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We examine the properties of a quantum reflection trap when particle interaction is included. We explore the
influence of the particle interaction on the trapping for different regimes: repulsive particle interaction and
attractive particle interactions in its stable and unstable limit. With variational techniques, we calculate the
phase diagram of the quantum reflection trap and determine the stable and unstable regimes of the system.
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I. INTRODUCTION

Recent progress in experimentally controlling Bose-
Einstein condensates �BECs� �1,2� has shown that not only
single atoms, but condensed atomic clouds, Na in these
cases, can be quantum reflected as a whole by atom-surface
potentials when the kinetic energy of the incident cloud lies
within the threshold region of the potential. Armed with
these results, we suggested to trap ultracold atoms solely by
quantum reflection in �3�. The advantages of quantum reflec-
tion over other trapping mechanisms are obvious: stability of
the reflection behavior in the threshold region, no need for
external auxiliary fields to form the trapping potential, be-
cause the atom-surface interaction is provided by nature for
free. In �3� we have shown that the surviving particle density
inside the trap as a function of time gives reasonably good
results promising for future investigations. We have shown
that due to the atom-surface interaction, an enhancement of
the surviving particle density up to 50% is achievable. The
trapping times lie somewhat around 0.5 s, excluding mass
factors of the atomic species used.

The model we proposed in �3� relies solely on the thresh-
old properties of an atom-surface potential. The trapping
mechanism, quantum reflection, exploits the fact that cold
atoms are reflected by an attractive potential tail without
reaching a classical turning point. The mechanism of quan-
tum reflection has enjoyed a growing interest, experimentally
�4–8� and theoretically �9–11�.

The equivalence between the true atom-surface potential
and the step potential at threshold comes from the fact that
both obey the same law of reflectivity �see, e.g., �12��. Very
recently, Madronero and Friedrich �13� have shown that the
dynamics of a wave packet governed by a step potential is
indeed qualitatively similar to the dynamics of a wave packet
governed by a power-law atom-surface potential. Quantita-
tively, the differences are negligibly small and, as a matter of
fact, the step-potential model even underestimates the results
of the power-law potential. For quantum reflection, the use
of a step potential as a model for the atom-surface power-law
potential has thus been justified once more.

Here, we will examine the properties of a spherical quan-
tum reflection trap, which is the simplest choice of a trapping
system when particle interaction is included. To model our
potential in this case, we make the following assumptions on
the behavior of the atom-surface potential inside a sphere:

lim
r→L

U�r� = −
�2

2m

�4
2

�r − L�4
, lim

r→0
U�r� = 0, �1�

where L is the radius of the sphere. The assumptions �1� are
certainly true if the radius of the sphere is, by orders of
magnitude, larger than the extension of the atomic wave
packet inside the sphere. If this condition is fulfilled, the
inside wall of the sphere, for an atom close to it, must locally
look like a plane �14�. In good agreement with these require-
ments, the atom-surface potential inside a sphere can be
modeled as a step potential

U�r� = −
�2

2m
b−2��r − L�, b = �4. �2�

II. MODEL OF THE QUANTUM REFLECTION TRAP

The system of interest is given by the Gross-Pitaevskii
equation

i�
�

�t
��r,t� =

�2

2m
�− �2��r,t� +

2m

�2 U�r���r,t�

+ 8�aint���r,t��2��r,t�� , �3�

where the particle density is normalized to unity. The scale
of the system is naturally given by the spatial extension of
the trap, the radius L of the sphere. The scaling variables are
thus given by �3�

x =
r

L
, � =

L

�4
, 	 =

t�

2mL2 , � → L−3/2� . �4�

The last term in Eq. �4� restores normalization to unity. The
atom-surface potential, Eqs. �1� and �2�, shows only a depen-
dence in the radial direction, so the angles can be separated
off. Assuming the system to be in an s-wave state, the scaled
wave function is

��x,	� =

rad�x,	�

x
Y00��,��, Y00��,�� =

1
�4�

. �5�

With Eq. �5�, the angular parts can easily be integrated out
which yields for the interaction energy
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The radial coupling-constant is then given by

�rad =
8�aint

4�L
=

2aint

L
. �7�

The radial Gross-Pitaevskii equation describing our quan-
tum reflection trap in scaled form thus finally reads

i
�

�	

�x,	� = −

�2

�x2
�x,t� − �2��x − 1�
�x,	�

+ �
�
�x,	��2

x2 
�x,	� . �8�

To simplify our notation, we have dropped the subscript of
the radial wave function and the interaction-strength �. The
step function on the right-hand side in Eq. �8� is again the
model of the atom-surface interaction.

In Table I we have listed some values of the radial cou-
pling constant for the alkali-metal atoms typically used in
BEC experiments. Table I shows that the natural influence of
the coupling due to the particle interaction is rather small,
such that the results published in �3�, where trapping was
considered neglecting particle interaction, are confirmed to
apply for cases where the particle-interaction strength is not
tuned. On the other hand, a tuning of the coupling constant
by the help of a Feshbach resonance delivers a wider range
for �, which we now will examine theoretically.

III. WAVE-PACKET DYNAMICS WITH PARTICLE
INTERACTION

To explore the dynamical properties of an atomic wave
packet with particle interaction inside a quantum reflection
trap, we solve Eq. �8� with the initial condition


�x,	 = 0� = Nx exp�− ax���1 − x� , �9�

where N is the normalization constant and a is the diffuse-
ness of the wave packet. The wave packet �9� provides the
simplest possible choice for an initial state supporting the
main parts of particle density around x=0 �3�. To be more
explicit, we take the example of Na atoms, which have been
used in the recent quantum reflection experiments with BECs
�1,2�. A diffuseness of a=5, together with the atomic mass of
sodium and a trap radius of L=4.5�105 a .u. gives an initial

kinetic energy Ekin=1.5�10−15 a .u., which corresponds to
temperatures of approximately 1 nK.

The observables of our examinations are the surviving
particle density �S�	� inside the trap and the scaled energy
E�	� of the system as functions of time:

�S�	� = 	
0

1

dx�
�x,	��2,

E�	� = i	
0

1

dx 
��x,	��	
�x,	� . �10�

Numerically, we solve our differential equation �8� by us-
ing the Crank-Nicholson algorithm and employ absorbing
boundary conditions �see �19�� to simulate outgoing waves
that have left the spatial region of the quantum reflection
trap.

A. Dynamics with repulsive particle interaction

In cases where the coupling constant � is larger than zero,
the particle interaction is repulsive. The additional positive
energy due to the self-interaction increases the total energy
of the system. An increase of the system’s total energy
slightly accelerates the decay of the surviving particle frac-
tion inside the trap, because even low-energetic components
of the wave packet gain additional energy, which facilitates
the escape from the trap. As an example we show in Fig. 1
the surviving particle density �S�	� for a potential strength of
�=20 and several values of ��0. The shape of �S�	� with
finite � is similar to the shape of the curve with �=0 �see
�3��, but all surviving particle densities for finite � are
smaller than for �=0. The results of Fig. 1 confirm that the
only influence of the particle interaction on quantum reflec-
tion is indeed given by a slight acceleration of the decay of
the surviving particle density inside the trap that stems from
an enhanced total energy. Other effects due to particle inter-
action should modify the shape of the densities as functions
of time, but the typical plateaus, the genuine pattern of quan-
tum reflection already found in �3�, are conserved. The val-
ues of Table II show that the surviving particle fractions after
the scaled time 	=1—approximately one-half of a second for
the alkali-metal atoms �see Eq. �4��—depend only weakly on
the self-interaction when ��1. Especially for higher values
of �, the surviving particle densities for 	=1 and ��1 give
still good results for trapping. Compared with a freely
spreading wave packet, which has a value �S�	=1�=0.005

TABLE I. Comparison of the scaled potential strength � and the coupling constant � for some alkali-
metal atoms. The radial extension of the trap is all over L=4.47�105 a .u. The potential data were taken
from �10�, and the data for the scattering lengths were taken from �16� for Li, from �15� for Na, and form
�17,18� for Rb.

�=L /�4 �4 �a.u.� L �a.u.� � aint
singlet �a.u.� aint

triplet �a.u.�

6Li 54.25 8.239�103 4.47�105 −9.66�10−3�7.95�10−4 – −2160�250
23Na 30 1.494�104 4.47�105 2.92�10−4�3.97�10−6 – 65.3�0.9
85Rb 11 4.033�104 4.47�105 0.01−0.0008

+0.002 2400−350
+600 –
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�3�, the surviving particle densities for �=1 are still en-
hanced by factors of 10–40. For ��1, the particle density
inside the trap starts to decay rapidly. For this regime, the
mechanism of quantum reflection, although still working, is
not strong enough for an effective trapping of atomic wave
packets, because the total energy of the system is too
strongly increased by the interaction potential. As seen from
Fig. 2, the strong repulsive interaction dominates the system
at the beginning of the time evolution, but as the atomic
wave packet evolves in time, there is a continuous current
density of high-energy components beyond the edge of the
step and a change of the shape of the wave packet due to its
motion on the step. The change of the shape influences the
self-interacting potential and continuously reduces its influ-
ence on the dynamics. But as the interaction energy de-
creases, it is transformed into kinetic energy. This leads to a
faster motion and thus to a reduction of the effect of quantum
reflection when large fractions of high-energetic components
reach the edge of the step. Already after a time 	
0.1 the
system has strongly cooled down, but along with a strong
loss of particle density. In short, the larger the kinetic energy
of the wave packet, the weaker is the effect of the quantum
reflection.

Therefore, we may conclude that a scaled particle-
interaction strength ��1 effectively traps atoms. This is par-
ticularly true for large values of �, which requires a weak
potential strength �4 �see Eqs. �1� and �2��.

B. Dynamics with attractive particle interaction

In cases where the coupling constant � is negative, the
particle interaction is attractive. The additional negative en-
ergy due to the self-interaction reduces the total energy of the
system. As a consequence, the decay of the surviving particle
fraction inside the trap is remarkably decelerated. The pres-
ence of attractive particle interaction leads to a self-trapping
of all lower-momentum components which therefore are
much more unlikely to even reach the edge of the trapping
potential. In Fig. 3 we show surviving particle densities for
different strengths � of the self-interaction. For small inter-
action strength �=−0.1, the dynamics is similar to the non-
interacting case �=0, while for increasing interaction toward
the critical interaction strength for collapse, we observe
that the plateau structure becomes significantly washed out,
�=−0.5, �=−0.62.

Numerically we have determined the critical value �c
=−0.627. For attractive interactions stronger than �c, the
wave-packet dynamics will undergo a collapse. As will be
discussed below, the value of �c is universal for of the quan-
tum reflection trap and a wider class of systems, which have
no classical longitudinal �radial� confinement.

The drastic change of the surviving particle density in the
vicinity of �c is reminiscent of the well-known phenomenon
of a critical slowing down near the point of a phase transi-
tion. The values of Table III show that the surviving particle
fractions �S�	=1� can achieve a strong enhancement when
the particle-interaction strength � lies in the regime of 0
���−0.627. Compared to the case of �=0, the enhance-
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FIG. 1. Surviving particle densities for �=20 and values of �
=0,0.1,0.5,1.0,5.0 from top to bottom. The presence of the repul-
sive particle interaction reduces the trapping effect of the quantum
reflection by its additional contribution to the total energy of the
system.

TABLE II. Surviving particle densities for several values of � and � for repulsive interaction.

�S�	=1�, �= 0 0.1 0.5 1.0 5.0

�=20 0.11 0.10 0.071 0.056 0.019

�=30 0.19 0.17 0.14 0.11 0.043

�=40 0.27 0.24 0.20 0.16 0.06

�=50 0.33 0.31 0.25 0.19 0.09
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FIG. 2. The total energy of the system Etot�	� �solid line�, the
kinetic energy Ekin�	� �dashed line�, and the repulsive particle inter-
action Eint�	� �dotted line� for �=20 and �=5.
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ment factor ranges from 1.6 to 2.0, but compared to the
freely decaying wave packet �S�	=1�=0.005 �3�, the trap-
ping mechanism achieves enhancement factors from 42 for
�=20 to 104 for �=50. Clearly, the negative self-interaction,
compared to the noninteracting case, significantly enhances
the efficiency of the trap. Figure 4 illustrates the effect of
trapping under self-interaction on the energies of the system
as functions of time. At the beginning of the time evolution,
the total energy of the system is negative and the particle
interaction dominates the system. The process of stabiliza-
tion of the wave packet by the self-trapping effect establishes
a state of dynamical equilibrium between the kinetic energy
and the interaction energy. When the total energy of the sys-
tem has become positive, the wave packet is no longer in
danger of collapsing and has entered the regime were the
kinetic energy, together with the quantum reflection, governs
the behavior of the system. However, the kinetic energy of
the wave packet has been reduced by the stabilization pro-
cess, rendering quantum reflection even more effective. To-
gether with Fig. 3 the behavior of the energy clearly explains
the trapping in this regime.

C. Dynamical collapse for strong attractive interaction

The dynamics of a wave packet in the quantum reflection
trap becomes unstable against collapse, when the interaction

strength � becomes smaller than the critical value �c
=−0.627. As the wave packet evolves in time, the influence
of the attractive particle interaction grows strongly, leading
to a strong localization of the wave packet. Strong localiza-
tion goes along with high momenta, which lead to the de-
struction of the coherence of the wave packet. When the
wave packet undergoes a complete disruption, it collapses.
See the solid curve in Fig. 5. The collapse goes along with a
strong loss of particle density, which takes place during an
extremely short interval of time. After the collapse of the
wave packet the attractive self-interaction is also destroyed
and the effect of quantum reflection again dominates the be-
havior of the system. The effect of quantum reflection mani-
fests itself by stopping the evaporation and forcing the wave
packet to reshape. Thus, the remaining but strongly reduced
density in the trap decays regularly as the system continues
to evolve in time. Figure 6 shows the behavior of both ener-
gies. To help the readers’ eyes in separating the critical peaks
of both energies, we have drawn two vertical lines. It can be
clearly seen how the negative interaction energy grows to
strong negative values during the time evolution of the sys-
tem. The kinetic energy, on the positive half of the ordinate,
also grows during collapse in the attempt to achieve a dy-
namical equilibrium that stabilizes the system. However, by
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FIG. 3. Surviving particle densities for �=40 and values of �
=0,−0.1,−0.5,−0.62 from bottom to top. The presence of the at-
tractive particle interaction increases the trapping effect of the quan-
tum reflection.

TABLE III. Surviving particle densities for several values of � and � for attractive interaction. The
reference time 	=1 corresponds to around half a second for the here considered alkali-metal species �see Eq.
�4��. The surviving particle densities show that trapping by quantum reflection gives truly promising results
in this regime.

�S�	=1�, �= 0 −0.1 −0.5 −0.6 −0.62

�=20 0.11 0.13 0.17 0.20 0.21

�=30 0.19 0.21 0.30 0.34 0.35

�=40 0.27 0.28 0.40 0.44 0.45

�=50 0.33 0.35 0.47 0.51 0.52
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FIG. 4. The total energy of the system Etot�	� �solid line�, the
kinetic energy Ekin�	� �dashed line�, and the repulsive particle inter-
action Eint�	� �dotted line� for �=40 and �=−0.62. It can clearly be
seen how the energetic components of the system balance each
other. The dynamical equilibrium between the kinetic energy and
the interaction energy stabilizes the system.
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this peak in the kinetic energy the mechanism of quantum
reflection becomes meaningless and a large fraction of par-
ticle density simply evaporates. Even after its peak, the ki-
netic energy of the system is large enough to continuously
drive a considerable fraction of particle density to the out-
side, such that the system experiences a self-cooling and the
kinetic energy falls off again. When this has happened the
effect of quantum reflection regains the control over the dy-
namics. Note that the particle interaction, due to the strong
loss of particle density, remains negligible.

IV. VARIATIONAL STABILITY ANALYSIS

The stability of our quantum reflection trap can be ac-
cessed by variational techniques. A very elaborated and gen-
eral variational approach to cold atom systems was given in
�20�, where the critical interaction strength �c for an aniso-
tropic harmonically trapped three-dimensional BEC-system
in the absence of a longitudinal confinement was determined
to �c=−0.6204. The same problem is considered in �21� nu-
merically, where �c=−0.627 was found. For our system, we
have found the same critical value �c=−0.627, despite a lon-
gitudinal �radial� confinement due to the atom-surface poten-
tial. The difference can be explained by the fact that the
atom-surface potential is confining with respect to quantum
reflection, whereas a harmonic oscillator potential is confin-
ing due to classical reflection at the potential surface. When
a longitudinal confinement is present in a harmonic oscillator
system, the critical value is reduced to �c

ho=−0.57 �22�. The
absence of a �classical� longitudinal confinement due to a
potential surface, along with the presence of a quantum con-
finement provided by atom-surface potentials, thus enables
the storage of a higher number of atoms for an attractive
particle interaction on macroscopic time scales.

To analyze the stability of our system, we will refer to a
much simpler variational technique than the one suggested in
�20� �see, e.g., �23��, where the authors restrict themselves to
a simple Gaussian trial function. Our choice for a radial trial
function defined on the whole space is

��x� = Nx exp�−
x2

2�2� , �11�

where N is the normalization and � is the width. With Eq.
�11� we obtain a parametrized energy

H��,�,�� = 
��Ĥ���

=
3

2�2 − �2� 2
��

exp�− �−2� − � erfc��−1��
+ �� 2

��6 . �12�

With Eq. �12� we can establish a relation between the particle
interaction � and the width of the Gaussian state � by de-
manding that the variation of H with respect to � vanish:

�H„�,�,����… = 0. �13�

In Eq. �13� we have kept � as a parameter. Solving Eq. �13�
for ��� ,�� leads to

���,�� = − �2 +
�

�2
�2��2 exp�− �−2�

+ �2�2�1 − erf��−1�� −
3

2
��� . �14�

Equation �14� defines a running coupling constant as a func-
tion of the initial width � of the wave packet and the strength
of the atom-surface potential �. The coupling constant de-
pends implicitly on the initial kinetic energy of the wave
packet, which, as we have seen above, is crucial for the
efficiency of the trapping mechanism. With a=5 in Eq. �9�
we obtain �
0.31 for Eq. �11�.

From Eq. �14�, we obtain the phase diagram of the quan-
tum reflection trap. From the phase diagram, Fig. 7, which
we have drawn for all values of � considered above,
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FIG. 6. The kinetic energy Ekin�	� �solid line� and the repulsive
particle interaction Eint�	� �dashed line� for �=40 and �=−0.63.
The peak of the kinetic energy is responsible for the breakdown of
the trapping mechanism and the strong and sudden loss of particle
density �see Fig. 5�.
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FIG. 5. Surviving particle densities for �=40 and values of �
=−0.63 �solid line�, �c=−0.627 �dashed line�, and �=0 �dot-dashed
line� for comparison. The collapse of the wave packet is indicated
by the sudden falloff of the surviving particle density.
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the regions of stability can be read off easily and the value
�c=−0.627 emerges as universal property of the quantum
reflection trap. The horizontal and vertical lines mark our
numerically determined value �c=−0.627 and our initial data
a=5, respectively.

As can be read off from Fig. 7, the simple Gaussian trial
function delivers a critical region close to the exact value,
such that we expect only small corrections from the general
method of �20�. Also, our initial choice for a=5, which
matches the experimental conditions due to �1,2�, is justified
as the optimal choice. The universal region of the system is
located left from the vertical line denoting a=5↔�=0.31,
where no diversification of � due to the potential strength �
occurs. By increasing a, which means reducing �, the stor-
age capacity of the system is reduced, because the critical
value �c is not accessible anymore. Vice versa, the same
occurs, because by decreasing a, which means increasing �,
the region of universality is left and the stability of the sys-
tem is only granted along the phase lines described by the
strength of the atom-surface potential �, requiring a higher
value for �, which also reduces the storage capacity of the
system for attractive particle interaction.

Last, Fig. 7, together with our numerical results from
above, proves that the system shows not much sensitivity to
the shape of the initial state, which necessarily includes some
arbitrariness in theoretical considerations.

V. SUMMARY AND CONCLUSION

We have investigated the possibility of trapping cold at-
oms solely by the mechanism of quantum reflection. Our
investigations have been carried out with the simplest pos-

sible model of a quantum reflection trap, a sphere. Typically
the radius L of such a trapping sphere is of the order of
105 a .u. The quantum reflection is mainly controlled by the
strength of the atom-surface potential �=L /�4. The larger �,
the better quantum reflection works. The strength parameter
� can be controlled either by the spatial extension of the trap,
L, or by the atomic interaction parameter �4. Small values of
�4 can be achieved, e.g., by using dielectric instead of per-
fectly conducting surfaces �see �11,12� and references
therein�. However, instead of controlling � by surface engi-
neering, it may be much easier to control the value of � by a
Feshbach resonance.

The inclusion of repulsive particle interaction ��0 de-
pletes the surviving particle density inside the trap in com-
parison to a system evolving without particle interaction. As
long as the interaction strength � is smaller than unity, the
depletion of the surviving particle density due to the repul-
sive interaction can be compensated by increasing the atom-
surface interaction strength � �see Table II�.

The best results for trapping atoms by quantum reflection
are achieved, when the particle interaction is attractive. The
system remains stable when � lies in the range of 0��
��c. The critical value �c=−0.627 is a universal property of
our quantum reflection trap. This value of �c makes clear that
cold atom systems confined by an atom-surface potential
belong to a wider class of systems with classical longitudinal
freedom. Classical means that no confinement due to a
potential surface is present. The mechanism of quantum
reflection acting in the case of atom-surface potentials estab-
lishes a quantum confinement. The quantum confinement
has the advantage that more particles can be stored as in the
case of a classical confinement, where the critical value is
�c

ho=−0.57.
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FIG. 7. Phase diagram of the quantum reflection trap obtained by a simple Gaussian variational approach. The vertical line
�=0.31↔a=5 marks our initial data; the horizontal line �c=−0.627 marks our numerical result for the critical interaction strength. The
region encircled by the ellipse is the critical region of the system where transitions between universal and nonuniversal behavior, as well as
transitions between stable and unstable states of the condensate, occur. The region below �=0 supports only unstable states. The arrows
drawn on the phase-line of �=10 indicate exemplarily for any other value of � that a stable state for a certain value of � becomes unstable
when its parametric set �� ,�� is crossing the corresponding phase line from left to right and vice versa.
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Approaching the critical value �c from above, the typical
plateau structure of �S�	� is washed out into slowly varying
density oscillations �see Fig. 3�. Close to the criticality, this
behavior is reminiscent of the well-known phenomenon of
the critical slowing down near the point of a phase transition.
Critical slowing down goes along with the existence of long-
ranged fluctuations of the systems internal modes. It may be
these long-ranged fluctuations that stabilize the wave packet
against the influence of the attractive self-interaction above
�c.

For attractive particle interactions ��−0.627, the internal
motion of the wave packet is not capable to stabilize the
system. As the system evolves in time the wave packet suf-
fers a collapse. The collapse heats up the system because the
interaction-energy is almost completely transformed into ki-

netic energy; along with the heating up, the system experi-
ences a sudden loss of large fractions of particle density.

Our results clearly show that the mechanism of quantum
reflection remains a promising tool to trap cold atoms when
particle interaction is included and tuned. However, as our
variational analysis has revealed, the parameters of the sys-
tem cannot be chosen arbitrarily. For best results, they must
allow the system to evolve in the universal region close to
�c.

For alkali-metal atoms, there are realistic surviving par-
ticle densities up to 50% for times around half a second.
From Table I, the most promising candidate for trapping
should be lithium, where the particle-interaction strength is
already attractive.
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