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Abstract. The photoionization cross section for spherical
alkali metal clusters is predicted to oscillate as a function
of the photon wavenumber with a frequency determined
by the diameter of the cluster. The oscillations and other
principal features of the photo cross section can be
worked out analytically using semiclassical techniques.
An accurate numerical calculation with different cluster
potentials confirms these results qualitatively. Quantitat-
ive details depend semsitively on the actual potential
Hence, properties of the true cluster potential can be
inferzed from the experimental cross section. This might
turn out to be useful for improving theoretical cluster
potentials

PACS: 36404 d; 32.80.Fb; 03.65.5q

1 Introduction

Interaction with laser light has proved to be a sensitive
tool to probe properties of clusters Of recent interest are
photoabsorption spectra in the energy window where the
collective resonances in clusters occur [1] and photoioniz-
ation around the threshold energy to determine the ioniz-
ation potential as a function of the number of constituents
in a cluster [2-6]. Experimental photoionization spectra
for higher photon energies than a few eV (which is typi-
cally sufficient to ionize the cluster) have not yet been
obtained However, with the new synchrotron facilities
such experiments become feasible.

Similarly, theoretical studies of photoionization have
been limited to a few eV above the threshold [7, 8]. The
theoretical description of photoionization of clusters — al-
though fundamentally very simpie and straightforward
— poses some problems which are conceptuaily hard to
overcome. They are related to the theoretical description
of large alkali clusters which is based on the jellium
approximation, ie a free electron gas consisting of the
valence electrons of each atom and a homogeneous posit-
ively charged background of the ionic cores. Within the

jellium model, density functional theory (DFT) and ap-

proximations of the exchange and correlation effects of
the electron gas such as the local density approximation
{(LDA) can be used to calculate ground state properties of
the clusters [3, 4]. The DFT generates an effective poten-
tial in which single particle states live.

To calculate dynamical processes with this potential
such as photoionization is problematic for thiee reasons.
Firstly, the single particle wave functions are not the
actual electron wavefunctions which are necessary to
calculate the dipole matrix element for the photo cross
section Secondly, the outgoing continuum wavefunction
of the ionized electron feels the potential of the ionized, ie.
positively charged cluster so that the relevant potential
should have a long range Coulomb tail. While the effective
potential might be corrected in a reasonable way for this
obvious long range behavior the more subtle long range
features such as polarization of the cluster are also not
very well represented by the effective potential which has
been obtained from calculating the ground state (whose
wavefunction is of course not sensitive to long range
effects). Thirdly, the electromagnetic field of the light
waves influences the loosely bound electrons, ie the
charge density of the valence electrons. This results in
a screening of the field and in an effective interaction of the
valence electtons with the field which differs substantially
from the dipole operator acting on a single electron in
atoms or molecules as pointed out in [7]

The first issue is an obstacle which also applies to
photoexcitation of clusters However, there it has turned
out that the naive approach of interpreting the single
particle wavefunctions as the true electron wavefunctions
works surprisingly well. The description of single electron
excitations and collective plasmon excitations relies ulti-
mately on the single particle specttum supplied by various
DFT methods [9].

The problem of the long range behavior could be

- partially avoided by considering photodetachment where

the ionized cluster is neutral. Also, in this case, a refined
theoretical approach, the time—dependent optimized po-
tential method, vields accurate electron affinities [10] and
one can hope that the long range properties of the effective
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potential are realistically described Hence, given the
aforementioned problems, it seems to be most promising
1o calculate photodetachment. However, the goal of the
present study is more explorative: To see which informa-
tion about cluster properties can be extracted from the
photoionization eross section and to examine if and how
the cross section of large clusters is sensitive to details of
the wavefunction and the potential For this question we
will not rely on the special advantages of photodetach-
ment but study a more common case. We will consider
tonization of a spherically symmetric neutral cluster
whose effective potential does not change during the pro-
cess of photoionization described within the usual single
electron dipole approximation

The last assumption seems to be in conflict with the
shielding of the field as menticned above However, this
effect is most pronounced for low photon energies where
also other collective effects are to be expected For higher
photon frequencies the charge cloud of valence electrons
can no longer follow the rapid change of the field and the
shielding decreases, This behavior is confitmed in [7]
where it is found that for higher photon energies (roughly
25 times the frequency of the classical Mie resonance
which corresponds to about 10 eV) the ionization cross
sections calculated with and without the shielding effect
merge together. The calculation in [7] has been carried
out up to these energies and we will consider photon
energies larger than about 10 eV where the normal dipole
approximation should be valid and collective effects are
not to be expected Towards high energies the range of
validity of our study is limited by the onset of ionization of
cote electrons from single atoms in the cluster (about 40
eV for Nay clusters)

The paper is organized as follows: in Sect. 2 we intro-
duce three different models for cluster potentials and
describe briefly how the photo cross section is formulated
The results of our numerical calculation are presented in
Sect. 3, emphasizing the significant features of the photo
cross section In Sect 4 we calculate the photo cross
section analytically within a semiclassical appioximation.
Thereby, the functional dependence of the photo cross
section on the photon energy is elucidated Most impor-
tantly, we can show how the cluster size can be deduced
from the photo cross section Furthermore, we will discuss
how the relevance of DFT potentials for photoionization
cant be checked. The paper ends with a conclusion in
Sect 5

2 Photo cross section and effective potentials
2 1 The photo cross section

Within the dipole approximation the partial cross section
oy for photoionization of one electron from initial state
¥ to final state ¥ is given by

(2n) e

w
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oyi(w) =

where w is the frequency of the ionizing photon which
determines the energy of the outgoing electron through
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E; = w + E,; «; is the fine structure constant, and e the
polarization vector of the light The dipole operator may
be expressed in different gauges, namely in the fength form
{D, = wr), the velocity form (D, = — iV,) o1 in the acceler-
ation form (D, = — iV¥V (r)/w). Throughout the paper we
work in atomic units (a.u1.) so that the cross section (1) is
given in units of af Under spherical symmetiy of the
system we can assign quantumn numbers Elm for the final
(continuum) state and #'F'm’ for the initial state where
n describes the radial nodes and Im are the usual angular
momentum quantum numbers. For unpolarized light the
integration over the angles (0, ¢) can be performed ana-
lytically with the result [11]
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where [, =max(/,]) Equatien (2) includes the usual
summation over all final magnetic states m, and the aver-
age over the initial m; states Due to the dipole character of
the incident light, the selection rules dl=1—-0= +1
and Am =0, + 1 apply The total cross section ¢ is the
sum of the partial cross sections for all electrons in the
cluster that take part in the process of photoionization at
a given photon energy iy Electron n'l’ can be ionized if its
binding energy — E,; is smaller than the photon energy.
This leads to the formal expression for the total photo
cross section (for more details see [117)

(3]

o) = Ggrent(®)
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2.2 The cluster potential

To determine the wavefunctions #,, and ¥ in (2) we
need a potential which describes the dynamics of the
valence electrons in the cluster Such potentials are sup-
plied by DFT calculations, an explicit example for the 34
valence electrons of the Nas, cluster from Ekardt [12] is
shownin Fig I (dashed line). As in nuclear physics, model
potentials of the Woods—Saxon type (solid lire in Fig 1},
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have been considered [13] They have been justified by
a good agreement of the energy spectrum with the numer-
ical potential (in this case the DFT potential, see Table 1)
Howevet, as will be demonstrated, for dynamical quantit-
ies based on off-diagonal matrix elements (in contrast to
diagonal matrix elements, e.g. energies) such as the dipole
transition amplitude, the agreement among results from
different cluster potentials is only qualitative. Quantitat-
ive details depend sensitively on the dynamics and that is
on the wavefunctions which are different for each poten-
tial This observation is confirmed by calculations with
a modified Woods—Saxon potential (dotted-dashed line in
Fig. 1),
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Fig. 1. Effective cluster potentials for Nas. From a DFT calcu-
lation by Ekardt [12] (dashed line), from (4) with parameters
Vo=0226, L = 14478 and a = 0.9 (solid line}, from (5) with ¥, as
before, I = 13930, a = 0.8, b = 0.7 {dotted-dashed line)

Table 1. Electron energies {in a.u ) of bound states with the respect-
ive quantum numbers for the three different potentials

nl Ekardt Eq. 4 Eq 5

Is — 020324 — 020393 — 020389
Ip —0.17504 — 018156 — 018154
id —0.15179 —0.15405 — 015417
if —0.12033 — (12193 —0.12243
2s — 0.14643 —(.14257 — 014304

where the long range Coulombic part has been added
without changing the bound state energies significantly
{Table 1)

3 Numerical results

Following (2) it is straightforward to calculate the photo
cross section numerically. For the effective one particle
potential of Fig. 1 the bound state eigenfunctions are
determined according to the shell model. That is for the
spherically symmetric potential the shells, characterized
by the quantum numbers nl, are filled successively begin-
ning at small energies until the number of electrons re-
quired for the cluster size is reached Fach angular mo-
mentum level is (2] + 1)-fold degenerate For each election
in a given shell »f thete are two angular momentum states
to which a dipole iransition can occur according to
(Al = + 1). To calculate the transition matrix elements we
firstly compute the radial bound state and continuum
wavefunction with the renormalized Numerov method
[14] The radial dipole matrix elements are then obtained
by a simple quadrature. Once they are known the total
photo cross section can be caleulated according to (2)
The cross section is shown in Fig 2 for the three
different potentials of Fig 1. We note that despite quantit-
ative differences the three curves agree qualitatively with
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Fig, 2a,b. Total photo cross section as a function of the wavenum-
ber for the potentials from Fig 1, a in logarithmic scale as function

of photon energy w, b as a function of k = /2w + ¥, with the
cross section scaled by the principal decrease of the yield,
as(k) = k'exp(2ralya(k)/(1 + (ak}?) with ¢ from (3}

respect to the following three features (see in particular
Fig. 2h):

i) The photo cross section decays exponentially as

a function of the photon wavenumber k= ./2hw + 6
where & is an energy offset to be determined

¢iij The additional decreass is algebraic and proportional
to R(k)/w"?, where R(k} is a simple rational function
whose precise form depends on the potential.

(iif) Superimposed on the monotonic decay an oscillation
is observed with a constant frequency for larger wavenum-
bers k

While (i) and (ii) are commeon features for photo cross
sections [15] the superimposed oscillatory structure is
unique for potentials with a sharp edge such as clusters
The frequency of the oscillation equals approximately the
diameter of the cluster which can be seen by considering
the Fourier transform of the cross section to length space
{Fig 3) The larger the k-range considered in the Fourter
transform, the more pronounced the peak at the cluster
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Fig. 3. Fourier transform of og(k) as a function of #/2 to show the
comnection to the cluster radius The lines correspond to the poten-
tials of Fig 1

diameter in length space. The Fourier transform may be
used to determine the cluster radius directly from the
photo cross section, provided a sufficiently large k-1ange
can be taken into account. This opens the possibility for
an experimental determination of the cluster size from the
photo cross section. We will come back to this point in the
next section We also postpone the discussion of the obvi-
ous quantitative differences since their origin becomes
more comprehensible when the analytic structure of the
cross section is known.

4 Semiclassical analysis of the photoiogization cross
section

Using semiclassical WK B-wavefunctions and the method
of stationary phase to evaluate the radial dipole matrix
element (2) the photo cross section can be approximated
analytically. Moreover, the evaluation of the integral is
facilitated by the shaip edge of the cluster potential. Pic-
torially, this has the consequence that an electron, having
absorbed a photon inside the cluster and leaving it with
some velocity, will feel a sudden change in the potential
passing the edge of the cluster. Formally, use of this effect
can be made by expressing the dipole operator in the
acceleration gauge as the derivative of the potential. The
sudden change of the potential translates now to a dipole
operator which is strongly peaked about the edge L of the
potential (see Fig 4). For the Woods—Saxon potential (4}
it has the form '

1 ¥ { 1
D(r) =—-2 =y
) = i da cosh G = 023~ iw

Since the radial integral of (2} contains always a bound
state wavefunction the classically allowed region for these
states is most relevant It is roughly given by the range of
the potential well with depth - V. Hence, to obtain the
major energy dependence of the cross section, it is suffi-
cient to use WK B-wavefunctions where the potential has
been approximated by V(1) - V, Furthermore, the

(6)
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Fig. 4. Derivative of the three different potentials in Fig. 1 with
respect to r The coding of the lines is with respect to Fig 1

angular momentum dependence is weak and irrelevant for
large photon energies . With these approximations we
can write for the classical local wavenumber

k() = /2E =2V () — I{l + )i >~ /2E + 2V,. (N

The WKB-functions have now the simple form [16]
1
gb(r)fvﬁ cos(kr — ), {8)

where the initial and final states are characterized by the

- respective energies E in (7) and by different phases # in (8).

In the case of the initial state, 5 contains the quantization
condition [16] while for the final continuum state z
approximates the usual phase shift of the scattering
wavefunction The radial dipole integral reads

1
Y | DY) N Re(l, +1_), &
where
1 s .
I, =—— [dr gt (10)
o/ kok;

with the phase
S.() =y £ k)r —(; £ n) —iln ¥’
=kyr—n, — iV (11

The integrals I, may be approximated by their value at

the (complex) stationary phase point defined by

ds,
dr

In the limit of large k., = k we can solve (12) analytically
for the Woods—-Saxon potential (4) with the result

=0 (12)

rg=L + fan (13




This leads finally to a total cross section whose depend-
ence on the wavenurnber of the photon can be expressed
as {see (26) in the appendix)

R{k)
w'.','z

o{cw)oc e~ (1 + fcos(2kL — y)), (14)

where k = (2w + &)'/?. The rational function R(k) and -

hence the algebraic behavior even for large k depend on
the potential. For the Woods—Saxon potential we obtain
for R{k)jw”?~w™ 2 while for a square well potential
(which is obtained from (4) with an infinitely sharp
edge, ie in the limit a -» 0) R(k) is constant (see (26)28)
in the appendix). Ience the algebraic behavior for
high frequencies is «~"/? in this case. The constants
@, §, 7 and § can be interpreted within the Woods—Saxon
model potential in the following way (see appendix). «
is proportional to a which controls how sharp the
edge of the cluster potential is The sharper the edge
the slower the exponential decay of the cross section
with k& In the limit of an infinitely sharp edge of the square
well potential there is no exponential decay at all
The exponential decay is characteristic not only for the
Woods-Saxon potential but also for DFT cluster
potentials. Within our formalism it is easy to see that
a functionally different behavior of the potential would
also lead to a different dominant decay (e.g. for a Gaussian
form of the derivative ¥’ of the potential we find a Gaus-
sian decay proportional to exp( — «k?) in the photo cross
section)

The constants § and y control the amplitude and phase
of the oscillations and are in principle I-dependent. How-
ever, as argued in (8) this effect is negligible for larger k.
The photon wavenumber k is theoretically expressed
through the final energy E of the ionized electron and
therefore differs for electrons from different” shells.
However, the differences are small and the theoretical
expression can be linked to the more practical definition
via iw = E — E; in the following way: The highest occu-
pied shells have the highest multiplicity and will contrib-
ute most to the iomization cross section Their initial
energy is for a neutral cluster roughly given by
E,= — Vp/2 Hence, k* =2E + 2Vo=x2w + V, so that
&= V. This result may also be expressed as §~2F, where
E; is the binding energy of the electron fiom the highest
occupied shell

Summarizing this analysis we see that details of the

photo cross section depend quite sensitively on the form of

the potential Also the quantitative differences in the three
cross sections (Figs. 2,3) can now be explained from the
form of the cluster potentials. The oscillations are not in
phase and differ in amplitude for the three potentials since
they generate different ff and y. A more robust quantity is
the frequency of the oscillations linked to the cluster size.
The small difference in the size L from the Fourier trans-
form (Fig 3) can be traced back to the location of the
maximum of ¥'(r} (Fig 4) which enters the matrix element
and the stationary phase condition (12} Despite the rela-
tively good agreement of the energy spectium among the

three potentials (Table 1) the location of the maximum of

V' is different for each of these potentials in a way which 1s
consistent with the result for L from Fig 3.
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5 Conclusions

Using different model potentials for clusters we have in-
vestigated the photo ionization dynamics in terms of the
total cross section. From numerical calculations as well as
semiclassical analytical approximations we predict that
the total photo cross section of spherically symmetric
alkali metal clusters oscillates as a function of the photon
wavenumber with a period that equals approximately the
diameter of the cluster. This remains true as long as
a deviation from the spherical shape can be described
perturbatively which is the case for larger clusters.

Hengce, it should be possible to determine the cluster
radius experimentally from the Fourier transform of the
photo cross section. On the other hand, the analysis of the
features of the photo cross section reveals a sensifive
dependence on the form of the potential Such information
may be extracted from future experiments and could be
used to improve cluster potentials

We would like to thank 1S Briggs, C. Ellert and H Haberland for
helpful discussions This work has been supported by the Deutsche
Forschungsgemeinschaft within the SFB 276

Appendix

The integral (10) can be evaluated by stationary phase in
the following way

5
fdr expliS ) v et exp(iS(r ), (15)
‘ [87(rs)

where r fulfills the condition

d
&;S(.‘rs) =0, (16)

i.e rgis the complex stationary point of the phase (11) For
further reference we give the derivatives of the potential (4)
with ¥y = (r — L)/(2a)

Vi) = 4a cosh? y "
'V,

V”(T) = a(r) tanhy

V() = — %“ — 3tanh® y)

The stationary phase condition (16) leads to

v 1
ik, z(——f)zﬁtanhy (18}
V a

which is equivalent to

ts, = L+ 2iaatan(ak ., ) (19)
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Hence, the integral (10) has in stationaty phase approxi-
mation the value

N 1+a
* Zw\/:

exp(iki L—in,

— 2ak, atan (aki s (20)
where the identity

1 2
cosh*{fatanx) (1+x9 =

has been used Recalling the radial dipole matrix element
from (9)

1
WD)~ Re (T +1-), (22}

we get

[<gs I D> 12

2
~wk,
+ (A4 — B)?sin’K;) + ((A + B)*cos’K
— (4 — BYsin®K;) cos(2k, L — 27}
+ (4% — B)sin 2K )sin(2k, L — 27,)],

exp( — 4akcatan (ak . )) [((A + B)*cos* K;

(23)
with the abbieviations

Ki=kL—n

Vo [m

4 vk,

A= /1 + a’k% exp( — a2katan(ak))

(24)

C=

B =./1 + a*k? exp(aZkatan{ak .)).
For large k; = k the approximations

ky~k_mk (25)

atan(ak.) mg

are valid. The total cross section (2) may then be written in
the form (see (14))

glwy=D g !2) exp( — 2ank)(1 + fcos(2kL — )}, (26)

where

RE) = (1 + YO

. @)

Voﬂz ap 1.
2k, 21 +1
+ sinh?*(ank;)sin’K ;)

(cosh®(amk;}cos® K;

B=
cosh*(ank,)cos® K, — sinh*(ank,)sin® K, + 1 sinh(2aznk;)sin 2K,
cosh®{ank;)cos® K; + sinh*(ank,)sin® K,

1 sinh(2ank,)sin2K,
=24, + ata z - :
v= ey & (cosh;"(arc.fci)cos2 K; — sinh*(ank;)sin® K,-)

Note that in the limit @ — 0 the Woods—Saxon potential
approaches a squate well In this case (26) simplifies for
large k to
(o)~ 1 Vicos? Kplar 1.

- /2 \/gkl 2[1 + 1

P {1 + cos(2kL — 25 ,))

(28)

as can be seen from {27)
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