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Abstract
Recent experiments with ultracold neutral plasmas show an intrinsic heating
effect based on the development of spatial correlations. We investigate whether
this effect can be reversed, so that imposing strong spatial correlations could
in fact lead to cooling of the ions. We find that cooling is indeed possible.
It requires, however, a very precise preparation of the initial state. Quantum
mechanical zero-point motion sets a lower limit for ion cooling.

Experimentally, ultracold (T � 1 K) neutral plasmas could be realized only recently by
photoionizing a cloud of ultracold atoms [1–3]. From a plasma physics perspective, they
are very appealing since they might provide laboratory realizations of so-called strongly
coupled plasmas, where the Coulomb interaction (inversely proportional to the mean inter-
particle spacing a) dominates the random thermal motion (proportional to the temperature
T ). As a consequence, interesting ordering phenomena such as Coulomb crystallization can
be observed. In order to be in this strong-coupling regime, a system has to be either very
dense (large Coulomb interaction) or very cold (little thermal energy). The first scenario is
realized in some astrophysical contexts, which are difficult to access experimentally. Hence,
the possibility of realizing a strongly coupled plasma in the laboratory by going to ultralow
temperatures offered exciting prospects within the plasma physics community. In [1], an
ultracold neutral plasma has been created by photoionizing a gas of laser-cooled Xe atoms.
The extremely low temperatures of the Xe gas suggested that the system was well within the
strong-coupling regime, the so-called Coulomb coupling parameter � ≡ e2/(akBT ), i.e. the
ratio of potential to thermal energy, being of the order of 10 for electrons and even up to 30 000
for ions1.

However, it was realized quickly [4–6] that despite the low temperature of the Xe gas
a strongly coupled plasma could not be created in this way. Due to the fact that the neutral
Xe atoms initially present interact only very weakly, the plasma is created in a completely

1 The large mass difference between electrons and ions implies a very long timescale for energy transfer between
the two subsystems. Hence, for practical purposes it is justifiable to treat them as (almost) independent and assign
different temperatures to both subsystems.
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uncorrelated non-equilibrium state. Hence, the subsequent conversion of potential into kinetic
energy rapidly heats both the electron and ion subsystems, suppressing the development
of substantial correlations [4, 7]. This effect has been termed ‘disorder-induced heating’
[6] or ‘correlation-induced heating’ [8], expressing the fact that it is the development of
spatial correlations during the relaxation of the plasma towards an equilibrium state which
leads to an increase in temperature. Put another way, in the initial non-equilibrium state
the potential energy is higher than in the corresponding equilibrium state of a plasma of the
same average density. Consequently, relaxation towards thermodynamic equilibrium will
reduce the potential energy in the system and increase the kinetic energy, i.e. the temperature2.
Additionally, the electrons are heated by three-body recombination as well as continuum
lowering. The suppression of electron heating is thus much more difficult than simply reducing
the correlation heating. At present, there is a proposal of mixing the plasma with a gas of
Rydberg atoms, so that collisional ionization of these Rydberg atoms removes energy from
the electron component of the plasma [9].

For the creation of a strongly coupled ionic component, different procedures have been
suggested to avoid these heating effects, namely (i) using fermionic atoms cooled below the
Fermi temperature in the initial state, so that the Fermi hole around each atom prevents the
occurrence of small interatomic distances [7]; (ii) an intermediate step of exciting atoms
into high Rydberg states, so that the interatomic spacing is at least twice the radius of the
corresponding Rydberg state [6] and (iii) the continuous laser-cooling of the plasma ions
after their initial creation, so that the correlation heating is counterbalanced by the external
cooling [10, 11]. So far, none of these procedures has been realized experimentally, however
it has been shown theoretically that continuous laser-cooling can indeed lead to a strongly
coupled plasma, connected with crystallization of the expanding system [11]. In this case,
the correlation heating effect is still present and is offset by an additional external cooling
mechanism. Proposals (i) and (ii), on the other hand, aim at suppressing the heating directly by
avoiding the small inter-particle distances leading to a large potential energy, i.e. by introducing
(spatial) correlation in the initial state. As has already been noted in [6], this could also be
achieved using optical lattices to arrange the atoms.

At this point, the question arises whether the correlation heating could not only be avoided,
but could actually be reversed and turned into cooling. As argued above, correlation heating
describes the fact that the uncorrelated ions created in the photoionization process have a
higher potential energy than in the thermodynamical equilibrium state. Hence, equilibration
will reduce the potential energy and increase the kinetic energy of the system, making the
ions hotter than the atoms in the initial gas state. On the other hand, it is conceivable that
the atomic gas might be prepared in an ‘overcorrelated’ state, where the potential energy is
lower than its equilibrium value. In this case, equilibration must increase the potential energy
at the cost of the kinetic energy, i.e. the temperature must decrease. This effect of ‘correlation
cooling’ has been described before in [12] and, based on a kinetic approach, in more general
terms in [13]. In [12], the overcorrelated initial state was achieved by suddenly decreasing the
Debye screening length, i.e. the temperature of the electrons, rather than by inducing spatial
order. It was shown that in this way, a reduction in temperature of the order of a few per cent
does indeed occur for the temperatures and densities considered.

In the present letter, we explore an alternative scheme for achieving correlation cooling,
namely the use of an optical lattice to induce spatial correlations in the initial state as

2 In view of the fact that the initial state of the plasma is far from equilibrium, it is not really justifiable to associate
a temperature with it, the properties of the system are not those of a state in thermodynamical equilibrium with the
same kinetic energy. However, before the photoionization occurs the atomic gas has a well-defined temperature, and
it is the temperature of these atoms that can be compared to that of the ions after equilibration.
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Figure 1. (a) Time evolution of the ionic kinetic energy, for the whole plasma cloud (solid) and
for the central region only (dashed). (b) Ratio of final to initial temperature as a function of the
density-scaled inverse initial ion temperature �i, from the numerical simulations (full circles) and
from equation (6) (solid line). The inset shows the final Coulomb coupling parameter.

suggested in [6]. We describe, both analytically and by molecular dynamics simulations,
the situation of a fully ordered initial state where the atoms have been arranged in a perfect
bcc-type lattice structure using an optical lattice. In reality, their spatial distribution will be
broadened, classically due to their non-vanishing kinetic energy corresponding to the initial-
state temperature, quantum mechanically corresponding to the eigenstates of the harmonic
oscillator potential generated by the optical lattice. This broadening is neglected in our
numerical simulations, however, its influence will be discussed in the analytical considerations
below. For the sake of numerical simplicity, our initial state corresponds to a sphere cut out
from a bcc lattice rather than a more realistic cylindrical shape, arguing that edge effects
should be of minor importance if the number of atoms in the system is large enough. The
system is propagated using the hybrid molecular dynamics method described in [11]. Briefly,
an adiabatic approximation is employed for the electrons, and their distribution is obtained
from the steady-state King distribution [14], widely used in the study of globular clusters.
The ions are then propagated using the electronic mean field obtained from the steady-state
distribution and by fully taking into account the ion–ion interactions. In the experiments under
consideration, quasineutral plasmas with �e as low as 4×10−3 [2] have been realized, making
Debye screening effects negligible, while ion numbers Ni up to 108 have been obtained
[15]. For our simulations, such a large particle number would lead to a prohibitively
large numerical effort. However, the typical timescale for the plasma expansion is texp ≈√

�eN
1/3
i ω−1

0 , where ω0 =
√

e2/Ma3 is the Einstein frequency in the Wigner–Seitz model
of a Coulomb solid and M is the ion mass. On the other hand, the relaxation of the ions
takes place on a timescale of trel ≈ ω−1

0 . Hence, the same macroscopic behaviour can be
obtained by decreasing Ni and increasing �e, keeping the ratio texp/trel fixed. Therefore, for
our simulations we chose Ni = 105 and an initial electron energy corresponding to �e = 0.5,
while the bare Coulomb potential was used for the ion–ion interaction.

Figure 1(a) shows the time evolution of the average ion kinetic energy in units of the initial-
state temperature for a typical realization. Since the initial lattice configuration produces an
effective oscillator potential for each ion, the relaxation process is connected with transient
oscillations of the kinetic energy which are damped out due to ion–ion collisions. Additionally,
the average kinetic energy increases at later times due to a radial ion acceleration caused by
the thermal electron pressure, which is proportional to the density gradient. Therefore, the
slow expansion of the unconfined plasma leads to a softening of the initially sharp plasma
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edge and a modification of the velocity distribution in the outer region of the plasma only.
Since this distribution is close to a Maxwellian in the central region of the plasma, the average
kinetic energy is directly related to the ionic temperature T, while it becomes more and more
dominated by the expansion energy towards the edge of the plasma. In order to highlight these
edge effects, we have calculated the average ion kinetic energy from the velocity distribution
in the inner region only, which is taken to be a sphere with half of the initial plasma radius.
The resulting curve is shown as the dashed curve in figure 1(a). Clearly, the expansion hardly
affects the kinetic energy in the inner region of the plasma, leaving only the oscillations
which are damped out as the system approaches thermodynamic equilibrium. As discussed
above, the relaxation of the ions towards equilibrium takes place on a timescale of ω−1

0 , while
the typical timescale for the plasma expansion is

√
�eN

1/3
i ω−1

0 . Hence, a sufficiently large
number of ions allow for an almost unperturbed relaxation in the inner plasma region so that
a temperature can be defined in a meaningful way. (For a strontium plasma with a typical
density of 5 × 109 cm−3 used, e.g., in [15], ω−1

0 ≈ 0.2 µs, while texp is about 30 times larger
for �e = 4 × 10−3 and Ni = 108.) Using the absorption imaging techniques described in [15]
it should be possible experimentally to probe this inner region only. Therefore, we chose to
define the final temperature as given by the inner plasma region and to neglect the finite-size
effects associated with the boundary region of the plasma. The resulting Tf was estimated from
the centre of the remaining oscillations and is shown in figure 1(b) as a function of �i by the full
circles. It should be noted that the value of �i has no meaning as a measure of nonideality of
the initial plasma state, since the system may be far from equilibrium. Therefore, in the present
case it should simply be viewed as a density-scaled inverse temperature rather than a Coulomb
coupling parameter. As can be seen in the figure, the ratio of final to initial temperature
reaches a constant value of about 0.5 as the initial temperature goes to zero. Hence, cooling
can indeed be achieved on a moderate level of temperature reduction of about 50%.

For large particle numbers and if �e is small enough such that the three-body recombination
and Debye screening can be neglected, quasineutrality leads to a homogeneous electron
background in the central plasma region. Thus, we can use the one-component plasma model
to gain more insight into the cooling process. This model has been studied extensively over the
last few decades [16, 17], which led to a detailed understanding of the equation of state over a
wide parameter range. In the classical regime, the energy per particle of the final equilibrium
state is given by

Uf = 3
2kBTf + Wf ≡ (

3
2 + wf

)
kBTf, (1)

where the excess energy W accounts for nonideal effects due to the inter-particle Coulomb
interaction. For this quantity, several fit formulae can be found in the literature, which have
been obtained by Monte Carlo and molecular dynamics methods [16–18]. In the fluid phase
we use the interpolation formula from [19]

wfl(�f) = �
3/2
f

(
A1√

A2 + �f
+

A3

1 + �f

)
, (2)

where A1 = −0.9052, A2 = 0.6322 and A3 = −√
3/2 − A1/

√
A2. Equation (2) satisfies

the known small-� limit [20] and accurately fits the high-� values obtained by numerical
calculations [18]. In the solid phase (� > 174), the excess energy can be described by an
expansion in powers of 1/� [17]

ws(�f) = −Am�f +
3

2
+

a

�f
+

b

�2
f

+
c

�3
f

+ O
(

1

�4
f

)
, (3)

where a = 10.84, b = 352.8 and c = 1.794 × 105. Here, the first term corresponds to the
Madelung energy of the lattice, with Am = 0.895 929 for a bcc-type lattice. The second term
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describes thermal contributions corresponding to an ideal gas of phonons while the higher
order terms account for anharmonic corrections. Assuming an unchanged ionic phase-space
distribution function directly after the photoionization, where the spatial distribution due to
the finite temperature is represented by Gaussian profiles centred on the sites of the bcc lattice,
the internal energy of the initial non-equilibrium state is given by

Ui = 3

2
kBTi + Wi = 3

2
kBTi − kBTiAm�i + kBTi

�i

2

[
〈r2〉
a2

− 7

8
B

( 〈r2〉
a2

)2
]

, (4)

where B = 1
2

∑
i,j

a5

r5
ij

, with B = 0.876 719 for a bcc lattice. While the first two terms

correspond to the ion kinetic energy and the Madelung energy of a bcc lattice of point charges,
the last two terms give the leading-order corrections due to a broadened charge distribution at
the lattice sites expanded in terms of the mean-squared ion displacement 〈r2〉. Assuming an
initially non-interacting atomic gas and harmonic trapping potentials we have

〈r2〉
a2

= 3kBTi

Mω2
La2

= 3
ω2

0

ω2
L

�−1
i , (5)

where ωL is the oscillation frequency of the trapping potentials. The final temperature is now
simply obtained from energy conservation

Tf

Ti
= 3/2 + wi(�i)

3/2 + wf(�f)
, (6)

with w = wfl for � � 174 and w = ws for � > 174. Figure 1(b) shows the ratio Tf/Ti

as a function of �i for 〈r2〉/a2 = 0, i.e. for a point-like ionic density at the lattice sites. A
comparison with our numerical data shows that equation (6) reproduces the numerical values
for a finite-size plasma quite well. The remaining discrepancies should be attributable to
finite-size effects [21, 22]. At small values of �i the temperature ratio starts out from unity
and decreases with increasing �i, since the excess potential energy of the final fluid state
is naturally larger than that of the initial lattice configuration. As �i exceeds a value of
�i ≈ 70 the temperature ratio rises linearly, connected with a solidification of the plasma,
where �f = 174 stays constant (see the inset). In this regime, regions of fluid and solid
phases coexist in the plasma. At �i ≈ 84 the system has crossed the melting point and the
temperature ratio approaches a value of 1/2. This factor of 1/2 originates from the additional
thermal energy of 3kBTf/2 arising from thermal lattice excitations. However, the situation
changes if a finite extension of the initial charge distribution at the lattice sites is considered.
Neglecting terms of order (〈r2〉/a2)2 in equation (4), one finds that for finite ωL the temperature
approaches a value of

(
1 + ω2

0

/
ω2

L

)/
2 if 〈r2〉 � a2.

Let us now turn to the question of the influence of possible lattice defects, i.e. how perfect
must the initial-state lattice be in order to observe correlation cooling? Such defects are easily
accounted for in the previous consideration. Introducing a filling factor f , defined as the
probability that a given lattice site is occupied, simply reduces the average charge at each
lattice site. Therefore, the potential energy of the initial state can be written as f 2wi(�

�
i )kBTi,

where ��
i corresponds to the temperature scaled by the density of the perfectly filled lattice,

which is related to the actual value of �i by ��
i = f −1/3�i. Substituting this into equation (4)

yields

Tf

Ti
= 3/2 + f 2wi(f

−1/3�i)

3/2 + wf(�f)
(7)

as the generalization of equation (6) to non-perfect filling. In figure 2(a), we show the resulting
final temperature as a function of the filling factor for two different �i. A decreasing filling
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Figure 2. (a) Final temperature as a function of the lattice filling factor for �i = 200 (solid line)
and �i = 400 (dashed line). The grey horizontal line separates cooling from heating. (b) Phase
diagram for the final plasma state in the f –�i plane.

enhances the initial potential energy (compared to that of a full lattice with the same average
density, not the same lattice constant), leading to a rapid increase of the final temperature. As
a consequence, cooling can be achieved for a nearly perfect lattice only. Furthermore, for a
fixed f < 1, increasing �i leads to larger values for the temperature ratio. This heating also
influences the possibility of the creation of a crystallized plasma phase, since the melting point
of �f = 174 is shifted to larger values of �i, as shown in the phase diagram, figure 2(b). For
values of f < 0.9855, the system always ends up in the fluid phase independent of �i.

The above picture suggests that, for a perfect initial state, cooling is always possible
independent of the initial temperature. At low enough temperatures, however, the classical
treatment will break down, and quantum mechanical effects will become important. As in the
classical case the quantum statistical internal energy of a Coulomb solid3 can be written as
a sum of the Madelung energy, harmonic contributions arising from linear lattice excitations
and anharmonic corrections. For the harmonic contributions to the excess energy we use an
analytic approximation formula obtained recently [23], which reproduces the numerical results
for harmonic Coulomb crystals very accurately. The anharmonic corrections are taken from
[24], where they were obtained by fitting the results of quantum Monte Carlo simulations.
The resulting expression is too lengthy to be reproduced here, but incorporates both the known
semiclassical high-temperature limit and the quantum mechanical ground-state energy of a
Coulomb crystal,

wgs = −Am�f + 1.329θ − 0.365√
rs

θ + O
(

θ

r
3/2
s

)
. (8)

Here, θ = (h̄ω0)/(kBT ) measures the importance of quantum effects, i.e. zero-point ion
oscillations, and rs = aMe2/h̄2 is the Wigner–Seitz radius in units of the ionic Bohr radius.
As in the previous classical considerations, we apply a sudden approximation assuming an
unchanged density matrix directly after the photoionization pulse. The initial energy of the
plasma is thus found from the expectation value of the new Hamiltonian using a density matrix
representing independent harmonic oscillators arranged on a bcc lattice. The result is

Ui = 3

4
h̄ωL coth

(
h̄ωL

2kBTi

)
− kBTiAm�i + kBTi

�i

2

[
〈r2〉
a2

− 7

8
B

( 〈r2〉
a2

)2
]

, (9)

3 As mentioned previously, for typical experimental setups as in [1], �i is of the order of 10 000, i.e. well within the
crystallized regime.
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Figure 3. Final scaled temperature as a function of the initial scaled temperature for rs = 2 × 109

and for ωL/ω0 = 1 (thick solid line), ωL/ω0 = 2 (dashed line) and ωL/ω0 = 1/2 (dot-dashed
line). For comparison, the result obtained with the classical expressions for initial- and final-
state energies is shown by the thin solid line. The horizontal dotted lines show the estimate
equation (11) for the limiting temperature.

which exactly corresponds to the classical expression equation (4) except that the kinetic
energy 3kBTi/2 is replaced by its quantum mechanical counterpart. Moreover, the mean-
squared displacement is now given by

〈r2〉
a2

= 3

2
ν coth

(
h̄ωL

2kBTi

)
(10)

rather than equation (5), where ν = ω0/(ωL
√

rs ). The final temperature is again obtained by
equating the initial and final energies of the plasma. Figure 3 shows �f as a function of �i for
rs = 2 × 109. In contrast to the classical case, here the final temperature cannot be decreased
to arbitrarily low values, rather it approaches a finite constant value as Ti → 0, since the
initial charge distributions at the lattice sites have a finite extension at Ti = 0 due to zero-point
oscillations. Using the low-temperature limit equation (8) as an estimate for the final energy
and neglecting terms of order ν2 in the resulting energy balance, this limiting temperature is
found to be

kBTf

h̄ω0
= 1

2

ωL

ω0
+

1

2

ω0

ωL
− �, (11)

where � = 0.886 − 0.243/
√

rs. Since � < 0.886 independent of rs, the limiting temperature
is always positive and takes on a minimum value of(

kBTf

h̄ω0

)
min

= 1 − �
rs�1−→ 0.114 (12)

at an optimum ratio of ωL and ω0 of(
ωL

ω0

)
min

= 1. (13)

Note, however, that the limiting temperature obtained numerically with the full expression for
wf is slightly smaller since at finite temperature the system will not be in the ground state,
hence its potential energy is somewhat larger than that given by equation (8). We may rewrite

equation (12) as λT/a = √
2π/[

√
rs(1 − �)]

rs�1−→ 7.424r
−1/4
s , where λT = h/

√
2πMkBTf

is the thermal de Broglie wavelength. This would suggest that it is possible to reach
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the degenerate regime of λT/a ≈ 1 if rs can be decreased sufficiently, i.e. to a value
rs ≈ 3 × 103. Even for hydrogen this would correspond to an unrealistically large density of 4×
1023 cm−3. Note, however, that the value of rs enters the ratio λT/a with a power of 1/4 only,
so that values of λT/a = 1/10 can be reached if rs ≈ 3 × 107, corresponding to a density of
4 × 1011 cm−3, which has already been surpassed with cold Bose-condensed hydrogen atoms
[25]. In this regime, the present considerations will not hold, since effects of particle statistics
will be important which have not been included in the above expressions for the energies.
However, equation (12) might serve as an estimate for the parameter values necessary to reach
the degenerate regime.

In summary, we have discussed the possibility of correlation cooling and of the creation of
a strongly coupled ultracold neutral plasma by photoionization of a highly ordered state of cold
atoms, achievable with optical lattices. Classical considerations have shown that the initial
temperature can be reduced by a factor of 2 if the atomic sample is non-interacting initially,
offering the possibility of reaching ion temperatures which have not been achieved so far. The
quantum regime has been investigated using existing expressions for the equilibrium internal
energy of the system. Here it was found that the final temperature approaches a constant value
which arises from zero-point oscillations in the lattice potentials and depends on the density
as well as the geometry of the optical lattice. An almost perfect lattice is necessary to observe
the discussed cooling effects, since even a small amount of lattice defects largely increases
the final temperature. However, it has been demonstrated that it is possible to create regular
structures with a well-defined number of atoms localized in the potential wells of an optical
lattice [26].
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