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Abstract
A quasiclassical approximation to quantum mechanical scattering in the Møller
formalism is developed. While keeping the numerical advantage of a standard
classical trajectory Monte Carlo calculation, our approach is no longer restricted
to using stationary initial distributions. This allows one to improve the results
by using better suited initial phase space distributions than the microcanonical
one and to gain insight into the collision mechanism by studying the influence
of different initial distributions on the cross section. A comprehensive account
of results for single, double and triple differential cross sections for atomic
hydrogen will be given, in comparison with experiment and other theories.

1. Introduction

Electron impact ionization of hydrogen probes the scattering properties of three charged
particles without any influence from passive core electrons or other perturbations. For this
reason it has served as a benchmark system for understanding non-separable Coulomb collision
dynamics for a long time, which is reflected in the enormous amount of literature and the
remarkable theoretical and experimental success in handling these collisions. A milestone
was furnished by the experiments by Ehrhardt and his group obtaining fully differential cross
sections on an absolute scale [1,2]. Theoretically, many different approximate treatments have
reached increasingly better agreement with experiment [3–7] and fully numerical calculations,
first available for the total cross section [8], have reached a breakthrough recently [9] for
fully differential cross sections and are now producing results for many impact energies and
geometries [10–12].

Our goal with the formulation of a quasiclassical theory of electron impact ionization
is to open the way for considering scattering of more than three particles, as already done
experimentally with double ionization by electron impact [13, 14]. Furthermore, we aim at a
description which allows for a calculation of the entire scattering information (i.e. the whole
accessible parameter space in final angles and energies) at once. This is motivated by similar
experimental capabilities made possible by the COLTRIMS technique which allows for a new
representation of scattering data (see e.g. [15, 16]).
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Clearly, with the present computational and theoretical tools this is not possible for four
or more particles. One has to fall back on quasiclassical approximations based on the rather
successful classical trajectory Monte Carlo (CTMC) method [17]. As will be explained later,
there is an obstacle deeply rooted in classical mechanics which has hindered extension of the
CTMC method to more than one active target electron. One goal of our work is to overcome
this obstacle. In this paper we have restricted consideration to three particles, namely the
electron impact ionization of hydrogen, in order to see where the strengths and weaknesses of
our quasiclassical approach lie. Also, we would like to make contact with the original CTMC
method by deriving it as a limiting case of our approach.

Combining the classical treatment with quantum effects has had a long history in collision
theory. Shortly after Abrines and Percival introduced the CTMC method where the target
electron was represented by an ensemble of Kepler orbits of fixed energy (‘microcanonical
distribution’), alternative descriptions were proposed, e.g., the Wigner transform of the
quantum wavefunction [18], ‘superpositions’ of microcanonical distributions of different
energies [19, 20] and, only recently, an ‘optimum classical description’, based on symmetry
considerations and phase space partitioning [21]. In an attempt to describe four-body systems,
helium was modelled classically in an independent-electron picture or the interaction between
the two bound electrons was switched off temporarily to prevent autoionization (see, e.g.,
[22–24]). All these attempts had in common that they started from the purely classical model
and tried to extend it by implementing quantum elements (see, e.g., [25, 26]). Such strategies
have limited predictive power, as parameters or switch-on times must be fitted to reproduce
particular cross sections.

As briefly reported in [27] we propose an alterative approach: we start from the (exact)
time-dependent quantum formulation, translate it to phase space by means of the Wigner
formalism and finally approximate this description classically by setting h̄ = 0. Hence, we
can approximate quantum collisions in a controlled way. Furthermore, we gain additional
freedom for the description of the target electron. This leads to an improved agreement of
quasiclassical differential cross sections with experiment and, even more important, opens the
way to incorporating multi-electron targets without any further approximation to the dynamical
description.

The paper is organized as follows: the derivation of the ‘quasiclassical’ approximation
will be given in section 2, in section 3 we will characterize the four initial state distributions
that we use for the hydrogen target; the results will be presented and discussed in section 4.
The last section contains a conclusion and an outlook to multi-electron targets.

2. The quasiclassical modelling of a collision

We divide the complete ionization process into three parts: setting up the initial state,
propagating this initial phase space distribution and finally extracting cross sections from
the scattered initial distribution. To arrive at a consistent formulation, each part is treated in
the same way by translation into the Wigner picture of quantum mechanics [28]. The classical
approximation is subsequently achieved by setting h̄ = 0 [29].

2.1. Initial distribution

We construct the initial distribution w( �p, �q) from the h̄ = 0 limit of the Wigner distribution.
This distribution is discretized and the individual mesh points in phase space then represent
initial conditions for solving classical equations of motion. However, the resulting paths are
not those of real electrons in real space; rather they should be interpreted as the evolution
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of a discretized phase space density which may have negative parts as well (e.g., for the
Wigner distribution). These parts simply contribute to the cross sections with their negative
weight; there is no need to argue about ‘negative probabilities’ which clearly demonstrates the
advantage of starting with a quantum formulation.

However, naively incorporating such a generalized initial phase space distributionw( �p, �q)
into the usual classical framework leads to other difficulties [18]: in general w( �p, �q) will not
be stationary under the classical propagation, i.e., its Poisson bracket with the Hamiltonian
of the unperturbed target does not vanish, {Hi

0, w} �= 0. Hence, the initial target distribution
will look very different at the time at which the projectile reaches the target and the collision
actually happens.

Another problem is even more severe: when using a classical phase space distribution
derived from a quantum wavefunction to select initial values for a classical trajectory
calculation, most of these initial values do not have the energy of the hydrogen ground state, but
they start from a range of energies around the binding energy. Consequently, when extracting
cross sections, it is not sufficient any more to just test the final energy of one of the electrons,
as the other electron’s final energy cannot be calculated as the difference from the mean total
energy. In a total cross section this energy spread might be neglected, but cross sections
differential in energy would either be convoluted with the initial energy spread or, if the final
energy of the two continuum electrons is added up for a specific trajectory, only trajectories with
those initial conditions from the initial distribution which initially started on the energy shell
actually contribute. We will explicitly address this problem, which has not been mentioned in
previous calculations using non-microcanonical initial distributions [18–20].

Next, we will propose a formulation for the propagation and the extraction of the cross
section that can deal with the difficulties arising from general initial distributions.

2.2. Propagation

Quantum mechanical time-dependent scattering is described by calculating the amplitude of
transition between the initial and final state through the S-matrix, which is in turn related to
the T -matrix describing the cross section directly; see, e.g., [30]:

Sf i = 〈f |
†
−
+|i〉, (1)

where


∓ = lim
t→±∞U †(t)U0(t) (2)

are the Møller operators. The meaning of 
+, e.g., is to propagate backwards with
U0(t) = exp[−iHi

0 t] using the asymptotic initial Hamiltonian Hi
0 without the projectile–

target interaction and then forward under the full Hamiltonian with U(t). If the initial and
final states are eigenstates of the asymptotic Hamiltonians Hi

0 and H
f

0 , often a short version
is used:

Sf i = lim
t→∞〈f |U(t)|i〉. (3)

By a Wigner transform, the quantum time evolution operator U(t) can be directly transformed
with the help of the quantum Liouville operator Lq , which reduces to the classical Liouville
operator Lc in the limit h̄ → 0 [31]. The latter describes the evolution of a phase space
distribution w( �p, �q, t) according to the Poisson bracket

∂tw = {H,w} ≡ −iLcw (4)

in analogy to the quantum evolution of the density matrix ρ generated by the commutator,
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∂tρ = −i[H, ρ]. (5)

Hence, we could directly use the translation of (3) to classical mechanics via the Liouville
operator. In connection with the microcanonical initial state distribution this is indeed
equivalent to the CTMC formulation [32, 33].

However, equation (3) is insufficient if the distribution is not stationary under the initial
asymptotic propagation. Instead, one must use the complete form (1) of the scattering operator
S = 


†
−
+. Correspondingly, the Møller operators are translated into a classical propagation

scheme, which ‘transforms’ the initial non-stationary phase space distribution wi(γ ), where
γ = ( �p1, �q1, �p2, �q2) is a point in the 12-dimensional phase space, into the ‘scattered’ result of
the reaction wf (γ ) at the same point in time:

wf (t = 0) = lim
t→+∞ lim

t ′→−∞
eiLf

c te−iLc(t−t ′)e−iLi
c t

′
wi ≡ Kwi(t = 0). (6)

To perform the actual calculation, the initial distribution is discretized, wi(γ ) =∑
n wnδ

12(γ − γ i
n) with the normalization

∑
wn = 1. With (6) we get as the final distribution

wf (γ ) = Kwi =
∑
n

wnδ
12(γ − γ f

n ), (7)

where each phase space point γ f
n emerges from γ i

n through solving successively Hamilton’s
equations, first with Hi

0, then with H and eventually with H
f

0 . With this propagation scheme
a non-stationary initial distribution will spread when being propagated backwards with the
asymptotic Li

c. However, it will be refocused under the following forward propagation with
Lc. Hence, when the actual collision happens at t ≈ 0 the original target distribution is
restored, slightly polarized by the approaching projectile.

The propagation now compensates for the non-stationarity of the initial distribution, which
means, that any arbitrary phase space description can be used for the target, even classically
unstable multi-electron targets like helium.

The Møller approach is only valid for potentials that fall off ‘fast enough’ as the distance
increases. This condition is fulfilled in the initial channel, as the electron is scattered off the
neutral target atom. In the final channel, with both electrons being free, we effectively cut off
the long-range Coulomb interaction at some large distanceR when we switch from the forward
to the backward propagation. The scattering amplitude itself is sensitive to the cut-off, but the
cross section approaches a well behaved limit as R → ∞; see, e.g., [30]. In the light of the
much more drastic classic approximation of the propagation we have not considered a more
sophisticated treatment of the Coulomb interaction, as proposed, e.g., by Dollard [34].

2.3. Extraction of cross sections

According to (1) the cross section is extracted from the overlap between the scattered initial
wavefunction S|i〉 and the asymptotic final state |f 〉, which is an eigenstate of H

f

0 . For
ionization we assume that |f 〉 can be approximated by two free electrons. However, before
we come to the actual evaluation we have to formulate the cross section such that it can make
full use of the non-stationary initial phase space distribution wi( �p1, �q1), where ‘1’ refers to the
target electron. Without modification, the total energy E of the final state forces, by energy
conservation for each classical trajectory, only those parts of the initial phase space distribution
which have the same total energy E (see above) to contribute to the cross section. However,
this would bring us essentially back to the microcanonical description. In order to make the
entire non-stationary initial state distribution ‘visible’ to the collision process, we use the
energy transfer �E1 = E

f

1 − Ei
1 to the target electron rather than its energy E

f

1 itself as a
differential measure. Of course, as long as the initial state is on the energy shell with a well
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defined energy E = Ei
1 + Ei

2, the new definition coincides with the usual expression for the
cross section:

d5σ

d
1 d
2 dE1

∣∣∣∣
E

= d5σ

d
1 d
2 d�E1

∣∣∣∣
E

, (8)

where d
i are the differentials for the solid angles of the two electrons, respectively.
To extract this cross section we have to evaluate the phase space integral [35, 36]

d5σ

d
1 d
2 d�E1
=

∫
dγ i δ(


f

1 − 
1)δ(

f

2 − 
2)δ(�E
f

1 − �E1)wf , (9)

where the integration is over the initial state variables with the ‘scattered’ distribution
wf (γ

f ) = Kwi(γ
i).

The cross section (9) is a generalization of the one derived, e.g., in [35], where the initial
target bound state was assumed to live on a torus, i.e., wi( �p1, �q1) = δ( �I ( �p1, �q1) − �I0) with a
well defined multi-dimensional action �I0 and the initial project state fixes ( �p2, �q2), except for
the impact parameter area dx2 dy2. Note that the change of variables from the momenta and
positions for the scattered distributionwf to scattering angles and energy transfer in (9) contains
a constraint on how a differential phase space volume centred around its guiding trajectory
contributes to the cross section: only those phase space cells whose trajectory has the correct
energy transfer and positive energy after the change of variables are relevant for ionization.
Trajectories with correct energy transfer but final negative energy (i.e., one electron is still
bound) do not contribute to the ionization cross section. Consequently, if one is interested in
the total ionization cross section only, equation (9) simplifies to

σtot = πb2
max

∑
E

f

1 ,E
f

2 �0

wn#(�E
f

1 − �E1). (10)

Finally, we have to respect the Pauli principle for the two identical electrons. This can
be done in the initial or final state. The Wigner transformed (anti-) symmetrized asymptotic
state wavefunction has two parts: the ‘classical’ part, independent of h̄, where the indices
of the two electrons are interchanged and an ‘interference term’. In the limit h̄ → 0 the
latter part oscillates infinitely rapidly and its contribution to the cross section (9) vanishes
upon integration. In the actual calculation it is easier to perform the remaining classical
symmetrization in the final state.

3. Initial target phase space distributions

In the previous section we have made a theoretical effort to formulate an approximate scattering
theory which goes beyond the classical approximation still using classical trajectories as in the
CTMC method. Our goal was to allow for non-stationary initial target distributions in phase
space as they occur if one translates the quantum wavefunction into a phase space distribution.
This translation, however, is not unique and depends on the correspondence rule used as shown
by Moyal [37]; see also [38–40].

Our main interest in this first application of non-stationary distributions is not to optimize
the initial distribution but to learn how the collision dynamics is influenced by different aspects
of initial distributions. For this purpose we have chosen four prominent distributions for which
we will compare the same collision processes. As well as the well known microcanonical
distribution, we have chosen Cohen’s ensemble, which is a superposition of microcanonical
distributions [20]. In addition to these more classical distributions we will implement the
product distribution, the product of the quantum mechanical density in momentum and
coordinate space [40], and the well known Wigner distribution [28].
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Table 1. Energy spread for the phase space distributions used in our calculations; see the text.

Distribution Microcanonical Cohen Product Wigner
√
(�E)2 (au) 0 0.24 1.22 0.88

All four distributions have the correct expectation value of the binding energy of Eb =
−0.5 au. However, they have different energy spreading, defined as

(�E)2 =
∫

d3p d3q w( �p, �q)(H(�q, �p) − Eb)
2∫

d3p d3q w( �p, �q) . (11)

From table 1 one sees that the Wigner and the product distribution have rather broad
energy distribution. This is in general the price one must pay for phase space distributions
which resemble closely quantum wavefunctions. For later reference we characterize very
briefly each distribution.

3.1. The Wigner distribution

From a wavefunction ψ(�r) one obtains the Wigner distribution by means of the reversible
transformation [28]

w( �p, �q; t) = 1

(2πh̄)3

∫
d3s ei �p�s/h̄ψ∗(�q + �s/2, t)ψ(�q − �s/2, t). (12)

By construction, the Wigner function reproduces the quantum probability densities in
coordinate and momentum space:∫

d3pw( �p, �q) = |ψ(�q)|2 and
∫

d3q w( �p, �q) = |ψ( �p)|2. (13)

Note that the Wigner function depends on the angle between �p and �q with negative contributions
outside the classically allowed region, thus incorporating quantum correlations into the phase
space. We have calculated the Wigner function following Eichenauer et al [18].

3.2. The product distribution

As the name indicates, the product distribution is defined as the product of the radial quantum
probabilities in coordinate and momentum space [40]; in our case for the hydrogen ground
state,

w(r, p) = ρ(r)σ (p) with ρ(r) = 4r2e−2r and σ(p) = 32p2

π(1 + p2)4
, (14)

where r = |�q| and p = | �p|. Clearly, by definition the correct quantum density is obtained in
coordinate or momentum space as for the Wigner function (13). However, now the directions
of �q and �p are independent of each other.

3.3. The microcanonical distribution

The microcanonical distribution is the standard (classical) distribution of the CTMC method
based on Bohr’s model of the hydrogen atom [17]. The classically accessible area of phase
space on the energy shell is sampled with equal probability in angle–action coordinates.
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This distribution has the ‘correct’ vanishing spread of the binding energy and the correct
quantum density in momentum space. However, the coordinate space density

ρmicro(r) = 2r2

π

√
2

r
− 1, (15)

has a cut-off which is not present in the quantum density (cf (14)). Since the microcanonical
distribution is derived from Bohr’s atomic model, there exists, of course, no extension for
constructing a corresponding classical distribution for more complex targets, e.g., the helium
atom. Finally we note that the Wigner distribution, if forced to be on the energy shell, reduces
to the microcanonical distribution for hydrogen.

3.4. Cohen’s distribution

In order to preserve the stationarity of the microcanonical distribution, but still come closer
to the quantum densities, Cohen proposed another distribution which we will call Cohen’s
distribution in the following [20]: it is obtained by summing microcanonical distributions of
different energies such that the mean binding energy is correct and only bound orbits contribute.
The resulting (analytical) coordinate density is set to the quantum mechanical one. With these
constraints the system of equations is already fully determined and the momentum density
obtained is only slightly different from the quantum mechanical one. The energy spread of
this distribution is small compared to the Wigner or product distribution.

In the following we will see how these four distributions perform under different collisions.
Thereby, we will also gain some insight into which properties of the target system are
highlighted by a specific cross section.

4. Results for electron impact ionization of hydrogen at three different impact energies

We will present our results for the three different impact energies of 250, 54.4 and 17.6 eV. The
choice of these values is motivated by existing experimental data for comparison. At a given
impact energy all cross sections, total, single differential and multiple-differential ones, can
be extracted from the same numerical data set; see table 2. The only difference is that higher-
differential cross sections require many more trajectories to achieve sufficient statistics since
only a few hundred out of several million trajectories typically contribute to a fully differential
cross section.

For this reason we have carefully implemented the numerical integration of the
trajectories. The equations of motion have been regularized to avoid the attractive Coulomb
singularities [41] and a sixth-order symplectic integrator [42] with adaptive step-size control
has been used. Hence, we are able to handle electron trajectories which directly hit the
nucleus. As a consequence the integration is very stable: at a given total energy, fewer than ten
trajectories had to be discarded due to a too-large integration error. This stability is important,
since the trajectories discarded should be significantly fewer than those contributing to a fully
differential cross section.

4.1. Total ionization cross sections

For the microcanonical distribution, the product distribution and Cohen’s energy distribution,
every trajectory j has the same weight wj = +1/Ntot in (10) which reduces as a consequence
to

σtot = πb2
maxNion/Ntot , (16)
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Table 2. Overview of the numbers of trajectories calculated for the various impact energies and
initial distributions: bmax denotes the maximum impact parameter used; Ntot and Nion give the
total numbers of trajectories and those contributing to ionization, respectively (cf section 2.3).

Ein (eV) Distribution bmax (au) Ntot (Mio.) Nion

250 Microcanonical 3.5 6.1 155 484
Product 12 186 395 691
Wigner 15 104 339 242
Cohen 7.5 17.75 83 492

54.4 Microcanonical 6 20 455 781
Product 22 80 162 752
Wigner 22 181 537 997
Cohen 9 25.67 222 888

17.6 Microcanonical 4.5 17.5 320 244
Product 9 16.5 79 146
Wigner 22 50.5 47 077
Cohen 8 14.9 80 780

Table 3. Total ionization cross section in 10−17 cm2 at the three main impact energies compared
to experimental data given by Shah et al [43].

Ein (eV)

Distribution 250 54.4 17.6

Microcanonical 2.76 7.24 3.27
Product 2.71 8.69 3.55
Wigner 2.52 7.91 3.98
Cohen 2.33 6.20 3.06
Experiment 3.43 6.19 2.1

the familiar form of standard CTMC. The result for the three impact energies under
consideration is given in table 3.

The total cross section was calculated for the energy range from 15 up to 500 eV impact
energy. As one can see from figure 1, the overall trend of the experimental cross section is
reproduced. However, the energy at the maximum of the cross section is too low by nearly a
factor of two and the high-energy limit of the calculations obeys the classical 1/E law [44]
instead of the quantum mechanical ln(E)/E behaviour [45]. The fact that all initial state
distributions, from the classical microcanonical one to the quantum Wigner distribution, result
in the same total cross section to within some ten per cent shows that the deviation from the
exact result is mainly due to the dynamical evolution of the distribution during the collision.
The classical evolution cannot account for quantum tunnelling, e.g., which becomes relevant
for higher impact energies.

Can one hope under these circumstances to obtain reasonable results for differential cross
sections? As has been shown previously [4], disagreement on the absolute values of the cross
section does not necessarily imply a similar disagreement on the shape of the differential cross
sections.

4.2. Single differential ionization cross section

Generally the single differential cross section evolves from a U-shaped form for high energies
(figure 2, left panel, at 250 eV) to a flat curve for low energies (figure 2, right panel,
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Figure 1. Absolute total ionization cross sections calculated with the four compared initial
distributions. The measurements (thick solid curve) are from Shah et al [43]. The dots denote
the energies at which the differential cross sections were calculated.
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Figure 2. Singly differential cross sections dσ/dE for different initial distributions atEin = 250 eV
(left) and at Ein = 17.6 eV (right). The measurements by Shyn [46] at 250 eV and our calculations
at 17.6 eV are scaled to the correct total cross section. The quantum calculation (solid curve) is
from Roy [47]. Comparison at 17.6 eV is made with calculations by Bray [50] and Baertschy
et al [10]; see the text.

at 17.6 eV). The cross section at 54.4 eV follows this trend and is not shown here. There is little
difference between the initial distributions. The agreement with the (scaled) experiment by
Shyn [46] as well as with a calculation by Roy [47] employing an exchange-modified Glauber
approximation is fairly good at 250 eV. Our result is also consistent with a coupled pseudo-state
approximation [48] and a distorted-wave Born calculation [49]. At 17.6 eV the form of the
quasiclassical cross section agrees well with results for the L = 0 partial wave obtained with
two different fully quantal methods, namely exterior complex scaling and a time-dependent
CCC method [10]. However, there is clear disagreement with Bray’s CCC calculation [50]. In
this context it should be noted that towards threshold (13.6 eV impact energy) the contributions
of all partial waves should behave as the S-wave contribution [51]. Moreover, the Wannier
theory and classical calculations [52] predict a flat cross section to within 5%.

Overall, the single differential cross sections are in good agreement with the experiment
and full quantum calculations and they do not provide a critical test for the initial phase space
distributions used. However, the very formulation of energy differential cross sections for
non-stationary initial distributions has been possible only by the definition of the cross section
in terms of the energy transfer (see section 2.3 and table 1).
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Figure 3. Doubly differential cross sections for the fast (Eb = 231.4 eV, left panel) and the slow
electrons (5 eV, right panel). The DDCS for the different initial distributions are scaled to give the
correct total cross section. The cross sections for the fast electrons are compared to the quantum
calculations of Bray [53], those for the slow electrons to the calculation of Berakdar and Klar [6]
and the experiments of Shyn [46]. ‘Born’ denotes a first-order Born approximation.

4.3. Multiply differential cross sections at 250 eV impact energy

The impact energy of 250 eV has often been studied, since it is high enough for the first Born
approximation to be applicable, but still not too high for a reasonable counting rate in the
experiments.

4.3.1. Double differential ionization cross section. As an example for a double differential
cross section we present the angular distribution of the electrons for fixed energy sharing of
231.4 + 5 eV. The shape of the different distributions in the left panel of figure 3 for the fast
electron is similar and close to that from the quantum calculations (there are no experiments
available for this energy).

The situation is quite different for the slow electron (figure 3, right panel). However, the
large deviation from the experiment at small angles is probably due to a systematic error in
the experiment [46] (see remarks in [6, 53]). More interesting for us is the fact that already,
at the level of double differential cross sections, different initial state distributions begin to
make a difference. In particular the microcanonical distribution leads to a cross section with
an opposite trend compared to the others. The binary peak (around 70◦) is almost absent and
the cross section is shifted towards larger angles. Apparently, the angular dependence of the
scattered slow electron is sensitive to the initial spatial distribution of the bound electron which
is not correctly modelled in the microcanonical distribution (see (14), (15)).

4.3.2. Triple differential ionization cross section. For electron impact ionization of hydrogen
at an impact energy of 250 eV, a wide range of available data exist, from measured fully
differential cross sections (see, e.g., [1,2,54,55]) as well as from calculated ones; for a recent
review see [56].

The small volume of the final phase space imposes a serious statistical limit on our
quasiclassical calculations: a triply differential cross section at the experimental resolutions
of about ±1◦ in the scattering angle of the fast electron and ±2◦ for the slow electron, the
definition of the scattering plane at ±10◦ and an energy resolution of less than 1 eV consists of
a fraction of less than 10−9 of the final state phase space volume only. If the ionization events
were equally distributed over the whole phase space, we would hardly find one trajectory for
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a cross section. Due to the structure in the pattern of the outgoing electrons, we can record
about 100–300 events for those configurations where experimental data are available.

The small number of trajectories contributing to the TDCS forced us to make the bins wider
than their mutual distance. With this trick, each event contributes to two or three adjacent data
points of the cross section. Still, the comparison with the DDCS shows that the number of
propagated trajectories would have to be increased by one or two orders of magnitude for full
statistical convergence.

Once the trajectories have been calculated it is easy to filter out cross sections for arbitrary
final electron configurations. We will show cross sections for some of the measured data in
Ehrhardt geometry, where the fast electron is fixed at a small angle and the angular distribution
of the slow electron at a fixed energy is measured: this configuration is very sensitive to the
details of the initial distribution and, due to the slow ionized electron, to the dynamics of the
reaction. In general two main features appear: the so-called binary peak, located around the
direction of the momentum transfer (in the range between 70◦ and 85◦) is usually explained
by the classical picture of a binary scattering of the two electrons without interacting with the
nucleus. The recoil peak consists of electrons which are rescattered from the nucleus by 180◦

after the binary encounter. The recoil peak lies roughly opposite to the binary peak (for an
overview of the various processes and their explanations, see, e.g., [57]).

Out of the many parameters for which experimental data are available we show two
examples from Erhardt et al [1,2] in figure 4. Angles out of the scattering plane between ±5◦

and ±20◦ have virtually no influence on the shape of the cross section; they only affect the
statistics. We set the angular range to ±10◦.

As is clear from figure 4, the microcanonical distribution is not capable of reproducing
the main features of the cross section: there is no binary peak (the ‘classical’ part of the cross
section) at small momentum transfer and at higher momentum transfer it is much too small
and shifted to larger angles. There is some structure in the region of the recoil peak, but as its
maximum is opposite to the direction of the fast outgoing electron, this is probably an ‘artifact’
of the calculation.

To describe the recoil peak in a quantum Born approximation, the final state wavefunction
for the slow electron has to be a Coulomb wave, i.e., it must include the interaction with
the nucleus. The overlap of this infinitely extended wavefunction with the small, localized,
radially symmetric ground state selects only the central region of the Coulomb wave, which
correspondents to rescattering at vanishing impact parameter. In the classical approximation
only a vanishingly small fraction of trajectories lead to a head-on collision with the nucleus
after the momentum has been transferred. Hence the probability for rescattering by 180◦ is
negligible and this quantum interpretation of the recoil peak can only be used with caution
for the classical approximation. However, one should keep in mind that this picture of the
electron recoil from the nucleus comes from the Born perturbation series with its hierarchy of
orders, i.e., a number of sudden two-particle interactions take place one after the other [57]. It
is only in this interpretation that ionization and rescattering are two distinct events; in the full
dynamical description all three bodies interact simultaneously.

The other three distributions perform remarkably better; in particular, with the product
and the Wigner distribution the position and the width of the binary maximum are reproduced
to within the statistical uncertainties. These two distributions are characterized by the correct
densities in coordinate and momentum space, whereas Cohen’s energy distribution lacks the
correct momentum distribution and the microcanonical one has the wrong spatial dependence.
We may conclude that at 250 eV impact energy the cross section is a projection of the initial
distribution’s phase space density onto the final configuration: both in momentum and in
coordinate space the description of the target must be correct.
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Figure 4. Fully differential cross sections in Ehrhardt geometry. The present calculations are scaled
to give the correct total cross section. The absolute measurements are from Ehrhardt et al [1].

4.4. Multiply differential cross sections at 54.4 eV impact energy

The impact energy of 54.4 eV is close to the maximum of the experimental total cross section.
The presentation of the cross sections will be similar to that at 250 eV.
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Figure 6. Left: doubly differential cross sections at Ein = 54.4 eV of the slow electrons with
Eb = 5 eV. The quasiclassical and the experimental results were scaled to the correct total cross
section. The experiment [46] is wrong again at small angles; the full curve is the fully quantum
mechanical calculation of [53]. Right: the same as on the left, but here the Wigner result is not
weighted with the sign of the Wigner distribution; see text for an explanation.

4.4.1. Double differential ionization cross section. The doubly differential cross section is
presented again for a pair of matching energies for the fast (figure 5) and the slow electrons
(figure 6) with energies of 35.8 and 5 eV, respectively. No experimental data exist for the
fast electrons. Comparison is possible, however, with Bray’s CCC calculation [53]. For the
slow electrons, experiments by Shyn are available, but only at an impact energy of 60 eV.
These experimental data were scaled onto the correct total cross section at 54.4 eV. They show
systematically too-high values at small angles, similarly to the cases for 250 eV (cf section 4.3.1
and [6, 53]).

The cross sections for the faster electrons are similar (figure 5); the quasiclassical results
show slightly higher contributions at angles above 45◦, almost independent of the phase space
distribution describing the target.

For the slow electrons the picture is quite different (figure 6, left panel): the Wigner
distribution reproduces the position of the binary peak (about 70◦) and its width fairly well,
whereas the microcanonical distribution nearly inverts the shape of the quantum mechanical
cross section. Cohen’s energy distribution gives a cross section somewhere between the
quantum Wigner description and the classical microcanonical modelling.

The cross section from the product distribution is much too high at small angles. This
behaviour can be simulated with the Wigner distribution as well, if |wn| is taken instead of wn

in (10); see the right-hand panel of figure 6.



1492 T Geyer and J M Rost

Table 4. Overview over the parameters for the triply differential cross sections in Ehrhardt geometry
extracted at Ein = 54.4 eV. The angle between the scattering planes was confined to ±12◦.

Eb (eV) θa Measured by

5 ± 0.5 4◦ ± 1◦, 23◦ ± 2◦ Röder et al [58]

The Wigner and the product distribution both reproduce the correct density in coordinate
and momentum space; the difference is that in the quantum Wigner distribution the radius
and the momentum vector are correlated with negative weights in regions outside of the
classical turning point (see section 3.1). The difference between the Wigner cross section
with the correct sign for each final value and the one with the same sign for each trajectory
shows that the contributions at small scattering angles come from these outer regions. The
negative parts of the Wigner distribution lead to partial cancellation of classically allowed
contributions, which nevertheless do not occur in the cross section. The product distribution
lacks the correlations and consequently gives the wrong cross section at small angles; here all
trajectories contribute. In the microcanonical distribution no initial values at all exist for radii
larger than 2 au; consequently the cross section is much too small for small angles. We conclude
that this type of doubly differential cross section strongly depends on quantal features which
are beyond the scope of a purely classical ansatz such as the standard CTMC one. However,
they can be incorporated in our h̄ = 0 approximation through the initial distribution.

4.4.2. Triple differential ionization cross section. The triply differential cross section
at 54.4 eV impact energy has been measured by Röder et al [58] in Ehrhardt geometry. In
figure 7 we show the cross sections for the parameters given in table 4.

The DDCS for the fast electrons, figure 5, is too high for small angles. We therefore
not only scale the TDCS onto the total cross section, but additionally for θa = 4◦ by a factor
of 0.25. This scaling has been performed in order to see whether the shape of the cross sections
for the slow electrons is reproduced correctly.

The differences between the phase space distributions can be seen clearly: the classical
microcanonical distribution fails to reproduce the binary peak at all parameters, whereas the
recoil peak agrees astonishingly well. The next more quantal description, Cohen’s energy
distribution, performs better with increasing θa , but the angle of the binary peak is always too
large. The opposite tendency, placing the binary peak at too-small angles, is seen with the
product distribution. At small θa the electrons even leave in the same direction, a configuration
that should be strongly suppressed by their mutual repulsion. This problem will be discussed in
detail for the impact energy of 17.6 eV. The distribution which is closest to quantum mechanics,
the Wigner distribution, can reproduce the cross sections over the entire range of parameters,
but with similar effects of both electrons leaving in the forward direction at θa = 4◦.

At this impact energy, switching from the classical models of the microcanonical or
Cohen’s energy distribution, which only reproduce either the coordinate or the momentum
space density, to the more quantal ones results in a definite improvement in the cross sections.
The product distribution, which satisfies both momentum and coordinate space densities,
already shows a binary peak, although shifted. With the correlated Wigner distribution the
best correspondence between experiment and our calculations is achieved.

4.5. Multiply differential cross sections at 17.6 eV impact energy

At the low impact energy of 17.6 eV the projectile is only moving slightly faster than a classical
electron on a circular orbit with the Bohr radius and the ionized electrons can only share 4 eV
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Figure 7. Fully differential cross sections in Ehrhardt geometry at 54.4 eV impact energy for a
fixed angle of θa = 4◦ (left) and 23◦ (right). The calculations are scaled according to the total cross
section and the form of the DDCS (for 4◦; see the text). The absolute measurements are by Röder
et al [58].

of energy. Hence, we expect different qualities of the initial distribution to become important,
compared to the case for higher impact energies.

At these low energies quantum calculations, using analytic final state wavefunctions
constructed from two-body wavefunctions, fail or perform only very poorly [56]. This indicates
that here a correct description of the simultaneous interaction of the three particles is crucial.
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Table 5. Overview over the geometries and parameters shown for the TDCS at Ein = 17.6 eV. For
all cross sections the scattering plane is confined to ±12◦. The measurements were done by Röder
et al [58, 59].

Geometry Extraction parameters

Symmetric |θa + θb| � 8◦, |Ea − Eb| � 0.3 eV
Asymmetric θa = 60◦ ± 3◦, Eb = 2 ± 0.2 eV
Constant θab θab = 90◦, 180◦ ± 5◦, Eb = 2 ± 0.2 eV

In this context it should be emphasized that we do not approximate the three-body dynamics
beyond the classical h̄ = 0 limit: all long-range Coulomb interactions between all particles
are taken fully into account.

4.5.1. Double differential ionization cross section. For the DDCS no experimental
comparison exists; our results will be compared to Bray’s CCC calculation [50] and to results
of an ECS calculation by Isaacs et al [12]. For symmetric energy sharing, the CCC single
differential cross section is too small by approximately one third; hence the CCC DDCS was
scaled by 1/0.66 for better comparison of the shape. Our results are scaled onto the total cross
section again.

As can be seen in figure 8, the more classical phase space distributions give considerably
better results. With the microcanonical distribution the cross section deviates only for angles
of less than 30◦ around the forward and backward direction. With Cohen’s distribution the
shape is too flat, whereas the Wigner and the product distribution overestimate the forward
direction. Both electrons have the same small final energy, which means that they influence
each other for a long time. Consequently, these cross sections are more dominated by the post-
collisional interaction (PCI) than those at higher energies. In order to describe PCI effects
correctly, the relative energy of the outgoing electrons is important. Due to our construction
of the cross section in terms of the energy transfer, this ratio is correctly described only for
initial distributions on the energy shell (i.e. without an energy spread).

4.5.2. Triple differential ionization cross section. At this impact energy experiments exist
for a variety of geometries [58, 59]. Table 5 summarizes them for the cross sections shown.
For an overview of recent quantum calculations see [11, 50].
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Figure 9. TDCS for a total energy of 4 eV: fully symmetric, i.e. θa = −θb and Ea = Eb = 2 eV,
on the left side and on the right side in Ehrhardt geometry for Eb = 2 eV and θa = 60◦ for the four
initial distributions. The cross sections are scaled onto the total cross section.

For the Wigner and the product distribution the same behaviour as at Ein = 54.4 eV can
be observed, but now the fraction of electrons going in the same direction is much larger;
see the fully symmetric cross section and, in Ehrhardt geometry, figure 9. This should not
occur due to the mutual repulsion of the electrons. However, for those initial distributions
which are not restricted to the energy shell (all but the microcanonical one), the energy of the
initially bound electron calculated from the energy transfer does not necessarily correspond
to the actual momentum of the electron. Hence, the two electrons may leave the nucleus one
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Figure 10. TDCS for constant angle between the electrons: left: with θab = 90◦; right: at 180◦.
The cross sections are scaled onto the total cross section.

after the other, although they have the same ‘nominal’ energy. This problem does not occur
for the microcanonical distribution which is on the energy shell.

At 17.6 eV impact energy, none of the initial distributions can fully reproduce the cross
sections, but in the overall picture Cohen’s distribution works best: on the one hand, the energy
spread is small enough to prevent the electrons from going in the same direction and, on the
other hand, the phase space density is still accurate enough for the ‘fast’ binary ionization
process. Hence, Cohen’s distribution is the only one which predicts the location and widths of
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binary and recoil peaks, although not their height (figure 9). At constant θab, for all but Cohen’s
distribution the (relative) magnitudes of the cross section for different angles are grossly wrong
(figure 10). For the Wigner and the product distribution even the shape of the cross section is
in disagreement with the experiment at θab = 90◦.

The cross sections at 17.6 eV show that even at this low total energy the fully differential
cross section is sensitive to the initial phase space density. On the other hand, Wannier’s
arguments suggest that close to threshold the cross sections depend primarily on the final phase
space configuration determined by the long-time behaviour of the ionization dynamics [60].
To describe it correctly, the accurate energy of the outgoing electrons is crucial. Hence, the
initial distribution must have a minimal energy spread. At 4 eV above threshold, these two
(contradicting) requirements are fulfilled best by Cohen’s energy distribution.

5. Summary and outlook

We have derived and tested a quasiclassical ansatz for charged particle impact ionization.
Starting from the time-dependent quantum mechanical formulation in the quantum Wigner
picture, we can reproduce in the limit h̄ = 0 the standard CTMC method. However, our ansatz is
more general. By keeping the backward–forward propagation scheme of the Møller formalism
and by defining the cross section in terms of energy transfer, we can exploit the full classical
limit (h̄ = 0) of the Wigner distribution for the initial state, which is neither stationary in the
classical approximation nor confined to the energy shell, two properties which are necessary
for the standard CTMC method. In fact, our formulation allows the use of arbitrary initial phase
space distributions. We have calculated and compared fully differential classical ionization
cross sections for four initial state distributions: the quantum Wigner function, the (standard)
classical microcanonical distribution and two other distributions which interpolate to some
extent between the Wigner and microcanonical distribution. From our results we conclude
that at high impact energies the density in phase space is the crucial property for describing
the ionization process. For lower energies the correlation between coordinate and momentum
becomes increasingly important. Even at the low energy of 4 eV above threshold, the initial
state has to be modelled correctly in coordinate and momentum space, although the long-time
evolution of the slow ionized electrons gains more and more influence on the dynamics.

The classical calculations are not meant to be a high-quality substitute for quantum
treatments; rather we wanted to formulate and test a consistent quasiclassical scattering theory,
applicable to differential cross sections, and free from the limitation to one active target electron
of previous approaches. Yet, most of the technical expertise from previous CTMC calculations
can be used with only minor modifications in the description of the initial target state, the
propagation scheme and the extraction of the cross sections.

With the present work we have demonstrated for one-electron targets, namely hydrogen,
that the aforementioned goals can be achieved. However, the main advantage of being able
to deal with unstable initial distributions will become apparent when calculating the double
ionization of two-electron atoms. The classical autoionization of the bound electrons does not
affect our quasiclassical approach. What should be improved in future work, particularly if
one is interested in collisions with small excess energy, is the implementation of contributions
off the energy shell. Since we have seen that fewer differential cross sections tend to be better
approximated with the quasiclassical approach, we are optimistic that a quasiclassical triple
differential cross section will be more accurate for double ionization than for single ionization.
However, this remains to be proven in future work.
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[13] Lahmam-Bennani A, Dupré C and Duguet A 1989 Phys. Rev. Lett. 63 1582
[14] Ullrich J, Moshammer R, Dörner R, Jagutzki O, Mergel V, Schmidt-Böcking H and Spielberger L 1997 J. Phys.
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