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Two-Electron Escape Near Threshold: A Classical Process?

Jan-Michael Rost
Harvard University, Lyman Laboratories of Physics, Cambridge, Massachusetts 02188
(Received 10 September 1993)

For electron impact ionization of hydrogen the S matrix is determined by calculating Feynman’s
path integral semiclassically. The total ionization probability is in excellent agreement with the
experiment. At a critical excess energy of 3.3 eV the differential cross section for the energy shar-
ing between the continuum electrons undergoes a qualitative change which limits the range of the
threshold behavior. The Wannier threshold law is confirmed, but only in the limit of vanishing

excess energy.

PACS numbers: 34.80.Dp, 03.65.Sq, 31.10.+z

Forty years ago, Wannier derived what is today known
as the “Wannier law” for double electron escape in an
atom at threshold. By using classical mechanics, he
showed that the total cross section as a function of ex-
cess energy follows a power law, different from the linear
behavior for single electron escape [1]. Since then the
phenomenon has been under intensive investigation, ex-
perimentally [2, 3] as well as theoretically [4-8]. A new
generation of experiments [9, 10] gave hints for “struc-
ture” in the measurable quantities which is excluded by
the original Wannier law as well as by the quantum me-
chanical WKB predictions. The experimental findings
have drawn attention to an alternative explanation of
the threshold behavior by Temkin who predicted a lin-
ear threshold law modulated by oscillations [6]. All ma-
jor theoretical approaches suffer from the impossibility of
providing a full scattering amplitude, since they are ei-
ther classical (Wannier) or based on modeling an approx-
imate wave function for two-electron escape in a limited
part of the configuration space only.

Here, we will describe the two-electron escape within
the S-matrix formalism. In this way, the scattering am-
plitude is well defined. In a true scattering formulation,
the two-electron escape depends on its “past,” i.e., the
way the escape was initiated. We choose ionization from
the ground state of hydrogen. The explicit consideration
of an initial state also provides an absolute energy scale
for the escape cross section and allows direct comparison
with the experiment (2, 10].

We do not attempt to calculate the propagator of the S
matrix exactly, which is at least for the time being impos-
sible for energies close to threshold [11]. Rather, we eval-
uate the S matrix, i.e., Feynman’s path integral, semsi-
classically. Only the properties of classical trajectories
are needed when the quantum propagator exp[—iHt/h]
is replaced by its semiclassical limit, as given by van
Vieck [12] and improved by Maslov and Fedoriuk [13]
and Gutzwiller [14]. The approximation provides a full
scattering amplitude with the possibility of all sorts of
interferences. Moreover, no explicit assumptions about
the two-electron continuum wave function are necessary.
For collisions near threshold we make two additional ap-
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proximations in the present calculation. They can be
justified within the classical dynamics from which the
semiclassical S matrix will be constructed. First, we cal-
culate only the partial wave for total angular momentum
L = 0. By scaling the phase space variables (p;, g;) of the
classical Hamiltonian with the energy F it can be shown
that all partial waves contribute like the S wave in the
limit £ — 0 [15]. Second, we restrict the calculation to
an interelectronic angle of 180° which is a fixed point in
the classical equations of motion. This means physically
that the orbit of the bound electron becomes polarized
during the approach of the projectile electron, with the
geometry of © = 180° being energetically favored (min-
imum repulsion between the electrons). Furthermore, it
is known from studies below [16] and above {7, 8] thresh-
old that the “bending” motion in © can be separated to
a good approximation. In this context the close agree-
ment of results from classical dynamics with and without
the above approximations is also remarkable [17]. Most
convincingly, however, the approximations are justified
a posteriori by the excellent agreement with the experi-
ment to be demonstrated below.

The simplified problem has 2 degrees of freedom, the
radial distances between the electrons and the nucleus.
In atomic units it is described by the Hamiltonian

H:ﬁ+ﬁ 1 1,1
1+ T2

2 2 T T2

(1)

In the “one-dimensional” world, a cross section takes the
form of a probability, directly related to the S matrix.
The initial bound state appears as a classical Kepler orbit
with energy ¢’. The semiclassical scattering amplitude for
ionization can be cast into the form

1

SRR T2
(2)

where R(¢/, E) is the normalization which ensures the
unitarity of S. The classical probability for an individual
trajectory is measured by R(¢’, E)~19r'/9¢. Each trajec-
tory accumulates a phase, which is defined by the classi-

S(B) =R, Bt Y | &

cl.traj.
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FIG.1. Energy dependence € of the projectile on its initial
position 200 a.u.+r' for a total energy of 0.1 a.u. The inverse
derivative of this function enters Eq. (2); see text. The differ-
ent events, exchange (dotted, negative €), ionization (solid),
and excitation (dotted, positive €), are indicated.

cal action ®(¢, €, E) = [ qidp; + [ g2dp; and a contribu-
tion of vm/2 from caustics along the trajectory [14]. The
form of the semiclassical scattering amplitude in Eq. (2)
is similar to Miller’s “classical S matrix” [18] from which
it can be derived. Since we use an unusual form of the
prefactor, we sketch an alternative direct derivation of
Eq. (2). The “canonical” prefactor in the semiclassical
propagator contains | det.A| with the 2 x 2 Jacobi ma-
trix A = 0x’/8p between the final momenta p(t — oo)
and the initial positions x’ = x(¢ — —00). Energy con-
servation of the S matrix reduces x’ to a one parame-
ter manifold, and consequently the matrix A to a simple
derivative which can be represented in any suitable set of
variables. We find the position of the initial free electron
r’ and its energy ¢ after the collision most convenient to
describe ionization. The normalization R depends upon
the variables used for A and is analytically known.

An overview over all events, excitation, (classical) ex-
change, and ionization, can be obtained by scanning the
initial conditions ry + ' over one period of the bound
electron with fixed energy €’ (Fig. 1). The distance r} is
arbitrary, but large enough so that the result is indepen-
dent of rj. Reading the plot from the right side it can
be interpreted as a continuous energy transfer from the
projectile electron, whose energy is shown, to the target
electron. For € > 0 the dotted line marks the excita-
tion regime. At some 7’ the projectile transfers enough
energy to ionize the H atom (solid line). Losing even
more energy at smaller 7’ the projectile eventually be-
comes bound in exchange for the target electron (dotted
line, € < 0). The interval of initial conditions gives the
normalization R = Ar’.

To determine the scattering amplitude we have to sum
over all trajectories which contribute to Eq. (2). They
are given as intersections of ¢(r')/F in Fig. 1 with a hor-
izontal line at energy e/E. Since €(r’')/E is monotonic
only one intersection exists so that a single trajectory
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FIG. 2. Ionizing trajectory for initial bound state H(1s)
at £ = 100 meV, leading to a final energy for one electron of
€ = 68.2 meV.

fulfills a set of boundary conditions ¢, €'. The (analytic)

proof of this remarkable fact will be given elsewhere [15].

A typical ionizing trajectory is shown in Fig. 2.
Moreover, the action is symmetric under electron ex-

change in the final channel, ®(¢,¢/, E) = ®(E —¢,€, E).

Consequently, Eq. (2) collapses to

or' | ¥

See(E) = R(¢, B)™¥ | =

) 3)

e

where the phase has already been omitted, since it is
irrelevant for the the symmetrized, differential ionization
probability

P.(E) = [Se,e(E) + Sp—c, e (E))*. (4)

The total ionization probability P(E), defined by the
integral fOE P.(E)de, is in excellent agreement with all
data points of the threshold experiment [2] up to excess
energies as high as 10 eV (Fig. 3). Written in the form
P(E) < E*(B) the exponent is o = 1.1268 in the limit
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FIG. 3. The total ionization cross section for electron ini-
pact on H(1s). The experimental data points are taken from
Ref. [2]. The calculated cross section (solid) has been normal-
ized to the experimental data at 5.84 eV. The dashed line is
the Wannier cross section o(E) = ooE*128,
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FIG. 4. Detail of Fig. 3 close to the threshold F = 0.
Note that the theoretical curves have not been corrected for
the experimental energy resolution of AE = 0.06 eV.

E — 0 as calculated by Wannier (see Fig. 4). However,
as can be seen from Fig. 4, the Wannier cross section
and the (semi)classical cross section differ for finite E
quantitatively. As pointed out by McGowan and Clarke
the cross section does not follow any constant power law
E* beyond roughly 3 eV. The reason can be found in the
differential ionization probability P.(E) according to Eq.
(4). It is shown in Fig. 5 for different energies. Close
to threshold, the electrons share the energy most likely
equally [maximum at ¢/F = 1/2, Fig. 5(a)]. The shape
of the energy distribution agrees qualitatively with clas-
sical calculations [7]. However, it does not confirm pre-
dictions of a flat energy distribution from earlier WKB
formulations [4]. Roughly between 3 eV and 8 eV excess
energy, the maximum of the electron distribution changes
from equal sharing of energy to a preferred fast (projec-
tile) electron (¢/E = 0). The core of the transition regime
[Fig. 5(b)] is characterized by small deviations (less than
1%) from a flat distribution. The extremely uneven en-
ergy sharing beyond the transition region [Fig. 5(c)] is
familiar from energetic collisions: a fast projectile elec-

tron loses only energy of the order of the target binding
energy.

The structural change in the form of the differential
cross section, from a maximum to a minimum for equal
energy sharing at a critical energy Ecniy = 3.3 eV (open
square in Fig. 6), defines naturally the energy range of
qualitative threshold behavior. Threshold behavior in
the total cross section is characterized by the possibility
of a fit with a power law.

The present work is not an exact quantum calculation.
Moreover, it has been restricted to the collinear config-
uration. Yet, for the first time it has been possible to
reproduce the form of the experimental cross section ac-
curately for all energies (0~10 eV) covered in the thresh-
old experiment by McGowan and Clarke [2]. A struc-
tural change in the differential cross section at a critical
excess energy provides a natural limit for the threshold
range and explains why the total cross section does not
follow any power law beyond this energy. Perhaps most
remarkable is the fact that only a single trajectory con-
tributes to the collinear semiclassical S matrix. Apart
from the symmetrization for identical particles imposed
by the Pauli principle, the result is in fact classical.

Overall, the semiclassical version of Feynman’s path in-
tegral offers a transparent framework for the formulation
of the ionization process particularly but not exclusively
close to threshold. Numerical details of the calculation,
concerning the Coulomb singularities and the necessity
to integrate out to extremely large distances (108 a.u.)
in order to compute small energy sharings ¢/F < 1 reli-
ably, can be tedious. Nevertheless, without the collinear
restriction and L = 0, the approach described here can
be used in the future to determine the absolute total
cross section, various angular distributions, and the spin
asymmetry, an important observable close to threshold
[10]. Semiclassical S matrix theory is in particular very
promising for Coulomb problems, since it naturally incor-
porates the effect of long range forces without explicitly
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FIG. 5. Differential ionization probability P.(E) according to Eq. (4), normalized to its value for ¢/E = 1/2: (a) For
energies close to threshold, represented as squares in Fig. 6; (b) for energies in the transition region, represented by circles in
Fig. 6; (c) for energies beyond the transition region, marked as triangles in Fig. 6.
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FIG. 6. Maximum of the differential ionization probabil-
ity [Eq. (4)] as a function of total energy E. The dashed
lines mark constant maxima at the positions ¢/E = 1/2 for
small energy and ¢/F =~ 0 for higher energies. The data
points indicate the energies E of the curves P, . (F) plotted in
Fig. 5.

specifying boundary conditions.

Discrepancies between a full quantum calculation or
very precise measurements (if they become available in
the future) and the semiclassical scattering results would
raise interesting fundamental questions concerning the
commutation of the limits # — 0,F — 0, and t — oo.
These limits are literally tested in a threshold process,
when in the limit of E — 0 the electrons take a time
t — oo to escape. Furthermore, the measurement pro-
cess plays an important role near the threshold, since the
correlation of the electrons for extremely long times and
distances, as assumed theoretically, probably does not
hold experimentally.
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