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A kinetic approach for the evolution of ultracold neutral plasmas including interionic correlations and the
treatment of ionization/excitation and recombination/deexcitation by rate equations is described in detail. To
assess the reliability of the approximations inherent in the kinetic model, we have developed a hybrid molecu-
lar dynamics method. Comparison of the results reveals that the kinetic model describes the atomic and ionic
observables of the ultracold plasma surprisingly well, confirming our earlier findings concerning the role of
ion-ion correlations[Phys. Rev. A68, 010703(2003)]. In addition, the molecular dynamics approach allows
one to study the relaxation of the ionic plasma component toward thermodynamical equilibrium.
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I. INTRODUCTION

Recent experiments have produced ultracold neutral plas-
mas from a small cloud of laser-cooled atoms confined in a
magneto-optical trap[1–6]. In one type of experiment[1–3],
a plasma was produced by photoionizing laser-cooled Xe
atoms with an initial ion temperature of about 10mK. By
tuning the frequency of the ionizing laser, the initial electron
energyEe could be varied corresponding to a temperature
range 1 K,Ee/kB,1000 K, and the subsequent expansion
of the plasma into the surrounding vacuum was studied sys-
tematically. In a complementary type of experiment[4–6],
ultracold Rb and Cs atoms were laser excited into high
Rydberg states rather than directly ionized. In these experi-
ments, the spontaneous evolution of the Rydberg gas into a
plasma has also been observed. The time evolution of several
quantities characterizing the state of the plasma, such as the
plasma density[1,2], the degree of ionization[4–6], or the
energy-resolved atomic level population[3], have been mea-
sured using various plasma diagnostic methods.

These experiments, which have paved the way toward an
unexplored regime of ionized gases, give rise to new phe-
nomena in atomic physics as well as in plasma physics.
Hence, a number of different theoretical approaches have
been formulated to cover different aspects of these experi-
ments[7–13].

An important issue is the question whether the plasma
produced would be strongly coupled or not. The correlation
strength is determined by the Coulomb coupling parameter
G=e2/ sakBTd with the Wigner-Seitz radiusa [14]. A plasma
is called “strongly coupled” ifG@1, i.e., if the Coulomb
interaction between the plasma particles greatly exceeds the
thermal kinetic energy. In this case, interesting ordering ef-
fects such as Coulomb crystallization can be observed
[15,16]. For the initial conditions of the experiments of Kil-
lian and co-workers[1–3], however, the development of
equilibrium electron-electron correlations leads to a rapid
heating of the electron gas, which prevents the electron Cou-
lomb coupling parameterGe from exceeding unity[7]. The
same has been argued for an ion plasma in[17]. Since the

electron dynamics proceeds on a much smaller time scale
than the ion motion, in[7,8] the electron heating could be
studied for the early stage of the plasma evolution only,
where the ionic component does not show dynamical effects.
On the other hand, ion heating has been studied only in the
framework of a model system, consisting of a homogeneous
gas of Debye-screened ions[17], such that the influence of
the subsequent expansion could not be explored.

The first quantitative comparison with experimental ob-
servations was given in[10], with the plasma dynamics mod-
eled within a hydrodynamical approach and ionization, exci-
tation, and recombination treated by a separate set of rate
equations. Since this model accounts only for the mean-field
potential created by the charges, it cannot describe effects of
particle correlations. However, it was also shown there that
the electronic Coulomb coupling parameterGe does not ex-
ceed a value of<0.2 during the plasma expansion due to
heating by three-body recombination. Thus, the influence of
electron-electron correlations on the dynamics of the plasma
could be neglected. On the other hand, three-body recombi-
nation does not influence the ionic temperature, so that the
ions can heat up only through correlation heating(and en-
ergy exchange with the electrons, which, however, is very
slow). Since the ionic temperature was set to zero in[10], the
role of ion-ion correlations could not be explored. In a pre-
liminary study[13], we showed that they indeed change the
evolution of the system quantitatively, although not qualita-
tively. In the following, we will give a detailed account of
the kinetic model used in[13] and of all relevant ingredients.
We will also develop a hybrid molecular dynamics(HMD)
approach which treats the electronic plasma component in an
adiabatic approximation while the ions are fully accounted
for. Such an approach permits the description of situations
where the ions are strongly coupled[16,18], which is clearly
beyond the capabilities of the simple kinetic model. Never-
theless, for the typical situations realized in the experiments
[1–3], comparison of the two theoretical approaches yields
very good agreement, corroborating our findings reported
earlier [13] and establishing firmly that one can capture the
relevant physics with the relatively simple kinetic approach.

PHYSICAL REVIEW A 70, 033416(2004)

1050-2947/2004/70(3)/033416(12)/$22.50 ©2004 The American Physical Society70 033416-1



II. THEORETICAL APPROACH

Our kinetic approach is similar to the one of[10]. The
main difference is the inclusion of ion-ion correlations(ICs)
which will be described in detail below. Briefly, a set of
kinetic equations is formulated for the evolution of the
plasma (Sec. II A), while ionization/excitation and
recombination/deexcitation are taken into account on the ba-
sis of rate equations(Sec. II B). In order to test the applica-
bility and accuracy of this model, we have developed a less
approximate and more flexible but computationally much
more demanding approach. It uses molecular dynamics for
the ionic motion while the electron component is treated as a
fluid assuming a quasisteady state(Sec. II C).

A. Kinetic description

Starting from the first equation of the Bogoliubov-Born-
Green-Kirkwood-Yvon(BBGKY) hierarchy[19], the evolu-
tion equation for the one-particle distribution function
fasr ,v ,td of the free plasma charges is obtained as

mas]t + v · ]rdfasr ,v,td

= o
b
E f]rwabsr ,r 8dg]vfabsr ,v,r 8,v8,tddr 8dv8, s1d

wherea ,b label the particle species(e, i for electrons and
ions, respectively), fabsr ,v ,r 8 ,v8 ,td denotes the two-particle
distribution function for the corresponding particle species,
and wab=qaqb / ur −r 8u is the Coulomb interaction potential
between the chargesqa and qb. Electron-electron correla-
tions are very small during the plasma expansion, since the
electrons will quickly heat up due to three-body recombina-
tion and the additional heating due to correlation effects is
small in comparison[10]. Hence, we neglect electron-
electron as well as electron-ion correlations,1 leaving only IC
as a possible influence on the plasma dynamics beyond the
mean-field level. On this level of approximation the ion ki-
netic equation can be written as

miS]t + v · ]r −
]r w̄

mi
]vD f i =E s]rwiid]vwiisr ,v,r 8,v8ddr 8dv8,

s2d

where the function

wiisr ,v,r 8,v8d = f iisr ,v,r 8,v8d − f isr ,vdf isr 8,v8d s3d

contains the contributions of ICs to the two-particle distribu-
tion function andw̄ is the mean-field potential created by all
plasma charges. Sinceme/mi !1, the relaxation time scale of
the electrons is much smaller than the time scale of the
plasma expansion under typical experimental conditions[1].
Thus, we may safely apply an adiabatic approximation for
the electron distribution function, assuming a local Maxwell-
ian distribution

fesr ,vd ~ expS w̄sr d
kBTe

DexpS−
v2

2kBTe
D , s4d

whereTe is the electron temperature. Equation(4) together
with a quasineutral approximation[20] allows one to express
the mean-field potential in terms of the ionic densityri
=ef idv, resulting in

]r w̄ = kBTe
]rri

ri
. s5d

Using Eq.(5), the following evolution equations for the sec-
ond moments of the ion distribution function are derived
from Eq. (2):

]tkr2l = 2kr ·vl, s6ad

mi

2
]tkr ·vl =

mi

2
kv2l +

3

2
kBTe +

1

2
Ni

−1E risr dr ·Fiisr ddr ,

s6bd

mi

2
]tkv2l = Ni

−1SkBTeE ri]rudr

−E v · s]rwiidwiisr ,v,r 8,v8ddrdvdr 8dv8D
s6cd

wherekr2l=Ni
−1e r2f isr ,vddrdv, etc. The “correlation force”

Fiisr d is given by

Fiisr d = −E s]rwiidrisr 8dgiisr ,r 8ddr 8, s7d

where the spatial correlation functiongii is defined by
risr drisr 8dgiisr ,r 8d;ewiisr ,v ,r 8 ,v8ddvdv8 and usr d
=evf idv is the hydrodynamical drift velocity of the plasma.
With the help of the second kinetic ion equation of the
BBGKY hierarchy, the last term on the right-hand side of Eq.
(6c) can be written as

1

Ni
E v · s]rwiidwiidrdvdr 8dv8 = −

1

2Ni
]tE wiiwiidrdvdr 8dv8

= − ]tUii , s8d

where

Uii =
1

2Ni
E wiirisr drisr 8dgiisr ,r 8ddrdr 8 s9d

is the average correlation energy per ion. Hence, Eq.(6c)
reflects energy conservation for the ion subsystem. The evo-
lution of the hydrodynamical velocityu is determined by

mirif]tu + su · ]rdug = − kBTe]rri − ]rPth,i − riFii s10d

wherePth,i =smi /3Nidesv−ud2f idrdv is the thermal ion pres-
sure. As shown in the Appendix, in the framework of a local
density approximation(LDA ), i.e., by assuming thatgii de-
pends only on the distanceur −r 8u and on the densities at the
two coordinatesr andr 8, and that the ionic densityri varies

1Debye screening of the ion-ion interaction is expected to have a
slight quantitative effect on the ion dynamics for the lowGe values
considered here.
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slowly on the length scale whereg is significantly different
from zero, the total correlation energy can be approximated
by the well-known LDA expression

Uii = Ni
−1E uiiridr s11d

while the correlation force is found to be

Fii = −
1

3
Suii

ri
+

] uii

] ri
D]rri , s12d

where uiisr d is the correlation energy of a homogeneous
plasma of densityrisr d,

uiisr d =
e2

2
risr dE giisx;rid

x
dx. s13d

If ICs are neglected in Eq.(2), the kinetic equation exhibits
the following self-similar solution:

f i ~ expS−
r2

2s2DexpS−
misv − ud2

2kBTi
D ,

u = g r , s14d

which corresponds to the initial state of the experiments un-
der consideration. As soon as ICs are taken into account via
the correlation pressureriFii in Eq. (10), however, Eqs.(14)
are no longer exact solutions of Eq.(2). Using Eq.(12), the
last term on the right-hand side of Eq.(10) can be rewritten
asriFii =−1

3f]suiirid /]rig]rri. Interpreting this term as a local
nonideal pressure, an equation for the parameterg was de-
rived in [13] by averaging the differential equation foruuu / r
obtained by inserting Eq.(14) into Eq. (10) over the plasma
volume. Obviously, this treatment is not unique. Since, as
discussed above, the ansatz(14) does not solve Eq.(10) ex-
actly, multiplying Eq. (10) by different functions ofr and
averaging over the plasma volume will lead to slightly dif-
ferent evolution equations for the parameterg. Here, sup-
ported by a comparison with our numerical results from the
MD simulations, to be discussed below, we assume as in[13]
that the functional form of the hydrodynamical quantities of
Eqs. (14) is not altered by the inclusion of ICs, while the
dynamics of the parameters appearing in Eqs.(14) is deter-
mined from the equations(6) for the moments of the distri-
bution function. Clearly, such an approximation cannot be
justifieda priori. Hence, it must be validateda posterioriby
comparison with more sophisticated methods which do not
rely on a reduction of the plasma description to a few mac-
roscopic parameters.

With this procedure, we arrive at the following set of
equations for the widths of the plasma cloud, its expansion
velocity g r as well as ionic and electronic temperatureTi
andTe:

]ts
2 = 2gs2, s15ad

]tg =
kBTe + kBTi + 1

3Uii

mis
2 − g 2, s15bd

]tkBTi = − 2gkBTi −
2

3
gUii −

2

3
]tUii , s15cd

]tkBTe = − 2gkBTe. s15dd

The last equation(15d) has been derived from the electron
kinetic equation by making use of the quasineutrality condi-
tion. The set of Eqs.(15) slightly differs from that presented
in [13] where Wc=s1/3Niderif]suiirid /]rigdr was used in-
stead ofUii in Eq. (15b). A comparison with our numerical
MD results shows that Eqs.(15) yield a slightly better quan-
titative agreement, while the principal influence of ICs on the
plasma dynamics, which has been partly discussed in[13], is
the same. Equations(15) provide a transparent physical pic-
ture of the expansion dynamics. First, Eq.(15d) together
with Eq. (15a) reflects the adiabatic cooling of the electron
gas, i.e.,Tes

2=const. The ion temperature, on the other
hand, not only is affected by the adiabatic cooling, expressed
by the first term in Eq.(15c), but also changes due to the
development of ICs, which is taken into account by the last
term in Eq.(15c). Furthermore, these correlations reduce the
ion-ion interaction and therefore lead to an effective negative
acceleration, expressed by theUii /3 term in Eq.(15b), in
addition to the ideal thermal pressure. This contribution,
which corresponds to the average nonideal pressure known
from homogeneous systems[14,15], also leads to an effec-
tive potential in which the ions move. As they expand in this
potential, the thermal energy changes due to energy conser-
vation, as expressed by the second term on the right-hand
side of Eq.(15c). Finally, combining Eqs.(15) yields a sec-
ond integral of motion, namely, the total energy of the
plasma

Etot =
3

2
skBTe + kBTid +

3

2
mig

2s2 + Uii . s16d

Although the set of equations(15) determines the time evo-
lution of all relevant macroscopic plasma parameters,
namely, its width, expansion velocity, and electron and ion
temperature, it is not a closed set since an evolution equation
for the correlation energyUii which enters Eq.(15c) is miss-
ing. Initially, the plasma is completely uncorrelated, so that
Uiist=0d=0. However, the initial state corresponds to a non-
equilibrium situation, and the plasma will relax toward ther-
modynamic equilibrium, thereby building up correlations. A
precise description of this relaxation process in the frame-
work of a kinetic theory is rather complicated and requires a
considerable numerical effort[21]. We therefore employ a
linear approximation for the relaxation of the two-particle
correlation function, the so-called correlation-time approxi-
mation [22],

dwiisr ,v,r 8,v8;td
dt

< −
wiisr ,v,r 8,v8;td − wii

eqsr ,r 8;td
tcorr

.

s17d

Here,tcorr [22,23] is the characteristic time scale for the re-
laxation of particle correlations andwii

eq is the equilibrium
pair correlation function, which in our case still depends on
time via the evolving one-particle distribution function since
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the plasma is freely expanding. As shown in[24] the corre-
lation time tcorr can be well estimated by the inverse ionic
plasma frequency. Hence, in our calculations we settcorr

=vp,i
−1=Îmi / s4pe2r̄id, wherer̄i =Ni / s4ps2d3/2 is the average

ionic density of the plasma. Such a linear approximation is
good only for small deviations ofwii from its equilibrium
form. Clearly, this is not the case in the initial stage of the
gas evolution. However, after the initial phase of correlation
heating the system stays very close to its slowly changing
local equilibrium, and one may expect Eq.(17) to yield good
results. Under the same conditions that lead to Eqs.(11) and
(12), one easily verifies that Eq.(17) leads to

]tUii < −
Uii − Uii

eq

tcorr
, s18d

whereUii
eq=Ni

−1eriuii
eqdr anduii

eqsr d is the correlation energy
per particle of a homogeneous one-component plasma in lo-
cal equilibrium. This quantity has been studied intensively in
the past, and approximate analytical formulas are available in
the literature[14,15]. Here, we adopt the interpolation for-
mula from [25]

uii
eqsr d = kBTiG

3/2S A1

ÎA2 + G
+

A3

1 + G
D , s19d

with A1=−0.9052, A2=0.6322, andA3=−Î3/2−A1/ÎA2,
which yields an accurate interpolation between the low-G
Abe limit and the high-G behavior obtained by Monte Carlo
and MD simulations. It should be noted that in the present
situation uii depends on time since the plasma expands.
Hence, G and with it the thermodynamical equilibrium
change in time.

The set of equations(15) describes the evolution of the
plasma part of the system, i.e., a system ofNi ions and elec-
trons. Due to ionization and recombination events occurring
during the plasma expansion(discussed in detail in the fol-
lowing subsection), this numberNi, and hence also the total
massM =Nimatom, is not constant over the course of the evo-
lution. However, such a treatment completely neglects the
influence of the bound Rydberg atoms on the dynamics. One
may argue that they do not influence the plasma evolution
since they do not interact with the ions or electrons by Cou-
lomb interaction. On the other hand, a Rydberg atom may
carry a significant amount of kinetic energy, gained from the
acceleration by the electron pressure before its formation by
three-body recombination. In a simple approximation, we as-
sume equal hydrodynamical velocities and density profiles
for the ions and atoms, in order to account for this effect.
This implies that the expansion of the neutral Rydberg atoms
can be taken into account by replacing the massNimi of the
ions by the mass of thetotal systemsNi +Nadmi, whereNa is
the number of atoms. We therefore replace the ion massmi
by an effective masss1+Na/Nidmi in Eq. (15b). The quality
of this approximation can, of course, also be checked by
comparison with the HMD description(see below).

B. Ionization and recombination

As demonstrated in[10], a satisfactory description of the
dynamics of an ultracold plasma can be achieved by combin-

ing a hydrodynamic treatment of the plasma evolution with
rate equations accounting for inelastic collisions between the
plasma particles and Rydberg atoms. The rate equation for
the change of density of Rydberg atoms in a state with prin-
cipal quantum numbern reads

ṙasnd = reo
p

fKsp,ndraspd − Ksn,pdrasndg + refRsndreri

− Isndrasndg, s20d

where Ksp,nd is the rate coefficient for electron impact
(de)excitation from levelp to level n, and Rsnd and Isnd
describe three-body recombination into and electron-impact
ionization from leveln, respectively. The rate coefficientsK,
R, andI have been taken from the classic work of Mansbach
and Keck[26]. Additional processes, such as, e.g., ionization
by black-body radiation or from dipolar atom-atom interac-
tions, are easily included in Eq.(20) if the corresponding
rates are available. Such processes are essential for a descrip-
tion of the early stages of the evolution of a system starting
with a Rydberg gas[4–6], but are of minor importance in
situations starting from a pure plasma.

In this framework, the evolution of the system is obtained
by solving Eqs.(15a)–(15c) together with Eq.(20) while the
electron temperature is now obtained from the modified en-
ergy conservation relationEtot+Ea=const instead of Eq.
(15d), whereEa=−RonNan

−2 is the total energy of the Ryd-
berg atoms andR=13.6 eV.

C. Hybrid molecular dynamics treatment

As we will show in Sec. III, the kinetic description of the
previous subsections is able to describe the plasma dynamics
to a surprisingly large extent. However, one of the main mo-
tivations of this work is the study of the role of ICs, which
are incorporated in the model only in an approximate way.
To assess their influence on the dynamics reliably, a more
sophisticated approach is required, e.g., molecular dynamics
simulations which fully incorporate the ionic interactions.
However, a full MD simulation of both electrons and ions is
computationally very demanding, and only the very early
stage of the system evolution can be described in this way
[7]. On the other hand, as argued above, electronic correla-
tions are not important for the plasma dynamics, so that only
ICs have to be accounted for in full while the influence of the
electrons on the dynamics may be treated on a mean-field
level. Moreover, we have seen that the time scale of equili-
bration of the electronic subsystem is orders of magnitude
shorter than that of the ionic subsystem and the time scale of
the plasma expansion. This observation led us to use an adia-
batic approximation in Sec. II A, where the electrons are
assumed to equilibrate instantaneously, assuming a Maxwell-
ian velocity distribution with a well-defined temperature and
a spatial profile determined from the total mean-field poten-
tial of the plasma charges. The clear separation of time scales
suggests that this adiabatic approximation is well justified;
hence we will keep it in the following. Consequently, we
have developed a hybrid approach where the electrons are
treated on a hydrodynamical level as in the kinetic descrip-
tion above, while the ions are propagated individually with
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their mutual interaction and the influence of the electrons on
the ions enters via the electronic mean-field potential. This
hybrid approach permits the use of much larger time steps in
the propagation of the system, since the electronic dynamics
needs not to be followed in detail but only the ionic motion
has to be resolved in time. Consequently, the evolution of the
system can be followed over the experimental time scales.
Furthermore, the approximate treatment of ICs in the kinetic
model of Sec. II A can be tested. Finally, beyond the scope
of the present work, we have shown[16] that the present
HMD approach can describe situations where the ionic
plasma component is so strongly coupled that crystallization
of the ions sets in. Such a scenario is clearly beyond the
capabilities of a kinetic approach.

As discussed above, the electrons are still treated as a
fluid, while we lift the quasineutral approximation by calcu-
lating the resulting mean-field potential from the Poisson
equation

Dw̄ = 4pe2sre − rid. s21d

However, using Eq.(4) poses a conceptual difficulty[11]
since the mean-field potential approaches a finite value at
large distances and therefore leads to a non-normalizable
electron density. This problem, which has been discussed for
a long time in an astrophysical context[27], reflects the fact
that a substantial fraction of the electrons indeed escapes the
finite potential barrier at long times during the relaxation
process until the total kinetic energy of all electrons is less
than the height of the potential well. On the time scales un-
der consideration, however, typically only a small amount of
the electrons escapes the plasma volume, until the resulting
charge imbalance becomes large enough to trap the remain-
ing electrons, which quickly reach a quasisteady state form-
ing a temporarily quasineutral plasma in the central region.
We account for this electron loss by determining the fraction
of trapped electrons from the results of Ref.[1].

The corresponding steady-state distribution, derived for
the study of globular clusters, is of the form[28]

re ~ expS w̄

kBTe
DE

0

x

exps− xdx3/2dx, s22d

wherex=mevesc
2 / s2kBTed with the velocityvescsr d necessary

to escape from a given position in the plasma. In the present
case, the potential can have a nonmonotonic radial space
dependence and the escape velocity has to be defined as

me

2
vesc

2 srd = max
r8ùr

fw̄sr8d − w̄srdg, s23d

in contrast to astrophysical problems where one only has a
single sign of “charge” andmevesc

2 /2=−w̄ [28]. For a given
electron temperatureTe and ion densityri the electron den-
sity is found by numerical iteration of Eqs.(21)–(23) until
self-consistency is reached.

Knowledge of the electron density then permits propaga-
tion of the ions in the electron mean fieldDw̄e=4pe2re and
the full interaction potential of the remaining ions,

mi r̈ j = ]r j
w̄e + e2o

k

r j − r k

ur j − r ku3
. s24d

The numerical solution of the ion equations of motion rep-
resents the most time consuming part of the plasma propa-
gation. In general, forN propagated particles, the corre-
sponding numerical effort scales withN2, rendering a
treatment of large particle numbers difficult. In order to
simulate particle numbers relevant to the experiments, we
have adapted a hierarchical tree code originally designed for
astrophysical problems, first described in[29]. This method
provides a numerically exact solution of the ion equations of
motion Eq. (24), while the numerical effort grows only as
N ln N with increasingN. More details about the numerical
procedure can be found, e.g., in[30].

In the framework of the kinetic model introduced in Sec.
II A, the influence of ICs on the system evolution can be
singled out by comparison with the solution of the corre-
sponding equations withUii ;0. In order to make an analo-
gous comparison also for the MD simulations, we have per-
formed calculations propagating the ions in the mean-field
potential created by all charges. Technically, the mean-field
potential is represented using a test-particle method, widely
used for various problems in plasma physics(see, e.g.,[31]).

III. RESULTS AND DISCUSSION

We will discuss the evolution of a plasma initially con-
sisting ofNe=37 500 electrons andNi =40 000 ions with an
average density of 109 cm−3 at a rather low electronic kinetic
energyEe/kB=3Te/2=20 K, comparing the results from the
kinetic model and our MD simulation. Thereby, we put spe-
cial emphasis on the role of ICs.

A. Global aspects of plasma expansion and recombination

The general macroscopic behavior of the system has been
described before in several publications, experimentally as
well as theoretically[2,3,10,11]. The plasma cloud slowly
expands due to the thermal pressure of the electrons, leading
to adiabatic cooling of the electrons as well as partial recom-
bination into bound states(Figs. 1 and 2). The amount of
recombination and its influence strongly depends on the ini-
tial electron temperature and density. If the electrons are too
hot (about 50 K for typical experimental densities of
109 cm−3), recombination is strongly suppressed and the sys-
tem dynamics is well described by the results of[20] ob-
tained for the collisionless plasma expansion[2].

1. Temporal evolution of the electronic temperature

For the lower electron temperatures considered here, as
can be seen in Fig. 1, there is an initial increase of the elec-
tron temperature due to electron heating by three-body re-
combination and subsequent deexcitation of the formed
Rydberg atoms. At low initial electron energies this heating
drastically increases the electron temperature and thus accel-
erates the plasma expansion[10], which explains the en-
hanced expansion velocity observed in[2]. In contrast to this
recombination heating of the electrons, the inclusion of ICs
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only slightly changes the expansion dynamics, as seen in Fig.
1 by comparing the solid and dotted lines. As shown in the
inset of Fig. 1(a), the electron temperature obtained from the
HMD simulation and the kinetic model differ by at most 8%
during the first few microseconds of the plasma expansion,
while the agreement becomes even better at later times.

Moreover, the faster decrease of the electron temperature due
to the inclusion of ICs, predicted by the particle simulations,
is quantitatively reproduced by the much simpler kinetic
model.

Hence, the simple evolution equations(15) are sufficient
to clarify the role of ICs in the expansion dynamics. Accord-
ing to Eq.(15c), the development of ICs quickly heats up the
plasma ions to roughly −23Uii since the expansion of the
plasma is still negligible during this initial stage. Thereby,
the negative correlation energy term13Uii in Eq. (15b) is
overcompensated, leading to a faster expansion of the
plasma. As a consequence of the quicker expansion, the elec-
tron temperature decreases somewhat faster than without the
inclusion of ICs. With Eq.(15b), the importance of this ef-
fect can be estimated by comparing the thermal electron en-
ergy kBTe to the net ion contribution −13Uii in the numerator
of the first term on the right-hand side of Eq.(15b). Estimat-
ing the correlation energy bye2/a, it follows that the total
pressure driving the plasma expansion is enhanced by a fac-
tor of roughly 1+Ge/3, which only slightly changes the ex-
pansion dynamics since the electrons are known to be
weakly coupled over the whole observation time[10].

2. Formation of Rydberg atoms in time

The number of recombined atoms is influenced more
strongly by ICs(Fig. 2). During the evolution of the system,
Rydberg atoms are constantly formed by three-body recom-
bination and reionized by the free electrons in the plasma. As
shown in Fig. 2(a), for the current set of parameters about
7000 Rydberg atoms are present in the system after 40ms,
while the kinetic model yields about 7900 atoms at the same
instant of time[Fig. 2(b)]. This number is small compared to
the size of the whole system; nevertheless it is large enough
that the recombined atoms can be detected in an experiment,
and corresponding curves have indeed been obtained experi-
mentally [3]. Due to the strong temperature dependence of
the total three-body recombination rate, which is propor-
tional to Te

−9/2 [26], the slight decrease of the electron tem-
perature due to the faster expansion, caused by the correla-
tion heating of the ions, considerably affects the
recombination behavior of the plasma. While there is an
overall shift between the atom number obtained from the
particle simulations and the kinetic model, both the kinetic
model and the HMD simulation yield an increase of the atom
number of about 10% att=40 ms (Fig. 2), compared to a
mean-field treatment of the ion dynamics. Thus, the HMD
simulation corroborates our previous findings[13].

Additional insight into the recombination process can be
gained from a closer look at the distribution of bound Ryd-
berg states. Figure 3 shows the population of levels with
principal quantum numbern for three different times, corre-
sponding to different stages of the plasma expansion. Ini-
tially, Rydberg states of moderate excitation are populated,
due to a relatively high electron temperature[Fig. 3(a)]. At
later times, higher excited bound states are formed in the
course of the plasma expansion[Figs. 3(b) and 3(c)], since
the maximum principal quantum number for recombination
nmax=ÎR / s2kBTed [26] increases as the electron temperature
drops down. Moreover, the deeply bound states formed at

FIG. 1. Electronic temperatureTestd for an expanding plasma of
40 000 ions with an initial average density of 109 cm−3 and an
initial electron kinetic energy of 20 K, obtained from the HMD
simulation (a) and the kinetic model(b), with (solid) and without
(dotted) the inclusion of ICs. The inset shows the ratio of the elec-
tron temperatures obtained from the HMD simulation and the ki-
netic model.

FIG. 2. NumberNastd of recombined atoms obtained from the
HMD simulation(a) and the kinetic model(b) for the same param-
eters as in Fig. 1. The solid line shows the result taking into account
the ICs while the dotted line is obtained from the mean-field
treatment.
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earlier times are also not subject to electron-impact excita-
tion and deexcitation anymore since the thermal velocity of
the impacting electrons has become too small. Thus, as be-
comes apparent by comparing Fig. 3(b) with Fig. 3(c), the
deeply bound statessn*30d remain basically untouched,
while higher and higher states “freeze out” as the plasma
expands. As may be anticipated from Fig. 2, ICs mainly af-
fect the later stages of the plasma evolution. Hence, the in-
clusion of ICs alters the population of these higher-lying
states, as shown in Fig. 3(c). Since these states have small
binding energy, they contribute little to the total kinetic en-
ergy of the plasma subsystem. This is the reason why the
effect of ICs is visible in the distribution of Rydberg states,
but not in the macroscopic expansion dynamics of the
plasma, reflected, e.g., by the asymptotic expansion velocity
measured in[2].

B. Spatially resolved plasma expansion and relaxation

While the time evolution of global, i.e., space-averaged,
observables of the plasma is very well described by the ki-
netic model, one may expect discrepancies compared to the
MD simulations when looking into the spatially resolved
plasma dynamics. We will assess these discrepancies quanti-
tatively in the following.

1. Evolution of the particle densities

In the derivation of the kinetic equations(15), we have
assumed that the analytical form of the ionic densityri re-
mains invariant during the evolution of the system and,
moreover, that the atoms will have the same distribution. As
the plasma expands, the spatial profile of the ions must de-
viate from its original Gaussian shape[11]. This is mainly
due to deviations from quasineutrality, e.g., deviations from
the linear space dependence of the outward directed accel-
eration, at the plasma edge. The influence of the nonlinear
correlation pressure on the density profile is of minor impor-
tance, as can be seen by comparing the solid and dot-dashed
line of Fig. 4(a) in the inner plasma region. As known from
earlier studies of expanding plasmas, based on a mean-field
treatment of the particle interactions[11,32,33], a sharp spike
develops at the plasma edge, shown by the dot-dashed line in
Fig. 4(a). At later times, this spike decays again when the
maximum of the hydrodynamic ion velocity passes the posi-
tion of the density peak, so that the region of the peak is
depleted. Ultimately, at long times, the plasma approaches a
quasineutral selfsimilar expansion[33]. From Fig. 4(a) it be-

FIG. 3. Population of bound Rydberg states with principal quan-
tum numbern, aftert=1.5 ms (a), t=6 ms (b), andt=40 ms (c). The
vertical bars represent the HMD calculation, the solid line the ki-
netic model. The dashed curve in(c) shows the kinetic model ne-
glecting ICs. Initial-state parameters are the same as in Fig. 1.

FIG. 4. Spatial densitiesri (solid) and ra (dashed) of the ions
and atoms, respectively, att=3 ms (a) andt=31.3ms (b), compared
to the Gaussian profile assumed for the kinetic model(dotted). Ad-
ditionally, ri obtained from the particle simulation using the mean-
field interaction only is shown as the dot-dashed line in(a). Initial-
state parameters are the same as in Fig. 1.
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comes apparent that with ICs the peak structure is less pro-
nounced than in mean-field approximation. This is due to
dissipation caused by ion-ion collisions which are fully taken
into account in the HMD simulation. As shown in[33], by
adding an ion viscosity term to the hydrodynamic equations
of motion, dissipation tends to stabilize the ion density and
prevents the occurrence of wavebreaking which was found to
be responsible for the diverging ion density at the plasma
edge in the case of a dissipationless plasma expansion. Fur-
thermore, the initial correlation heating of the ions largely
increases the thermal ion velocities leading to a broadening
of the peak structure compared to the zero-temperature case.

Apart from the deviations at the plasma edge, the ionic
density is rather well reproduced by the Gaussian approxi-
mation for the spatial distribution. In particular, there is good
agreement between the rms radii obtained from the MD
simulation and the kinetic model. On the other hand, the
spatial distribution of atoms significantly deviates from that
of the ions even at relatively early times due to the nonlinear
density dependence of the collision rates in Eq.(20). How-
ever, as also stated in[11], the total number of atoms is too
small to significantly influence the macroscopic expansion of
the system.

2. Spatial dependence of the radial velocities

Another assumption used in the derivation of the kinetic
model is the proportionality of the hydrodynamical expan-
sion velocity to the distance from the center of the plasma
cloud, u=gr , for both the ions and the atoms. In order to
check this assumption, we have calculated the radial velocity
componentvr =v ·r / r of each particle, which is plotted as a
function of the radial distance from the plasma center in Fig.
5. At an early time the velocity distribution is spread out
about its mean value predicted from the kinetic approach due
to the finite ionic temperature. Note that the expansion is
slower near the plasma edge due to the deviation from
quasineutrality as discussed above. Consequently, the inner
part of the plasma which expands more quickly will catch up
with the outer rim, leading to the formation of the density
spike seen in Fig. 4(a). In the case of the HMD simulation
the velocity spread, caused by the initial ion heating, is of the
same order of magnitude as the hydrodynamical expansion
velocity itself, leading to a significant broadening of the den-
sity spike as discussed above. At later stages of the system
evolution, the ions cool adiabatically due to the plasma ex-
pansion, and the width of the velocity distribution decreases
significantly. Moreover, as discussed in connection with the
decay of the ion density peak in Fig. 4(b), the decrease of the
ion velocities near the plasma edge apparent at early times
has disappeared.

A comparison with the result of the kinetic model equa-
tions (15) shows once more that the HMD simulation not
only reproduces the linear radial dependence of the hydrody-
namical velocity, but also yields a quantitative agreement
between both methods.

3. Spatial dependence of the thermal velocities

Due to its marginal influence on the plasma expansion
dynamics, the role of the ionic temperatureTi for the state of

the system has not been addressed before. In the cold fluid
model of [10,11], Ti has been set to zero in order to follow
the long-time plasma dynamics. However, as stated in the
Introduction, one of the motivations of the current type of
experiments was the creation of a strongly coupled plasma.
In this context, knowledge ofTi is essential since it directly
enters the Coulomb coupling parameter which determines
the state of the plasma. Moreover, the ionic temperature
gives important insight into the relaxation dynamics of the
plasma. For comparing the kinetic model with the HMD cal-
culations, the very definition ofTi for the MD simulation
requires some discussion. As discussed in section II, we as-
sume a Gaussian velocity distribution, i.e., a well-defined
temperatureTi, for the plasma ions in our kinetic model.
This, of course, is an approximation since the plasma is not
created in an equilibrium state. The total kinetic energy of
the ions is a sum of the hydrodynamical expansion energy
and a contribution due to the thermal motion of the ions.
Since the hydrodynamical velocity is directed radially[Eq.
(14)], we determine the thermal energy of the ions from the
average of the velocity component perpendicular to the ra-
dial direction

kBTi =
mi

2
KSv 3 r

r
D2L =

mi

2
kv'

2 l. s25d

Clearly, such an assignment of a temperature to the average
velocity is well defined only if the ion velocitiesv' are
distributed according to a Maxwell distribution. In order to

FIG. 5. Hydrodynamic velocityusrd of ions (full circles) and
atoms(open circles) at the same times as in Fig. 4, compared to the
straight-line assumption of the kinetic model. The dashed line in(a)
shows the result of the particle simulation using a mean-field treat-
ment of the ion-ion interaction.
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check the validity of this requirement, we have sampled the
ion velocity distributionv' from three different regions in
the plasmar ø1.3s, 1.3s, r ø2s, and r .2s, which have
been chosen so that each region is occupied by approxi-
mately the same number of ions. The resulting distributions
are plotted at two different timest=0.3 ms=1.3vp,i

−1 and t
=1.5 ms=7vp,i

−1 in Figs. 6 and 7, respectively. Additionally,
we have fitted a Maxwell-Boltzmann distribution to the nu-
merical results, formally defining a temperature in the corre-
sponding plasma region. As can be seen in Fig. 6, even at the
very early stage of the plasma evolution the numerical data is
well fitted by an equilibrium distribution in the inner plasma
region, while there are deviations in the outer region of the
plasma since the relaxation time is longer due to the lower
density far away from the plasma center. However, already
after a relatively short time oft=1.5 ms the velocity distri-
butions are well fitted by a Maxwell-Boltzmann distribution
in all three plasma regions(Fig. 7). Hence, the ion thermal
energy can be represented by a local temperatureTisrd, de-
creasing with growing distance from the plasma center as
can be seen from Figs. 6 and 7. This is due to the fact that the
initial heating arises from a compensation of the negative
correlation energy, which is larger in the central plasma re-

gion where the density is higher. However, as becomes ap-
parent by comparing Figs. 6 and 7, the thermal energy equili-
brates over the whole plasma volume rather quickly as the
system evolves. While the temperatures defined in the inner
and outermost region deviate by a factor of eight att
=0.3 ms, they differ by a factor of two only 1.2ms later.

Figure 8 gives a more detailed account of this equilibra-
tion process. Here, the local ionic temperature is plotted as a
function of the radial distance from the plasma center at four
different times, whereTisrd has been defined from the veloc-
ity average of a shell of 2000 ions with a central shell radius
r. The temperature decrease with increasing distance from
the center as discussed above is clearly visible. Nevertheless,
the ion temperature is seen to equilibrate rather quickly, so
that the approximation of a homogeneous ion temperature,
used in the derivation of the kinetic model in Sec. II A, be-
comes better and better at later times. Moreover, the numeri-
cally calculated distribution of thermal velocities sampled
over the whole plasma volume is well represented by a
Maxwell-Boltzmann distribution with some average tem-
perature intermediate between the temperatures of the inner
and outer region, respectively[Fig. 7(d)]. This shows that the
Gaussian phase-space distribution assumed for the ions in
Sec. II A agrees very well with the results of the MD simu-
lation averaged over the spatial coordinates, even if the tem-
perature still shows substantial inhomogeneities.

C. Spatially averaged ionic observables

As we have demonstrated in Sec. III A the kinetic model
describes the global temporal evolution of the plasma includ-
ing recombination quite accurately. From the detailed analy-
sis of the spatially resolved plasma dynamics in the previous
subsection we may expect that the kinetic model describes
spatially averaged observables, such as the kinetic energy of
the expansion, the thermal energy, and the correlation energy
of the plasma quite well. This is indeed the case over almost
the entire evolution time as Fig. 9 demonstrates for the cor-
relation energy and the thermal ion energy. Only at an early
stage of the plasma evolution, differences between MD

FIG. 6. Distribution of thermal ionic velocities att=0.3 ms
sampled from three different regions of the plasma:r ø1.3s (a),
1.3s, r ø2s (b), andr .2s (c), and from the total plasma volume
(d). The solid lines show a fit to a Maxwell-Boltzmann distribution
corresponding to the temperatures specified in the figure. Initial-
state parameters are the same as in Fig. 1.

FIG. 7. Same as Fig. 6, but fort=1.5 ms.

FIG. 8. Average thermal ionic energy as a function of the dis-
tance from the plasma center at four different times:t=0.3 ms
(solid), t=1.5 ms (dashed), t=6.0 ms (dotted), andt=25.3ms (dot-
dashed). Initial-state parameters are the same as in Fig. 1.
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simulation and kinetic model are visible, showing that the
correlation-time approximation Eq.(17) does not accurately
describe this early phase of equilibration starting from a
completely uncorrelated state in all details. Since the initial
state is very far from equilibrium, the initial relaxation pro-
cess is not exponential, as assumed in the correlation-time
approximation Eq.(17). Rather, it is connected with transient
oscillations of the temperature(inset of Fig. 9) which have
been found both theoretically[18,34,35] and experimentally
[36]. However, the time scale of the initial ion heating as
well as the maximum temperature are well reproduced by the
simple model. After the system has come sufficiently close to
local equilibrium, the quality of the correlation-time approxi-
mation becomes better and, once again, good agreement be-
tween the two approaches is found, supporting our argument
put forward in the derivation of the kinetic approach in Sec.
II.

Furthermore, according to both approaches, the correla-
tion energy and the thermal kinetic energy of the ions are
almost identical roughly to the time where both curves reach
their maximum values, showing that the total correlation en-
ergy is completely converted into thermal kinetic energy of
the ions, as expressed by Eq.(15c). At later times, this addi-
tional kinetic energy is transferred to the outward directed
motion of the ions, leading to an indirect enhancement of the
plasma expansion by the development of ICs and to adiabatic
cooling of the ions. Therefore, the thermal ion kinetic energy
starts to deviate from the correlation energy as the plasma
expansion sets in.

IV. CONCLUSIONS

In summary, we have presented two different theoretical
approaches for the simulation of ultracold neutral plasmas.
First, we have introduced a simple kinetic model along the
lines of [10], and we have shown how to include a descrip-
tion of ICs into the model in an approximate way. Moreover,
we have developed a hybrid molecular dynamics approach

which allows for an accurate description of the strongly
coupled ion motion on microsecond time scales, by treating
the electronic component as a fluid using an adiabatic ap-
proximation while the ions are fully accounted for on an MD
level.

Supporting our results from[13], both methods show that
the inclusion of ICs enhances the number of recombined
Rydberg atoms by a few percent, but only slightly affects the
macroscopic expansion dynamics of the plasma itself. As we
have shown, this is due to the fact that mainly the population
of very highly excited states is increased if ICs are taken into
account, which have a small binding energy and therefore
hardly influence the electron temperature.

By comparison of the two methods, we could show that
the simple kinetic description adequately describes the evo-
lution of global, i.e., spatially averaged, plasma observables.
Thus, the kinetic model, which allows for a much faster
computation, may be used to quickly and efficiently scan the
vast space of initial-state parameters, e.g., in order to obtain
a “phase diagram” for Rydberg gas–plasma systems[37].
Moreover, it permits extending the description of ultracold
plasmas to a parameter range where the plasma is so large
that the number of particlessNi *106d prohibits a MD simu-
lation. Maybe even more importantly, the simple kinetic
equations give additional insight into the dynamics beyond
that possible on the basis of MD simulations by providing
simple evolution equations for the macroscopic parameters
describing the plasma state.

On the other hand, spatially resolved quantities such as
ionic density, ion velocities or local temperature show devia-
tions from the behavior predicted by the simple kinetic
model. However, the developed HMD approach provides a
powerful method for the study of these quantities, and for the
detailed description of the relaxation dynamics of the
strongly coupled ions on a microsecond time scale. More-
over, it permits the study of scenarios where the ions are so
strongly coupled that Coulomb crystallization occurs[16],
which cannot be described by the kinetic model.
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APPENDIX: DERIVATION OF THE CORRELATION
FORCE

In this section, the approximation Eq.(12) for Fii is de-
rived. We start from Eq.(7):

Fii = e2E risr 8dgiisr ,r 8d
r − r 8

ur − r 8u3
dr 8, sA1d

where the explicit expressionwii =e2/ ur −r 8u for the interionic
Coulomb potential has been inserted. In general, the correla-
tion function gii is a function of both coordinatesr and r 8.
However, in the case of a homogeneous density,gii depends
only on the interparticle distancex= ur −r 8u. Since the rel-

FIG. 9. Correlation energy(solid line, HMD simulation; dot-
dashed, kinetic result) and thermal ion kinetic energy(dashed,
HMD; dotted, kinetic). Initial-state parameters are the same as in
Fig. 1. The inset shows the ion thermal energy in the early stage of
the relaxation process with its characteristic transiently oscillatory
behavior.
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evant property which distinguishes the two pointsr andr 8 is
the corresponding density(from the way the plasma is cre-
ated, no other differences, e.g., that part of the plasma would
be in a state with equilibrium correlations while a different
part would be totally uncorrelated, are apparent), it seems a
reasonable approximation to assume that the space depen-
dence of the correlation function enters only via the densities
at the respective coordinates[38]. Hence, we write the cor-
relation function as

giisr ,r 8d < giifrisr d,risr 8d,ur − r 8ug. sA2d

With the substitutionr 8=r +x, Eq. (A1) becomes

Fii = − e2E risr + xdgiifrisr d,risr + xd,xg
x

x3dx. sA3d

Since the correlation function rapidly decreases for distances
x larger than the correlation lengthlc, we may restrict the
integration in Eq.(A3) to a sphere with a radius of approxi-
mately lc. If the plasma density does not vary strongly on
the scale of the correlation length, we may use a linear Tay-
lor expansion of the density

risr + xd < risr d + x · = risr d sA4d

and the correlation function

giisri,ri8,xd = giisri,ri,xd + U ] giisri,ri8,xd
] ri8

U
ri8=r

sx · ¹ rid,

sA5d

whereri =risr d andri8=risr +xd.
Substitution of Eq.(A4) and(A5) into Eq.(A3) and keep-

ing only terms up to linear order inx ·=ri yields

Fii = − e2SE x

x3rigiisri,xddx +E x

x3giisri,xdsx · = riddx

+
1

2
E x

x3ri
] giisri,xd

] ri
sx · = riddxD , sA6d

wheregiisri ,xd;gsri ,ri8 ,xduri8=ri
and we have used the rela-

tion

]

] ri
fgiisri,ri8,xduri8=ri

= U ] gsri,ri8,xd
] ri

U
ri8=ri

+ U ] giisri,ri8,xd
] ri8

U
ri8=ri

= 2U ] gsri,ri8,xd
] ri8

U
ri8=ri

, sA7d

which follows from the symmetry ofgii under particle ex-
change, i.e., under exchange ofri andri8. Since the integrand
of the first integral in Eq.(A6) is an odd function inx the
first term vanishes. The second term yields after some ma-
nipulations

e2E x

x3giisri,xdsx · = riddx =
e2

3
= riE giisri,xd

x
dx.

sA8d

Analogously, the third term can be written as

e2

2
E x

x3ri
] giisri,xd

] ri
sx · = riddx =

e2

6
ri = ri

]

] ri
E giisri,xd

x
dx,

sA9d

which together lead to

Fii = −
e2

6
= riFE giisri,xd

x
dx +

]

] ri
SriE giisri,xd

x
dxDG .

sA10d

Finally, substitution of the definition of the correlation en-
ergy u as given by Eq.(13) yields the result Eq.(12). An
analogous calculation for the expression of the correlation
energy Eq.(9) leads to the familiar LDA result[38]

Uii =
e2

2Ni
E risr drisr 8dgiisr ,r 8d

1

ur − r 8u
dr 8dr = Ni

−1E riuiidr .

sA11d
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