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Stochastic dissociation of diatomic molecules
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The fragmentation of diatomic molecules under a stochastic force is investigated both classically
and quantum mechanically, focusing on their dissociation probabilities. It is found that the quantum
system is more robust than the classical one in the limit of a large number of kicks. The opposite
behavior emerges for a small number of kicks. Quantum and classical dissociation probabilities do
not coincide for any parameter combinations of the force. This can be attributed to a scaling
property in the classical system which is broken quantum mechanically.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2131076�
I. INTRODUCTION

The anharmonicity of molecular vibrations makes the
dissociation of a molecule by irradiation of laser light a rela-
tively difficult task.1 Consequently, high intensity is required
for dissociation, for instance, I�1015 W/cm2 for HF and
I�1014 W/cm2 for HCl. At such intensities, however, the
ionization process dominates and masks vibrational excita-
tion and dissociation. Chelkowsky et al.2 suggested that the
dissociation threshold of a diatomic molecule can be lowered
by two orders of magnitude using a frequency-chirped laser,
and hence dissociation without ionization should be possible.
In a similar spirit, circularly chirped pulses have been used
by Kim et al.3 for the dissociation of diatomic molecules.
They found that the threshold laser intensity is sufficiently
reduced, to achieve dissociation without ionization.

Here, we investigate the possibility for dissociation of
diatomic molecules under a stochastic force, which could
eventually be chosen such that ionization is minimal. A sec-
ond motivation for our work is the question, if stochastic
driving destroys quantum coherence and eventually
brings the quantum and classical evolution close to each
other.

We model the force as a sequence of pulses �kicks� at
random times, each kick carrying an independent weight.4

This type of force, similar to white shot noise, has been used
to model the passage of ions through carbon foils before.5 Its
average strength � and the average number of kicks ��t�
determine the dynamics of the system which is taken as a
Morse oscillator6 with parameters corresponding to hydrogen
fluoride �HF� and hydrogen chloride �HCl� molecules. The
classical and quantum evolutions of the system are conve-
niently compared by using the Wigner transform of the initial
wave function as initial phase-space distribution in the clas-
sical evolution.

We begin the main text of this paper in Sec. II with a
brief description of the stochastic Hamiltonian. In Sec. III we
explain the classical and quantum methods with which we
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solve the stochastic dynamics, which is the Langevin equa-
tion with test particle discretization and Monte Carlo sam-
pling in the classical case and the direct solution of the
stochastic Schrödinger equation with a standard fast Fourier
transform �FFT� split-operator method with absorbing
boundary conditions in the quantum case. Results, particu-
larly for the dissociation probability will be presented
and discussed in Sec. IV, while Sec. V concludes the
paper.

II. DESCRIPTION OF THE MODEL

The one-dimensional stochastic Hamiltonian of our sys-
tem reads �atomic units are used unless stated otherwise�

H�t� = H0 − xF�t� �
p2

2m
+ V�x� − xF�t� , �1�

where the molecular dipole gradient2 has been absorbed into
the stochastic force F�t�. The Hamiltonian H0 describes vi-
brational motion of the molecule in the Morse
potential,6

V�x� = − De + De�1 − exp�− �x��2, �2�

with well depth De and length scale �. The eigenenergies En

of the Morse oscillator H0 are given by

En = ��e�n + 1/2��1 − B�n + 1/2�/2�, 0 � n � �j� , �3�

where �e is the harmonic frequency, nb= �j�+1 is the number
of bound states with

j = 1/B − 1/2, B = ���2mDe�−1/2, ��e = 2BDe. �4�

The parameters specific to HCl and HF are given in Table I.
The stochastic force F�t� �Refs. 4 and 8� in Eq. �1�,

F�t� = �
i=1

Nt

�i	�t − ti� , �5�

stands for a series of random impulses of strength �i at times
ti, i.e., F�t� is a kind of white shot noise7 responsible for
multiple 	 kicks undergone by the molecule, where Nt is the

number of kicks up to time t controlled by the Poisson count-
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ing process Nt. It is characterized by the average kicking
interval ��t��
−1 about which the actual interval �ti= ti

− ti−1 are exponentially distributed, similarly as the actual
kicking strengths �i about their mean �,

P��ti� = 
 exp�− 
�ti�, P��i� = �−1 exp�− �i/�� . �6�

We restrict our analysis to positive �i and assume that
�i and ti are mutually uncorrelated random variables
generated by the distributions functions of Eq. �6�. The
determination of F�t� reduces to the construction of a
stochastic sequence ��i , ti� which can be done assuming
that the random times ti form a Poisson sequence of
points leading to a delta-correlated process.4 It is easy to
show8 that the constructed stochastic force has the following
properties:

�F�t�� = �
 ,

�F�t�F�s�� = 2�2
	�t − s� + �2
2. �7�

The corresponding power spectrum, i.e., the Fourier trans-
form of �F�t�F�s��, is given by

S��� = 4
�2


	2�
+ �2
2	2�	��� . �8�

These properties reveal the difference between the present
stochastic force �white shot noise� and a pure white noise
which is delta correlated with zero mean.

III. DYNAMICS

A. Time evolution

Our system as described is nondeterministic due to the
stochastic nature of its Hamiltonian but closed. This is con-
sistent with a regime of high effective temperature and no
dissipation. Specifically speaking, the system is a simple
anharmonic particle which is not coupled to any environment
�zero dissipation and no diffusion� but subject to an external
force.9 A perturbative solution for this system is in general
not possible, because the field strengths applied significantly
distort the system. We are interested in the formulation of the
dynamics which is applicable for the quantum as well as
for the classical treatments. This can be done in an
elegant way by propagating the Wigner transform W of the
density matrix ��t�= 

�t���
�t�
 with a �quantum� master

10

TABLE I. Parameters of the HF and HCl molecules, for the Morse potential.

Molecule B De �eV� � �a0
−1� Nb �e �Hz�

HCl 4.07�10−2 4.40 0.9780 25 8.66�1013

HF 4.19�10−2 6.125 1.1741 24 12.38�1013
equation
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i�
�W

�t
= LclW + LqW + ÔW ,

Lcl = −
p

m

�

�x
+

�V

�x

�

�p
,

Lq = �
n�odd��3

�
1

n!
� �

2i
�n−1�nV

�xn

�n

�pn .

Here, Lcl and Lq represent the classical and quantum Liou-

ville operators, respectively, while Ô stands for the superop-
erator resulting from the random kicks undergone by the
molecule. Unfortunately, solving the master equation and

constructing Ô is a complicated task. It is much easier to
solve the equations of motion derived from Eq. �1� directly.

The classical time evolution obeys the Langevin equa-
tion,

dp

dt
= −

�V

�x
+ F�t� , �9�

while the quantum evolution can be obtained from the sto-
chastic Schrödinger equation,

i�
�

�t��

�t
= H�t�

�t�� . �10�

Both formulations have in common that they must be solved
over a larger number of realizations Nr of the stochastic
force. Only the average over all realizations produces the
solution of the classical Langevin and the stochastic
Schrödinger equations, respectively.

B. Initial state

The molecule is considered to be initially in the ground
vibrational state 

0��
0� with energy E0 �Eq. �3��. For the
classical propagation we take the Wigner distribution of the
ground state as initial phase-space distribution. Analytically,
the initial phase-space density is given by

W0�x���,p� =
2

����2j�
�2jK−2ip/����� , �11�

where ��x�= �2/B�exp�−�x� and K� is the modified Bessel
function of the third kind.11

C. Classical approach

The stochastic Langevin equation �9� can be solved nu-
merically with test particles �“test particle discretization”� so
that the Wigner function is given by

W�x,p,t� = Ntest
−1 �

k=1

Ntest

	�x − xk�t��	�p − pk�t�� , �12�

where Ntest is the number of test particles and the
�xk�t� , pk�t�� are the classically evolved trajectories of the test
particles. Their initial conditions �xk�0� , pk�0�� are Monte
Carlo sampled by dividing the phase space into small bins
Slm.12 In each Slm the initial conditions for nlm test particles

are randomly chosen where nlm is determined by the value of

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



mode

204322-3 Dissociation of diatomic molecules J. Chem. Phys. 123, 204322 �2005�
the Wigner function W�x , p� attached to the respective phase-
space bin,

nlm = W�xl,pm�SlmNtest, �13�

with Slm= �xl+1−xl��pm+1− pm�.
For each realization r of the stochastic force Eq. �12�

yields the propagated Wigner function Wr�x , p , t� which must
be averaged over the Nr realizations to obtain the final result
W�x , p , t�.

D. Quantum approach

For a given realization r, the solution of the stochastic
Schrödinger equation �10� amounts to solve the standard
time-dependent Schrödinger equation,



r�t�� = Ur�t,t0�

�t0�� , �14�

where Ur�t , t0� is the evolution operator and 

�t0��= 
0�.
Since the stochastic force consists of instantaneous kicks,
Ur�t , t0� can be written as

Ur�t,t0� = U0�t,tNr
� 


i=0

nr−1

exp� i

�
x�i�U0�ti+1,ti� , �15�

with nr kicks for the realization r and

U0�ti+1,ti� = exp�−
i

�
�ti+1 − ti�H0� . �16�

This representation illustrates how the stochastic driving op-

FIG. 1. Quantum and classical dissociation probabilities of HF for � and
dissociation probabilities fit with �19�. The red �grey� line is a free-particle
erates. Between two kicks at ti and ti+1 the molecule evolves
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freely with U0 according to the Hamiltonian H0 �Eq. �16��.
At each kicking time ti the stochastic force induces a phase
shift by exp��i /��x�i�. In practice, however, it is easier to
compute 

r�t�� directly using the standard FFT split-
operator algorithm13 with absorbing boundary conditions.

E. Dissociation probability

The observable we are interested in is the quantum dis-
sociation probability, which is the amount of population in
the continuum states. However, it is easier to calculate the
complement, i.e., the population of all bound states 
�. It
reads for a given realization r

P�
r�t� = 
�
�

r�t��
2. �17�

The dissociation probability for the realization r is then given
by

Pd
r�t� = 1 − �

�=0

Nb−1

P�
r�t� . �18�

Classically, Pd;cl
r �t� is given in terms of trajectories N+�t�

which have positive enery E�t��0 at time t. The physical
result is obtained by averaging Eq. �18� over the Nr realiza-
tions. For the results we will present we chose Nr=100 and

as labeled on each panel, where Torb=0.085. Squares denote the classical
l, see text. Results obtained for HCl are qualitatively similar.
��t�
Ntest=1000 which was sufficient to achieve convergence.
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IV. RESULTS AND DISCUSSIONS

A. Quantum and classical dissociation probabilities

An overview over the results is given in Fig. 1. As a
general trend one sees that quantum and classical dissocia-
tion probabilities do not coincide, in neither limit of the sto-
chastic force �small and large � and ��t��. Furthermore, for
all parameter combinations, the classical dissociation takes
off later but increases faster eventually overtaking the quan-
tum dissociation and going into saturation earlier than in the
quantum case. The more abrupt classical dissociation can be
parameterized with

Pd;cl � 1
2 tanh�at + b� + 1

2 , �19�

which fits quite well the classical dissociation. The fact, that
the discrepancy between the quantum and the classical
curves prevails even in the parameter limits for the stochastic
force, can be partially attributed to a scaling invariance. This
invariance with respect to the ratio � / ��t�= �F�t�� is obeyed
by the classical dynamics but not by the quantum dynamics.
The scaling invariance means that for equal average stochas-
tic force �F�t�� �compare Eq. �7��, the classical dynamics is
the same, yet on different effective time scales. This can be
seen by transforming the dynamics to a dimensionless time
variable �= t / ��t�. The effective Hamiltonian in the new
time variable �, �H−E�dt /d�, remains invariant against
changes of �F�t��=� / ��t�.

While the classical dynamics gives qualitatively the
same picture as the quantum dynamics it does not approach
the quantum result, not even in the limit of a large number of
kicks. This is different from a Coulomb system under sto-
chastic driving.5 Since it becomes classical close to E=0
�which corresponds formally to the dissociation threshold
here� one can show that the Coulomb system itself behaves
almost classical, and therefore the classical scaling under the
stochastic force also applies to the quantum Coulomb system
close to E=0. The molecular system behaves nonclassically,
even close to the dissociation threshold, which prevents it to
approach the classical scaling under the stochastic force. In-
terestingly, the nature of stochastic driving, namely the can-
cellation of interferences, does not help to approach classical
behavior. The reason is that the dynamics in the Morse po-
tential without stochastic force differs classically and quan-
tum mechanically, particularly for higher energies, where the
nonlinearity of the potential is strong. Consequently, one
may ask if under a very strong stochastic force, i.e., without
a potential, classical and quantum dynamics become similar.

B. The free-particle limit under stochastic driving

If V=0 in Eq. �1�, i.e., H0= p2 /2m, one sees immediately
with the help of Ehrenfest’s theorem that classical and quan-
tum observables should agree since Eq. �1� only contains
linear and quadratic operators. Therefore, the state 

�t��
time evolved under the stochastic driving from an initial mo-
mentum 

�0��= 
p� is simply given by 

�t��= 
p�t�� where
p�t� is defined by the classical time evolution, starting from

the initial momentum pi at time t0,
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pt = 
��t − t0� + pi. �20�

We can define a formal analog to the dissociation probability,
namely the probability to find a particle after time t with
positive momentum

Pd�t� � �
0

�

dptW�pi�pt�� , �21�

where pi�pt� can be obtained from Eq. �20� and W�p� is the
initial momentum distribution which we assume for simplic-
ity to be Gaussian,

W�pi� = ��/	��exp�− �2pi
2� . �22�

Inserting Eqs. �22� and �20� into Eq. �21� leads to an incom-
plete Gaussian integral with the analytical solution

Pd�t� = 1
2 erfc�− �
��t − t0�� . �23�

We may use this analytical expression Pd�t� with the two
parameters � and t0 to fit and interpret the dissociation prob-
abilities in Fig. 1. At some time t0�0 after a number of kicks
the systems will have a distribution �with width �� of ener-
gies and the mean energy may be considered to be high
enough to approximate the dynamics with a free-particle
Hamiltonian under stochastic driving without a potential. As
one can see in Fig. 1, this approximation becomes increas-
ingly better for larger time in comparison to the classical
response, while the quantum response remains different. In
Fig. 1�d� Pd�t� is plotted for �=0.021, 
= ��T�−1=235.301,
m=1782.83, �=0.02135, and t0=150.

V. CONCLUSIONS

We have proposed and discussed the possibility of dis-
sociating diatomic molecules by a stochastic force. This
problem has been explored as function of the characteristic
parameters of the stochastic force, namely the average
strength of kicks � and the average time between kicks ��t�.
In view of the effectivity of the stochastic force to dissociate
the molecule with typical ��t� much longer than electronic
time scales we expect the stochastic force to be an efficient
way to dissociate a molecule. In contrast to Coulomb dynam-
ics there is no parameter limit of the stochastic force where
classical and quantum results coincide. The reason is the
classical scaling of the dynamics under the stochastic force
which is broken by the quantum dynamics. We recall that the
present system is a closed one, not coupled to an environ-
ment and therefore not subject to dissipation and diffusion.
For the latter case of an open system the classical-quantum
correspondence has been investigated systematically, with
the general tendency that strong decoherence makes the
quantum system to behave more classically. In contrast, little
is known about the quantum-classical correspondence in the
present case of a closed system exposed to a stochastic force.

We hope that our results will stimulate efforts to achieve
the experimental dissociation of diatomic molecules using
white shot noise. Experiments, using a stochastic force simi-
lar to the present one, have been successfully performed by

14
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