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Semiclassical analysis of a two-electron quantum dot in a magnetic field: Dimensional phenomena
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It is shown that with the inclusion of the vertical extension of a quantum dot the experimental findings of
Ashoori et al. [Phys. Rev. Lett71, 613(1993] can be modeled consistently with a parabolic confinement.
Furthermore, the magnetic properties such as the magnetic moment and the susceptibility are sensitive to the
presence and strength of a vertical confinement. Using a semiclassical approach the calculation of the eigen-
values reduces to simple quadratures providing a transparent and almost analytical quantization of the three-
dimensional quantum dot energy levels that differ from the exact energies only by a few percent. While the
dynamics for three-dimensional axially symmetric two-electron quantum dot with parabolic confinement po-
tentials is in general nonseparable due to the Coulomb interaction we have found an exact separability for
specific values of the magnetic field.

DOI: 10.1103/PhysRevB.65.155307 PACS nunfder73.21.La, 03.65.Sq, 75.7ba, 05.45.Mt

[. INTRODUCTION ways separable and, therefore, regular, the corresponding 3D
system with axial symmetry is in general a nonintegrable
Current nanofabrication technology allows one to controlproblem with typical features of mixed dynamigsegular/
the size and shape of quantum dbtdDue to the confine- chaotig. In Sec. Il we briefly discuss this classical dynamics
ment of the electrons in all three spatial directions the energ@f the relative two-electron motion in a QD. The semiclassi-
spectrum is quantized creating excellent experimental an@ial quantization including an adiabatic approximation fol-
theoretical opportunities to studgontrolled single-particle ~ [oWs in Sec. lll. We discuss the results and the consequences
and collective dynamics at the atomic scale. Depending ofPr the interpretation of the respective experiments in Sec.
the experimental setup, the spectrum of a quantum dot did¥- The paper ends with a summary given in Sec. V.
plays shell structufe® or follows predictions of random ma-
trix theory (for a review see, Ref.)7 Furthermore, it be- Il. THE MODEL AND CLASSICAL DYNAMICS
comes possible to trace the transition from a quantum
mechanical to an almost classical regime.
Few-electron quantum dots have attracted special

The Hamiltonian for the 3D two-electron QD reads

; : : : : 2 2 *
attention’® since they may provide a natural realization of a 1 e m* ., ., 22
quantum bitt The simplest quantum d¢QD) with the es- H:z«l o | PIT A T 5 lwo Yy +wzzi]y,
sential features of more complex systems contains two elec-
trons. Experimental data, including transport +Ve+Hgpins 1)

measuremenis® and spin oscillations in the ground state
under a perpendicular magnetic fiid® in two-electron Where Vc=al|r;—r,| is the Coulomb energy[a
QD’s, have been explained quantum mechanically as a resuft €%/ (4meeg)] and Hepin=9* 1s(s1+5,) - B describes the
of the interplay between the two-dimension@D) lateral ~Zeeman energy, whergg=efi/2mcc is the Bohr magneton.
confinement potential, electron correlations, and the magHerem* andg* are the effective electron mass agtactor,
netic field!*~*" However, the usual 2D interpretation of the respectively, and is the dielectric constant. The confining
experiment®!! leads to inconsistencits'’ that can be potential is approximated with a 3D axially symmetric har-
avoided if one takes into account the 3D physical nature ofnonic oscillator andi w,## w, are the energy scales of con-
the QD, as we will show in the following. finement in thez direction and in the X,y) plane, respec-
We will investigate these dimensional effects semiclassitively. For the typical voltage-1 V applied to the gate, the
cally that makes almost analytical solutions possible. Hencegonfining potential is some eV deep that is large compared to
we are able to trace the dynamical effects of the confinemerihe few meV of the confining frequenéy.Hence, the elec-
strength, the magnetic-field strength, the Coulomb repulsiortyon wave function is localized close to the minimum of the
and their mutual interplay in a way complementary to thewell that always can be approximated by a parabolic poten-
full numerical approaches. In particular, the possibility fortial. In real samples the electron-electron interaction is usu-
full separable dynamics despite the interaction of the elecally screened. However, the pure Coulomb interaction should
trons is clearly visible in the classical dynamics for certainsuffice to understand the main features of the system. For the
values of the magnetic field. However, in contrast to a circuperpendicular magnetic fieldB(z) we choose a gauge de-
lar (2D) two-electron QD whose classical dynamics is al-scribed by the vectoA=[BXxr]/2=3B(—Y,x,0). Introduc-

0163-1829/2002/68.5)/1553077)/$20.00 65 155307-1 ©2002 The American Physical Society



R. G. NAZMITDINOV, N. S. SIMONOVIC AND JAN M. ROST PHYSICAL REVIEW B65 155307

ing the relative and center-of-mass coordinates ;—r,,
R=1(r,+r,), the Hamiltonian, Eq(1), can be separated 2|
into the center of mas&CM) H¢y and relative motiorH
terms: H=Hgy+H g+ Hgpin- The solution to the CM
Hamiltonian is well knowr? and the effect of the Zeeman oo |
energy has been discussed in Refs. 14 and 15. In the follow _
ing we will concentrate on the dynamics Hdf,.

1

1t

For our analysis it is convenient to use cylindrisabled 2T
coordinates, p=pl/lg, p,=p,lo/t, z=2llg, P,=plo/t, 3
wherel o= (#/ wwo)*? is the characteristic length of the con-
finement potential with the reduced mags=m*/2. The 5

strength parameter of the Coulomb repulsion goes over to
N=2al(hwgly). Using the effective masm* =0.067m,,
the dielectric constanté =12, which are typical for GaAs,
and the confining frequenciwy=3 meV, we obtain\ -
~3. Hereatfter, for the sake of simplicity, we drop the tilde,
i.e., for the scaled variables we use the same symbols a
before scaling.

In these variables the Hamiltonian for the relative motion

takes a particular simple forifin units of 4 wg) 202 02 06 o8 1 3 oz o5 o8 o7
p p
Hrel 1 2 m2 2 w, 2 2 wz 2 2 . . . .
= 7 e > p,+ —2+ p;+|—]| p°+|—| 2 F_IG. 1. Pomcargsurfaces of sgctlonzs=0, p,>0 of the relative
@o p w @o motion for the axially symmetric 3D two-electron quantum dot
(w,/wg=3\=3m=0,e=5) in the magnetic field for(a) w =0,
n A B ﬂm @) (b) w lwe=2.5,(c) w_/wy=+8, and(d) w, /we=3.3. The section
‘/p?+ 22| wy (c) indicates that for the corresponding value of the magnetic field

the system is integrable.

wherem=1,/#, o, =eB/2m*c is the Larmor frequency and

0 = (w0 + wd) 2 3) exact symmetries or due to different time scales that allow us

b Lo 7o to apply a classical adiabatic approximation in terms of the
is the effective confinement frequency in tpecoordinate  “removal of resonances” methodRRM). The RRM is
that depends through, on the magnetic field. widely used in classical problems of nonlinear dynamics and
Due to the cylindrical symmetry, the componentl,  in celestial mechanic¥.

=p,, of the angular momentum is conserved and the motion
in ¢ is separated from the motion in the,¢) plane. Since A. Integrable cases
the Coulomb term couples the two coordinates, the problem
is in general nonintegrable that is reflected in the Poincare
sections shown in Fig. 1 for increasing magnetic field. The The semiclassical quantization of the circular 2D quantum
chosen ratian,/ wy=3 is of the same order of magnitude as dot is particularly simple since it reduces to a one-
in the experiment? For w =0 and small values ofn the  dimensional WKB quantization of the motion due to the
motion is mainly chaoti¢see Fig. 1a)]. With the magnetic separability of the problem. For givem andp,=z=0 the
field the frequency of oscillations along thecoordinate can momentump, determined from Eq(2) enters the action in-
be controlled that leads to qualitatively different dynamicaltegral
situations[Figs. 1b)—1(d)]. For equal effective confinement
frequencieszui:wﬁ, the Hamiltonian Eq(2) becomes sepa- h h [ Pmax
rable in spherical coordinates and the dynamics is integrable 'pzﬂ § p,dp= = pldp, (4)
[Fig. 1(c)]. For two other limiting cases, the dynamics is Pmin
nearly integrable, namely, in the limih—c and for @,  with the turning pointspin.pmax @S the positive roots of
—o0. The latter case represents a two-dimensional QD, C|a$equationpp(p)=0. The WKB quantization conditions
sically, we havep,,z—0 in this limit.

1. The circular 2D quantum dot

1
l1l. SEMICLASSICAL QUANTIZATION AND CLASSICAL Ip(e)=ﬁ(np+§ , nh,=01,..., m=0,*x1,...

ADIABATIC TREATMENT (5)

We will use a one-dimensional WKB-type quantization determine the energy levels. For noninteracting electrons
that allows us to reduce the dynamical problem to quadra¢é\ =0) the analytical calculation of the action integfake
tures. This is possible since we can effectively separate theq. (A7)] leads to the (quantum mechanically exact
dynamics in all degrees of freeddisee below, either due to  eigenenergies
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10 N 12 - T interaction energy. However, as it is clear from the form of
Eq. (7), the symmetry is not approximate bexacteven for
strongly interacting electrons because the radial electron-
electron repulsion does not break the rotational symmetry.

B. Adiabatic approximation for the 3D quantum dot

. In the general caseu,# w,) of an axially symmetric 3D

() quantum dot we have nonintegrable motion and a semiclas-
T 3 4 s sical quantization is neither straightforward nor does it give
OL/00 L/ results that allow for a simple understanding of the dynam-

ics. For the parameters we have chosen the contribution of
the Coulomb interaction to the total energy is comparable to
the confinement energy at zero magnetic field and it becomes
for small m even more important with increasing magnetic
field [compare Figs. @) and 2b)]. In this case, the standard
w w i i ; i i
€= 1 /1+(_L (2np+|m|+1)— —Lm, 6) perturbatm_n theory is not V§.|Id, since the Coulomb interac-
wo o%) tion prevails over the confinement energy. Therefore, we
make use of the fact that in real samples the confining po-
#0, we calculate the action integral Hd) numerically with te;nnal in thez direction is much stronger thlan in the, )
) X . ; ane that allows us to analyze the 3D nonintegrable system
a few iterations to determine the quantum eigenvalues. ThB' :
. . . : with the RRM. To lowest order the RRM consists of averag-
energy spectra for noninteracting and interacting electrons

are shown in Fig. 2. In the interacting case the semiclassical J the Hamiltonian function over the fastest angle of the

result, although not exacthe error is less than 1pérepro- unperturbed motionN=0) after rewriting coordinates and

duces very well the quantum-mechanical reste momenta in terms of action-angle variables, (J,,6,,0,).
' The original coordinates of the 3D axially symmetric har-
monic oscillator read in terms of action-angle varialifes a

. derivation, see Appendix A
Turning now to the 3D quantum dot we have seen that the
2

FIG. 2. The energy spectrum of the circular 2D quantum(afot
units wg) as a function of the ratiav, /wq for n,=0 and m
=0,..., 9 in thecases(a) A=0 and(b) A=3.

which are the well-known Fock-Darwin energi€sFor A

2. Separability for the 3D quantum dot

dynamics is separable fow?=w’=w}?+wj and the , o _. _
Hamiltonian Eq.(2) in scaled spheri@:al coordinates takes the P :w_p(21p+|m|_2le(lp+|m|)00320p)’ (93
form
2] 00
1, (o2, N (IR of , Z2=—"—sirt6,, (9b)
= — _ — —_— z
ezpr+w r+r+ 2 wom. (7)

and p,=p/wg,p,=2l wy. Here,j,=J3,/% andj,=J,/4. If

In this case the square of the total angular momeritusian ~ w,> o, one averages over the anglg= w,t. As a result, the
additional integral of motion. Therefore, the classical dynam-motion effectively decouples into an unperturbed motion in
ics reduces again to a one-dimensional, radial problem. Ushe z coordinate governed by the potential,( w,)?z%/2 and
ing Eq. (7) and calculating the action integral for the radial into the relative motion in the coordinate governed by the
motion analogous to that in E¢4) (i.e., withr instead ofp), effective potentialsee Appendix B

we obtain the energy levels from the standard WKB quanti-
zation conditions

1(w,\? m? A o
Vei(pi)== —”) 24—+ —K| —2— =],
L . efi(Ps]2) 2| 0o P 2P2 p ( w; p
()= n+ ], |||=ﬁ(|+E , (10
whereK(x) is the first elliptic integral. Hence, the effective
n,I1=01,..., m=0*1,...*l. (89  Hamiltonian reads
Note that it is only the magnetic field that generates the p§ L w, .
spherical symmetry of the problem and, therefore, its sepa- €= 5 + Ve w—0m+ PRES (11)

rability leading to three good quantum numbers |, andm.
The restoration of the rotational symmetry of the elec-Applying a similar procedure as in the 2D case, we calculate
tronic states by the magnetic field for noninteracting electhe action integral numerically. The momentyn is deter-
trons is a well-known factsee, for example, Refs. 6,21 mined from Eq.(11) and the turning pointp i, ,Pmax are as
This phenomenon was also recognized in the resultsnfor usual the(positive roots of the equatiop,(p)=0. Finally,
teracting electrons in self-assembled QB%lt was inter- the WKB-quantization conditions
preted in Ref. 22 as an approximate symmetry that had sur-
vived from the noninteracting case due to the dominance of
the confinement energy over the relatively small Coulomb

1 1
np+— s ]Zznz+§,

l,(e)=h 5
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1

explains quantitatively through the effective charge the dif-
ference of the effect of a magnetic field on a quantum spec-
trum in 2D and 3D cases. However, this difference becomes
weaker for largem as it is seen in Fig. ®). The effective
charge clearly demonstrates that the Coulomb interaction is
stronger, especially for smath, in the 2D case compared to
the 3D case. This simply understandable classical finding

0.9

06 clarifies numerical quantum-mechanical results obtained for
05 . . ® the 2D and 3D cases of many-electron QB's.
0 1 2 3
(,Op/OJz
IV. OBSERVABLE CONSEQUENCES OF THE THIRD
FIG. 3. () The comparison between energy levéis units DIMENSION IN QUASI-2D QUANTUM DOTS

h ) of the axially symmetric 3D quantum dot with, / wg=3 and ] ) ) S
A=3 forn,=n,=0 andm=0, .. ., 9obtained using the RRNfull A. The first singlet-triplet transition in the two-electron QD
lines) and exact results for the spherical cdsecles. The inset The ground-state energy of a QD as a function of the

shows a good agreement between the RRM and the ‘_exact res“'ﬁragnetic field can be probed very elegantly by single elec-
The dashed and dotted lines display the energy levelmi#0 for 44y capacitance spectroscdpyr by single electron tunnel-
the 2D and 3D cases withy; at w_0/w2=0 and 1/3, respectlvel_y. ling Spectroscopﬂi) Applying a gate voltage to the contacts
®) .The dependence OT the effective strength of the Coulomb Interbrings the electrochemical potential of the contacts in reso-
actionheq/A on the ratiow,, /. nance with the energy(N,B) necessary to add thdth
electron that tunnels through the barrier into the dot. The
n,.n;=012..., m=0x1x2..., (120 chemical potential of the dot is given by the ground-state
determine the energy levels. e(r;)ergy of the dot wittN andN—1 electrons(see,e.g., Ref.
10),
C. The effective charge £(N,B)=E(N,B)—E(N—1B). (14
Comparing the exact and the RRM results for eigenener-
gies for the spherical case,/w,=1 we found good agree- Here, E(N,B) denotes the total energy of the QD with
ment even for large values of the magnetic fighig. 3(@)]  electrons under a magnetic field of strengthPresently, we
although RRM is expected to work best o,/ w,<1. With-  are concerned with.(1,B) and w(2,B) only. The first is
out magnetic field we have,/w,= 1/3 that means that the simply the harmonic-oscillator energy for a single electron in
motion in z and p approximately decouples justifying the the dot,(1,B)=E(1,B). The latter can be split into contri-
widely used 2D approximation. This is also reflected in thebutions from the relative and center-of-mass motity), ,
small difference between 2D and 3D resyk®mpare Fig. whereEcy=E(1,B). The most direct probe of electron cor-
2(b) with Fig. 3(@) at w, =0]. Turning on the magnetic field relation in the quantum dot is thdifferenceof the chemical
increases the coupling of the dynamicgimndz that allows  potentials that takes the form
the two electrons eventually to access the full 3D space. As a
consequence, the electrons can avoid each other more effec- Apr=up(2B)—u(lB)=hwoe—E(1B), (15
tively and the Coulomb interaction has a smaller effect on
the 3D spectrum than on the 2D spectrum that is most clearlyhere e is the relative energy of Eq2) andE(1B) =% w,
visible for them=0 energies, see Fig(8d. +hw,l2.
We can understand this effect quantitatively by averaging In a number of paper¢e.g., Refs. 10,11,13,17u(1,B)
the elliptic integral in Eq.(10) over the unperturbed\( has been used to estimate the confining frequéngy in a
=0) motion inp. It gives rise to an effective charge in the two-dimensional model of the QD. Indeed, withw,

Coulomb interactio’V=~\ ./2p, where =5.4 meV fw,=0) one obtains a very satisfactory fit to
©(1,B). However, with thish wg, neitherA w4 (which is by
2N (7 w,lw, g almost a factor 2 too largenor the value forB, where the
Net=— f K| — — 0, first singlet-triplet transition occurs, is reproduced correctly
™0 1+|m| = 1+2|mlcos 29, as is obvious from Fig. @). It has been argued that for

13 increasing magnetic fielg(N,B) might not follow the be-
forn,=n,=0 (j,=j,=1/2). The 3D energy quantized with havior modeled with a pure QD with constant confining fre-
this effective charge for the repulsion is close to the fullquency, see Refs. 10,17, and Ref. 11 in Ref. 13. Hence, we
interaction[dotted line in Fig. 8a)]. believe it is more realistic to extrastw, from the difference

The effective charge\..«/\ as a function ofw,/w, for  of the chemical potentialg(2,0)—(1,0) at zero magnetic
differentmis shown in Fig. 80). The maximum repulsion at field. This has been done in Fig(a} and leads with% wg
w,/w,=0 corresponds witlw,— to the 2D case. The 3D =2.3 meV (\=3.32) to the first singlet-triplet splitting at
case without magnetic field starts for our parameter8=1.02 T. This value differs from the experimental value
w,/w,=1/3 at some valua /X <1 that decreases further of B~1.5 T only by about 30% in contrast to the difference
for increasingw,/w,, i.e., increasing magnetic field. This of more than a factor 2 withh w,=5.4 meV(dashed ling
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B (Tesla) B (Tesla)

FIG. 4. DifferenceA u of electrochemical potentials, E¢L5),
from the experiment (shaded curve (a) shows the theoretical
A poq from a 2D quantum dot model withwy=5.4 meV(dashed
andzwy=2.3 meV(solid). (b) showsA u,; from a 3D model with

hwy=2.6 meV andw,/wy= 2.4 (solid). 0 1 2 3 4 5
/0

-3 ) 1 I

The discrepancy of 30% vanishes if one proceeds to a 3D FIG. 5. Magnetic momentg . (@) in the units of effective
description of the QD. In this caséwy,=2.6 meV (\  Bohr magnetonug=(me/m*) ug and the magnetic susceptibility
=3.12) is needed to match(2,0)— x(1,0), only slightly  x (b) for the 2D(dashed linesand 3D(full lines) cases as a func-
different from the 2D case, but the first singlet-triplet transi-tion of the magnetic-field strengtin w, /wo-units). We use the
tion occurs now aB=1.59 T[see Fig. 4b)]. If one includes same parameters as in Figs. 2 and 3.
the contribution from the Zeeman energgwith g*
= —0.44) this value reduces ®=1.52 T in a good agree-
ment with the experiment. Of course, this agreement is By relaxing the restriction of two dimensions for a quan-
achieved by tuning a second parameter, available in the 3um dot and working in the physical three-dimensional space
case, namelyw,/wo=2.4, i.e., the ratio of vertical to lateral we have investigated physical examples of nonintegrable
confinement. On the other hand, a rough estimate assumirgystems close to integrability. Using the classical RRM we
w,lwo~dy/d, (see, for example, Ref.)@eveals with the could effectively reduce the nonintegrable problem of two
experimental valued,=175 A, a lateral size ofd, electron_s in the parab_ollc potential under the perpen(_jlcular
~420 A that is the correct order of magnitude although then@gnetic field to an integrable case. Under these circum-
exact lateral extension in the experiment is not kndn, ~ Stances the WKB-approach provides a simple and transpar-

The analysis shows that in contrast to a 2D description thgza\/\[l)?g(}(ljcceegcruelﬁg%|teh?ei%?tztr:\gr?ff(ghreth3eDgtIY(\;(l),l;1€c;eSCtZ?en QD
3D description provides a way to describe the energy spec: We have found that apecificvalues of the magnetic field

trum for smallB, the value of the magnetic field for the first —— i . . .
singlet-triplet transition, and the ratio of lateral to vertical w = Vo~ w; an axially symmetric QD exhibits spherical
: : symmetry. At these values its dynamics becomes completely
extension of the dot consistently. . . .
separable with three integrals of motion and three corre-
sponding quantum numbers, since the electron-electron inter-
action does not break spherical symmetry.

We have shown how the confinement in théirection,

The singlet-triplet transitions in the ground-state energyheglected in the 2D description of quantum dots, does have
appear as discontinuities in the magnetic properties of than influence on the spectrum. In fact, the vertical confine-
dot. For temperaturd =0 the magnetic moment and the ment reduces the Coulomb repulsion between electrons. In-
magnetic susceptibility are defined jay,.g= — JEq /9B and  cluding the third dimension a consistent description of the
X=9ummag/ 9B, respectively. We find that the resulting spikes experimental data becomes possible. Finally, by changing
shift when going from the 2D quantum dot to the 3D case asghe confining frequency in the direction only slightly one
shown in Fig. 5. For the parameters used in the results ofan increase or decrease the magnetic moment and the sus-
Figs. 2 and 3 the shift in the magnetic field can be calculatedeptibility, i.e., one can control the magnetic properties of the
from the relatioPAB~3.47Ax T wherex=w, /wy. For ex-  two-electron quantum dot.
ample, in the region 1.25x<<1.5 we obtain that the spike in
the magnetic moment should occur in the 3D case at the
magnetic field that is byAB~0.8 T higher than the one
expected for the 2D case. The increase/decrease of the con- We briefly derive the action-angle variables for the axially
fining frequency in the third dimension at fixed value of the symmetric 3D harmonic oscillator. Straightforward but te-
lateral confinement will decrease/increase the difference bedious to calculate these expressions cannot be found in text-
tween the 2D and 3D predictions for spikes of the magnetidbooks that contain only the general transformation formulas,
moment and magnetization. see, e.g., Ref. 20.

V. SUMMARY

B. Magnetic moment and susceptibility

APPENDIX A
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The Hamiltonian can be written in the form
_ f
€0~ €pT €5 (A1) po\/Ze —wpp —m?/p?
where
fz dz
—_—=7 (A9)
_p_§+ 12 w’%pz _p_§+ w322 (A2) ? Zez—wizz
P2 p2 2 P2 27 Using initial valuespy= pmin,20=0, we obtain
andw =w,lwg, ©,= w,]wg. w’p’—e -
The momenta as functions of the corresponding coordi- arcsi b . —=20,t,
nates depend on the energies of the oscillator modes 65 Z)ZmZ
— _T22 2 w z
Pp== \/26" wpp”—m/p%, arcsin— = w A, (A10)
V2e,
p,=* \2e,~ 027 (A3)  orinverting
and the classical turning points 1 —
pP== 2(5 — V€&~ w m?cos 2w,t),
1 — Wy
Pmin,max:~_(6p1 \ fi— wgmz) 12,
@y V2€, .
Z= ——Sinw,t. (A11)
1 Wz
Zinin,max 1;— 2¢, (A4)  Finally, using expressiong7) we have
z
are the roots of equatiorns,(p) =0,p,(2) =0 , 1 —
The corresponding action integrals pr==—(2j,+[m[=2\j,(j,+|mcos 2,), (A12)
Pmax 2i
3€ Pydp=— V2 2¢,~ op°—m? p*dp, z= \/#sinez, (A13)
Pmin W,
wheref,= w,t, 0,=
1 2 (Zmax ~25
2n P Pdz= ] V26— 0y77dz (A5) APPENDIX B
b ved ticall If w,>w, we average the Hamiltonian for the relative
can be solved analytically motion, Eq.(2), over the angl®,. Therefore, it is enough to
express only variables in terms of the corresponding action-
1 e € angle variables
p z
1p=5 = —|m| == (A6)
w, w, - o
. . ezep(pp!p)+w212__m+vcl (B1)
and the energies of these two oscillatory modes are ex- 0
pressed in terms of the corresponding action variables where the energy, is given by Eq.(A2) and
~ ) -~ N -12
wP(21p+|m|)i €= Wz)z. (A7) Uc:2 Sln2(9 (B2)
p zp
Since the Coulomb term is the only one that depends on the
angled,, the procedure reduces to evaluation of the effective

In order to express the,z coordinates in terms of the
action-angle variables, the equations of motion

Coulomb interaction
dp dz
dT_pp! dT_pz (A8) off 1 (2= ) 2]
Uc :2_ ve(pijz,0,)d0,=—K , (B3)
must be integrated. The scaled time variabtew,t is intro- 7Jo P @’
duced in order to keep the dimensionless form of equationghereK is the first elliptic integral. Thus, the full effective
potential Eq.(10) depends only on thg coordinate

of motion. Therefore
155307-6
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