
hydrogenic 1s and 2s orbitals with effective charges Z1s and Z2s, respectively. �0(r1, r2) given
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by equation (2) is not a symmetrized wavefunction; thus, we do not yet account for the different
symmetries of the triplet 2 3S and the singlet 2 1S helium excited states. To find the effective
charges Z1s and Z2s we use the two-electron ionization energies I ++

2 1S/2 3S ≈ 2.146(2.175)

for the 2 1S(2 3S) states given in [2], and the ionization energies of the 1s and 2s orbitals as
follows. The energy needed to remove the 1s electron after the 2s electron has been ionized is
2 au and thus from I1s = Z 2

1s/2 = 2 we find Z1s = 2 for both the triplet and the singlet states.
From I ++

2 1S/2 3S − I1s = I2s = Z 2
2s/8 we find Z2s ≈ 1.081 (1.184) for the 2 1S (2 3S) states,

respectively. Atomic units are used throughout this paper unless otherwise indicated.
While for the 1s2 helium ground state the photon is necessarily absorbed by a 1s electron,

for the 1s2s configuration of the 2 1,3S helium states the photon can be absorbed by a 1s or a
2s electron. For the values of the effective charges given above, one can show that the cross
section is much larger for photon absorption from a 1s electron than from a 2s electron using
the independent-electron picture [15]. Therefore, we take the primary electron to be that on
the 1s orbital. With the PEAK approximation, exact in the high-photon-energy limit [16], we
assume that the photon absorption happens directly at the nucleus. This significantly reduces
the initial phase space to be sampled by the CTMC method.

The initial phase space distribution, ρ(Γ), is the two-electron density immediately after
the photon absorption given by

ρ(Γ) = Nδ(r1)ρ2(r2,p2), (3)

where N is a normalization constant. The initial distribution of the primary electron is δ(r1)

(PEAK approximation) while that of the secondary electron is given by

ρ2(r2,p2) = Wψ(r2,p2)δ(ε
in
2 − εB), (4)

where Wψ(r2,p2) is the Wigner distribution function of the two-electron wavefunction with
the primary electron at the nucleus, r1 = 0,

ψ(r2) = �0(r1 = 0, r2)(〈�0(r1 = 0, r2)|�0(r1 = 0, r2)〉)−1/2. (5)

In equation (4), we take the energy of the secondary electron immediately after photon
absorption, εin

2 , to be fixed on the 2s energy shell εB = −Z 2
2s/8. From equation (2), it

follows that εin
2 = p2

2/2 − Z2s/r2. The excess energy available to the two-electron system
after photon absorption is determined by the photon energy to be

E = ω − I ++
2 1S, E = ω − I ++

2 3S (6)

for the 2 1S and 2 3S states, respectively. Due to the PEAK approximation the primary electron
can have any energy necessary so that, together with the initial energy εin

2 of the secondary
electron, it adds up to the excess energy E in equation (6). After modelling the initial phase
space distribution, we propagate the electron trajectories using the classical equations of motion
(CTMC). Regularized coordinates [17] are used for the propagation of the electron trajectories
to avoid problems with trajectories starting at the nucleus (r1 = 0). The doubly ionized
trajectories are those that end with the asymptotic energies of both electrons being positive.
To evaluate the double-electron escape probability each trajectory is weighted by the initial
phase space Wigner distribution.

So far we have treated the two electrons as distinguishable particles; that is, we distinguish
between the primary and the secondary electron. Singlet and triplet probabilities require a
proper symmetrization of the probability amplitude upon exchange of the two electrons. The
probability amplitude, however, is not available from our purely classical propagation. Close
to the threshold E → 0, previous analysis has shown [18] that the symmetrized singlet/triplet



2720 A Emmanouilidou et al

probabilities can be formulated using only classical information in the form

dP++
KO

dε
= 1

2

(√
dP++

KO(ε, E)

dε
±

√
dP++

KO(E − ε, E)

dε

)2

, (7)

where dP++
KO(ε, E)/dε is the probability for both electrons escaping when the primary electron

is ejected with energy 0 � ε � E . Since the KO mechanism is dominant for low energies we
adopt equation (7) also for finite excess energies as an approximation. There it provides an
upper bound for the difference between singlet and triplet contributions of the quasiclassically
formulated KO mechanism. To evaluate dP++

KO(ε, E)/dε we divide the energy interval [0, ε]
into N equally sized bins and find the doubly ionized trajectories which fall into the bins. In
our calculations we take N = 21 for excess energies up to 80 eV and N = 27 for higher excess
energies. The double-ionization probability P++

KO is obtained by integrating over all possible
energies that an electron can be ejected with; that is,

P++
KO =

∫ E

0

dP++
KO

dε
dε. (8)

Note that for the case of the helium ground state the double-ionization probability P++
KO is

worked out without using the differential probabilities [6].

3. Shake-off ionization

Assuming that the primary electron is suddenly removed from the atom, Aberg [19] found that
the probability for the shaken (secondary) electron to relax on a hydrogenic eigenstate of the
remaining ion for any excess energy is

Pν
α = |〈φα|ψν〉|2/〈ψν |φν〉, (9)

where ψν(r2) = ∫
d3r1 ν∗(r1)�0(r1, r2) and ν(r1) is the primary electron wavefunction after

it has left the atom. The primary electron is in an s state before the photon absorption and in
a p state afterwards. �0(r1, r2) is the initial state wavefunction of the 2 1,3S helium excited
states and φα is a hydrogenic eigenstate of the bare nucleus (Z = 2) that is either a bound
(α = n) or a continuum state (α = ε). Aberg [19] has further shown that when the primary
electron leaves the atom with very high energy (ν(r1) = (2π)−3/2e−ik1·r1 ), equation (9) takes
the simplified form

Pα = |〈φα|�0(r1 = 0, r2)〉|2
〈�0(r1 = 0, r2)|�0(r1 = 0, r2)〉 . (10)

Equation (10) reveals the quantum mechanical nature of the shake-off process since it is
expressed as an overlap of the initial bound state wavefunction and the final continuum state
wavefunction.

Although equation (10) was derived in the high-energy limit, we assume that the primary
electron absorbs the photon on the nucleus for all excess energies; that is, we adopt the PEAK
approximation as in the knockout case. To find the double-escape probability P++

SO we then
integrate over all possible energies of the shaken electron in the continuum:

P++
SO(E) =

∫ E

0
Pε dε. (11)

We further simplify the evaluation of the shake-off probability in equations (10), (11) by
taking the initial state to be the symmetrized wavefunction:

�0(r1, r2) = N1

(
φ

Z1
SO

1s (r1)φ
Z2

SO
2s (r2) ± φ

Z1
SO

1s (r2)φ
Z2

SO
2s (r1)

)
(12)
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for the singlet and triplet states, respectively, with N1 a normalization constant. The initial state
correlations are accounted for only through the effective charges. We next assign the same
set of effective charges Z 1

SO and Z 2
SO for both the triplet and the singlet states as follows. The

asymptotic ratio (high-energy limit) of double-to-single ionization is found very accurately
in [2] to be R∞ = 0.009 033/0.003 118 for the singlet/triplet states, where in our model R∞ is
given by

R∞ = P++
SO(E → ∞)/(1 − P++

SO(E → ∞)), (13)

and

P++
SO(E → ∞) =

∫ ∞

0
Pε dε = 1 −

∑
n

Pn . (14)

Using equations (13), (14), and the symmetrized wavefunctions in equation (12) we find the
sets of charges that match both asymptotic ratios R∞ for the singlet and the triplet states.
We then select that set of charges for which the shake-off double-ionization probability as a
function of the excess energy, obtained using the simple wavefunctions given in equation (12),
is closest to the one obtained using the fully correlated Hylleraas wavefunctions given in [20].
The set of charges thus found is Z 1

SO ≈ 1.757 and Z 2
SO ≈ 1.728. The reason we do not use the

Hylleraas wavefunctions given in [20] is that they do not reproduce the accurate asymptotic
ratios obtained in [2] using highly accurate Pekeris-type wavefunctions. We emphasize though
that one does not need to use the approximate wavefunctions in equation (12) to compute
the double-ionization probability; highly accurate wavefunctions that reproduce the correct
asymptotic ratios could be used instead.

For the shake-off probability, Pε in equation (10) already gives the differential double-
ionization probability. Despite the symmetrization in equation (12) we have lost the
indistinguishability of the electrons by identifying one electron as the primary one which
absorbs the photon. Thus we need to symmetrize again in the final state with respect to the
equal-energy-sharing point ε = E − ε = E/2 [6]. That is,

dP++
SO

dε
= 1

2
(Pε + PE−ε). (15)

4. Results and conclusions

4.1. Photoionization ratios

According to equation (1) σ ++ = σabs(P++
KO + P++

SO) and σ + = σabs − σ ++. Thus, the double-to-
single-ionization ratio is given by

σ ++/σ + = P++/(1 − P++), (16)

where P++ = P++
KO + P++

SO . In figure (1) we compare the double-to-single ratio for the 2 1,3S
helium excited states with the results obtained by Kheifets et al [4] using the convergent close-
coupling method and show that there is a very good agreement. The agreement is better for
the 2 3S state. We find that the deviation occurs, particularly for the 2 3S state, at photon
energies where the contributions of knockout and shake-off mechanisms are comparable. At
these energies any interference between the knockout and shake-off mechanism would have
its largest effect. So, it may be that the deviations that we see are due to that interference
effect that we do not account for in our calculation, since we add the knockout and shake-off
contributions incoherently. For the 2 1S state a maximum of ≈2.84% is reached at 14 eV above
the double-ionization threshold of the 2 1S state. For the 2 3S state a maximum of ≈0.69% is
reached at 60 eV above the ionization threshold of the 2 3S state. In figure 1 we see that at high
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Figure 1. Double-to-single-ionization ratio as a function of the photon energy. Dots/open circles
indicate the results of Kheifets et al [4] in the velocity/acceleration gauge. For the triplet state,
Kheifets results in the two gauges are indistinguishable to the scale of the figure. Our results are
indicated by a solid curve for the total, by a dashed curve for the knockout, and by a dashed–dot
curve for the shake-off double-to-single ratio.

energies the knockout contribution goes to zero as expected, and the shake-off contribution
dominates and reaches the asymptotic limit of 0.009 033/0.003 118 for the singlet/triplet states.
Stronger correlation effects for the singlet symmetry (r1 = r2 is not forbidden as is the case
for the triplet) result in a much higher double-to-single-ionization ratio compared to the triplet
case. From figure (1), for the 2 1,3S states, and [6], for the helium ground state 1S, we see that
as we go along 1S → 2 1S → 2 3S the electron–electron correlation becomes smaller. That
is, for the 2 1,3S states, the 1s and 2s electrons are better separated than the 1s2 electrons in
the 1S state. In addition, in the 2 3S state the electron separation is even stronger because of
the Pauli exclusion principle. Thus, as we go along 1S → 2 1S → 2 3S, the energy sharing
becomes more asymmetric with one fast and one slow electron leaving the atom favouring the
shake-off over the knockout mechanism at smaller excess energies.

4.2. Single differentials

To compute the single-differential probabilities for the helium excited states we use

dP++

dε
= dP++

KO

dε
+

dP++
SO

dε
. (17)

In addition we compute the single-differential cross sections using

dσ ++

dε
= σabs

dP++

dε
, (18)

where for σabs we use the results for the total photoionization cross section for the 2 1S and
the 2 3S states given in [4]. In figure 2, we compare our results for dσ ++/dε with the results
obtained very recently by Colgan et al [5] using the time-dependent close-coupling method
for four values of the excess energy at 10, 20, 30, and 40 eV. We see that our results for the
single-differential cross section as a function of the ejected electron energy normalized by the
excess energy are smaller for the 2 1S state, while there is an excellent agreement for the 2 3S
state. Again as we go along 1S → 2 1S → 2 3S the single-differential cross sections become
more U-shaped for the same excess energy. The reason is again that the electron–electron
correlation decreases, thus favouring the ejection of one fast and one slow electron—that is,
favouring unequal energy sharing.
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Figure 2. Absolute single-differential cross sections, at excess energies 10, 20, 30, and 40 eV from
top to bottom, as a function of the electron ejected energy scaled by the excess energy. The dashed
curves are the results given by Colgan et al. Our results are indicated by solid curves.
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Figure 3. Absolute single-differential probabilities as a function of the ejected electron energy.
The knockout contribution is indicated by dashed curves while the shake-off is indicated by solid
curves. The top panel is for the 2 1S state while the bottom one is for the 2 3S state.

In figure (3), using equation (17), we show the separate contribution of knockout and
shake-off to the single-differential probabilities, dP++

dε
, for the 2 1,3S helium states for excess

energies 10, 40, and 160 eV. For the singlet state the knockout contribution dominates at small
excess energies, 10 and 40 eV, while as the excess energy is increased to 160 eV the shake-off
contribution begins to dominate regions of unequal energy sharing. For the triplet case the
shake-off mechanism is already significant at small excess energies. Note, that the knockout
contribution for the triplet case is zero at the equal-energy-sharing point, ε = E − ε, because
of the symmetrization with respect to the two identical electrons; see equation (7).
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4.3. Conclusions

In conclusion, we have shown that the double ionization from the 2 1,3S states can be accurately
described by separate formulations and calculations of the knockout and shake-off mechanism
at any excess energy. In comparison to the helium ground state [6], this presents a harder
problem because we have to account for the different symmetries of the singlet and triplet
states. The success of this simple model for describing double ionization from the helium
ground state as well as the helium excited states is proof of its validity. In the future, we plan
to use this simple model to describe triple-photoionization cross sections.
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