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Abstract

A semiclassical scattering apprcach is developed which can handle long-range (Coulomb) forces without the knowledge
of the asymptotic wave function for multiple charged fragments in the continuum. The classical cross section for potential
and inelastic scattering including fragmentation (ionization) is derived from first principles in a form which allows for
a simple extension to semiclassical scattering amplitudes as a sum over classical orbits and their associated actions. The
object of primary importance is th= classical deflection function which can show regular and chaotic behavior. Applications
to electron impact ionization of hydrogen and electron—atom scattering in general are discussed in a reduced phase space,
motivated by partial fixed points of the respective scattering systems. Special emphasis, also in connection with chaotic
scattering, is put on threshold ionization. Finally, motivated by the reflection principle for molecules, a semiclassical hybrid
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approach is introduced for photoabsorption cross sections of atoms where the time-dependent propagator is approximated
semiclassically in a short-time limit with the Baker—Hausdorff formula. Applications to one- and two-electron atoms are
followed by a presentation of double photoionization of helium, treated in combination with the semiclassical S-matrix
for scattering. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bohr’s model of the atom, sometimes called ‘the old quantum theory’, is according to our con-
temporary understanding semiclassical or at least quasiclassical, and in this sense semiclassical meth-
ods predate the quantum theory. However, with the failure of the Copenhagen school to describe
the bound state of the (non-integrable) helium atom [1], the old quantum theory was forgotten
quickly, and quantum mechenics using variational techniques was applied successfully to demon-
strate the existence of a stable state for a number of simple systems, e.g. helium [2-4], HI and
so forth. Nevertheless, the semiclassical idea in the form of the WKB approximation has been es-
tablished as a standard tool and can be found in almost any text book on quantum mechanics.
Being essentially a one-dimensional theory it was also applied to scattering problems for the deter-
mination of phase shifts [5]. A slight generalization of the WKB approach to higher-dimensional
(but integrable) systems was formulated in the EBK quantization. However, for a long time further
progress of semiclassical methods was hampered by the lack of computing power (one almost always
needs to calculate classical paths numerically) and by the overwhelming success of quantum theory
itself.

Only in the late 1960s, Gutzwiller formulated a semiclassical Greens function in terms of pe-
riodic orbits, nowadays often referred to as trace formula [6-9]. Almost at the same time a truly
three-dimensional formulation of a semiclassical amplitude for potential scattering appeared [10]
based on the asymptotic form of the quantum propagator, formulated by Van Vleck already in
1928 [11]. Shortly afterwards a semiclassical S-matrix theory was developed by Miller [12-14]
and Marcus [15, 16] and it was applied to inelastic and reactive scattering in molecular physics. The
methods which will be described in this report for scattering involving Coulomb forces are very
similar to their approach.

In the meantime a purely classical perspective was revived in atomic physics initiated by
Percival and coworkers [17, 18] and later on very much connected with the name of Olson
who developed the classicel trajectory Monte Carlo method (CTMC) (see e.g. [19]). This com-
putational technique solves Newton’s equation with initial phase space sampled by Monte-Carlo
methods. CTMC has been refined over the years and is today one of the standard tools to
calculate cross sections. Being a classical approach, it works for many atomic problems much
better than one might expect for systems whose domain is quantum mechanics. It is one goal
of this report to understand why classical methods are successful for Coulombic scattering
problems.

Over the last decade, semiclassical theory has been advanced to a very sophisticated standard and
following the great attention classically chaotic dynamics has received, the semiclassical
perspective enjoys today a good reputation for offering alternative and important insight into
dynamics of microscopic systems. Gutzwiller’s original trace formula has been amended by re-
summation techniques (cycle expansion and equivalent formulations) to make the periodic orbit
series convergent. A great success of this effort was the semiclassical calculation of the resonance
spectrum of helium [20]. However, periodic orbit techniques have been applied to a variety of
problems, among others to the problem of hydrogen in a magnetic field [21], which has become
a gauge system for semiciassical theories [22], and to calculate conductance fluctuations and other
properties of mesoscopic systems [23]. While the trace formula used to be restricted to classi-
cally purely chaotic or regular problems [24], Tanner succeeded recently to quantize intermittency
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(i.e. mixed regular and chaotic motion) semiclassically, again exemplified with the almost regular
tails of Rydberg series in helium [25]. More recently, the time-dependent semiclassical
approach has been very promising, mostly applied (once again!) to molecular problems. A uni-
formized propagator in combination with a phase-space sampling by Gaussian wavepackets has
proven to yield impressive results concerning the accuracy of computed resonance widths and the
number of dimensions in phase space which can be handled [26-29). While the periodic orbit
theories emphasize the bound state aspect and the described time-dependent approach relies on the
time-correlation function, the direct S-matrix formulation of scattering has hardly been used semiclas-
sically, with the exception of mesoscopic physics and the work related to charged particles presented
here.

It is the authors subjective opinion that semiclassical theories, being always approximate, cannot
and should not compete quantitatively with quantum mechanical calculations, but, they should provide
insight into the dynamics and complement quantum calculations. Hence, it is our goal to demonstrate
that the combination of the homogeneous Coulomb potential with semiclassical S-matrix techniques
offers a unique understanding of the dynamics of charged particles with many features that are not
obvious at all in a full quantum treatment.

The report is organized as follows: In Section 2 we will provide a tutorial on the classical
formulation of cross sections and motivate the construction of semiclassical scattering amplitudes
which will be derived rigorously from the quantum S-matrix for potential scattering as an example.
We also formulate the concept of partial fixed points, which will allow us to reduce the number of
phase-space dimensions for approximate computations later on. Section 3 is devoted to the unique
classical properties of a system of particles interacting with homogeneous potentials in general and
with Coulombic forces in particular. In Section 4, we discuss, again mostly in form of a tutorial,
the connection of semiclassical phase shifts and the semiclassical S-matrix for potential scattering.
While equivalent in quantum mechanics, this identity is typically lost semiclassically, where the
representation of a problem plays a key role for the accuracy being achieved. As an application we
discuss Rutherford and Mott scattering.

Section 5 finally discusses the application of the semiclassical S-matrix to inelastic electron—atom
scattering and ionization with one active target electron. The threshold region (where ionization
of an atom becomes energetically possible) is one of the most interesting problems, in particular
directly below the threshold, where chaotic scattering occurs. Section 6 extends the semiclassical
ideas in the sense of a hybrid approach: While a ‘pure’ semiclassical theory as in Section 5 involves
classical objects only (trajectories and actions) one can keep the wave functions of initial and final
states and apply approximations to the propagator only. The reflection principle for molecules is an
example and we present akin results for atoms leading to analytic expressions for photoionization
cross sections.

We conclude the report with a brief outlook trying to assess the future potential of semiclassical
techniques in atomic and molecular problems.

2. Classical and semiclassical cross sections

In this section we will provide the theoretical tools to formulate a cross section classically and
semiclassically. In particular, we will discuss the reduction of phase space due to partial fixed
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points for the calculation of approximate cross sections. These tools can hardly be found in text
books where the discussion of scattering in the classical and semiclassical context is mostly restricted
to potential or collinear inelastic scattering. On the other hand, the semiclassical approximation to
the quantum propagator itself has been described in recent review articles [30-33]. For this reason
we will concentrate on the derivation of the classical cross section, presented in a way which allows
an easy incorporation into a semiclassical expression. We will provide two derivations. The first
one is more intuitive and heuristic. It is based on the classical cross section which is transformed
into a semiclassical formulation by a standard procedure similar to the correspondence principle
itself. The second derivation is more rigorous. It starts from the quantum mechanical T-matrix and

arrives at the semiclassical scattering amplitude by evaluating the propagator in the stationary-phase
approximation.

2.1. Formulation of the classical cross section

2.1.1. The classical probabiiity density

For the sake of a simple notation we restrict the discussion in the present section to a two-
dimensional phase space in Cartesian coordinates. However, the extension to arbitrary dimensions
2N is straightforward. Suppose a system ! is at time ¢~ in a neighborhood Ax~ of the coordinate x~
and we want to know the probability Pa,- a,-(x*,x7,¢) to find it at time ¢* in Ax™ at the coordinate
x". For a conservative system the probability will only depend on the time difference, ¢t = t* — 1.
Quantum mechanically P(x",x7,¢) can be found using the concept of the propagator U(¢) which
describes the evolution of a state |x~) in time, |x~(¢)) = U(¢)|x~). The desired probability is
constructed from the overlap

Kx',x ,0) = X |x7 (1)) = xT|U()x ) . (1)

However, as can be seen from the dimensions, |K(x*,x7,#)|” is only a probability density, and the
probability is

PAV*AX*(t) = IK(X+,X_-,[)‘2A.X+AX— . (2)

To answer the same question classically we have to find the classical expression 2(x*,x~,¢) for the
probability density |K(x*,x™,¢)|>. In general, a classical probability density #(B7.47,¢) to find the
value B* for the observable B at time 1™ and 4~ for the observable A4 at time ¢~ is given by the
phase-space integral

P(B".A7.1) = % /d_0<1q5(/3+ ~ B(p,q.t" )NHA™ — A(p.q:17)) (3)

where I' is a suitable norralization whose meaning will become obvious shortly. For our ques-
tion the observable is the position of the system at both times 4 = B = X and the values
are x~ and x* at + = ¢~ and ¢ = " respectively. If we choose the initial phase space vari-
ables (x~, p~) as integration variables (which can be done formally by a canonical transforma-
tion) we can fulfill the second J-function setting X(17) = x~ and Eq. (3) simplifies

! “System’ stands in our context for a conservative Hamiltonian system which classically obeys Hamilton’s equations
and quantum mechanically evolves according to the Schrodinger equation.
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to

1 .
=T /dp‘ oxt —x(p7,t)

-1
1L [ dx 1
- f; (dp? X Ap H)=xT ) Z

pT=p =1
where the second equality is a property of the delta function [34, vol. II, appendix 2] which we will
write in the following with the short notation of the last fraction. The physical interpretation of the
sum is the possible existence cf more than one trajectory X(¢) which obeys Hamilton’s equation
while connecting x~ with x™ in time f =% — ¢,
To understand the meaning cf the normalization I', we ask the question what is the probability
to find the system at its position (x~, p~) in phase space. Of course, this probability must be one.

dp,

(4)

Formally, we ask now for the probability density with 4~ = x(¢~) and the momentum p~ at the
same time ¢ = ¢, i.e. B* = p~. It is given according to Eq. (4) by
i 1 dp~ 1
Pp x,0)=—=——= .
(P 0= - =& (5)
The corresponding probability (see Eq. (2)) reads
1 = Pac-2,-(0) = (/1A Ap~ (6)

that is I' = Ax~Ap~, the phase-space volume the system occupies. Classically, this phase-space
volume I' does not have a canonical value, however, it is convenient to define it as I’ = 2nf
which can be obtained semiclassically and quantum mechanically in the following way: Repeating
our question what is the probatility to find [x~) at time " = ¢~ with momentum |p~) we realize
that for t = t* — ¢~ = 0 there is nothing to propagate and U(0) = 1. It follows from Eq. (1) that
the quantum probability density is

2nh

=[{(p lx)F = /2t . (7)

Comparlson with the classical result (Eq. (5)) shows that the quantum and the classical probability
density agree if I' = 2nA. In many derivations or statements of the classical probability density this
normalizing phase-space volume I is taken from quantum mechanics, leading to the puzzling notion
that a classical quantity contains an #i-dependence. Therefore, it should be emphasized that this is
purely a convenient way to obtain an agreement of the classical and quantum probability densities
in the extreme case of no propagation (¢t = 0).

2.1.2. Classical observables

We can also ask for the probability density to find the observable A at time ¢+ for a system being
at x* if it was at x~ for f~. Formally, this is a transition probability (density) which would be
described quantum mechanically by | (x"|A4(#)|x™) |>. Classically, it is the sum of A(x~, p;,¢) for all
trajectories ; which connect x* with x™ in time ¢ weighted with the respective probability density
to do so

1 dp; |
(vt v~ ) — — + oyt L1, 8
A ox ) = T IAG P10 ®
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2.1.3. The classical cross section

A cross section can be formulated with the transition probability density, which contains the
essential dynamical information. However, since a cross section is defined as a transition for 1 — oo
any transition probability P(¢) would become infinite since in this time limit infinitely many scattering
events lead to the specified transition [35, Ch. 15]. Hence, the cross section is defined, quantum
mechanically as well as classically, as

Ao — i 1 d -

U—[+llllmap(h‘_PAq*Aq—(f —t), (9)

where the rate dP/d¢~ is ncrmalized to the incident flux @, = v/Ax~ of particles with velocity v
in the volume Ax~ [35, Ch 15] and ¢*,q~ are the initial and final state observables, respectively.
In the following, we will derive on the basis of Eq. (9) the classical cross section for the following
processes:
1. potential scattering,
2. fragmentation: 4 + (BC),- — A+ B+ C,
3. excitation: 4 + (BC),- — A+ (BC),+,
4. rearrangement: A + (BC),- — C + (4B8),+,
where (BC), refers to the ath excited state of particles B and C. We will begin with potential scat-
tering where one has not to deal with complicated initial and final states whose classical description
requires additional considerztions.

Potential scattering. In potential scattering a (pseudo-)particle is scattered elastically from an
obstacle (represented by a potential). The particle gets only deflected while maintaining its speed.
The observable is the scattering angle Q~ = (8%, ¢") measured relatively to the initial momentum
vector, usually chosen to be p~ = (0,0, p7) in Cartesian coordinates. According to Eq. (9) we have
for the cross section

A O+ -
Aa=l&rgcé—%%;zsf/dsxd3p(5(p—p—)(3(Q—Q+) (10)
which simplifies immediately using Eq. (6) for I and the explicit form of @, (see below Eq. (9))
to

Q+
Ac = lim A

i—oo P

d [ B
el Q- Q). (11)

To carry out the time derivative in Eq. (11) we have to locate the explicit time dependence in
the initial variables. While the coordinates x~ and y~ serve as impact parameters the trajectories
propagate asymptotically along the z-axis with z7(¢7) = vt~ +z; = p~/mt~ + z;, . Hence, we can
replace dz~ = vds~ and ge:

Ao = lim AQ" /dx" dy~ 5(Q — Q") (12)
which reduces to
AG . a(x"a v'f)
=2 A 13
AQ* Ilgglcz@(cos;()*,(b*) ’ (13)

i



J.-M. Rost! Physics Reports 297 (1998) 271-344 279

where

C(xXy 5o X, ) 0(gT ) (14)

is a symbolic notation for the Jacobi determinant |det.o/| of the n x n matrix .&/ with elements
Ay = 6xf/6x;. Under cylindrical symmetry the Jacobi determinant reduces to the derivative of
the deflection function, |bdb(0),/df| with impact parameter b, and in this form Eq. (13) is easily
recognized as the classical cross section {36, Ch. 3.10]. The sum in Eq. (13) indicates again that in
general more than one trajectory has the correct boundary conditions in order to contribute to the
cross section. An additional consequence is an infinite cross section (rainbow scattering) at impact
parameters for which 8(b) has an extremum. Other singularities in the cross section result from
orbiting trajectories and from glories. These effects are described extensively in the literature, e.g.
[30; 36, Ch. 3.10; 37, Ch. 5].

Fragmentation: In scattering experiments fragmentation typically occurs when a projectile has
enough energy to ionize an atom (or in chemistry, dissociate a molecule). After the collision there
exist at least three fragments A, B, C. Before the collision we have two fragments where one fragment
contains two particles bound to 2ach other, formally 4 +(BC),- — 4+ B+ C. Apart from the higher
dimensionality of the problem there is an additional complication: The bound motion of (BC) in
the initial state must be described classically. This can be done as long as the motion takes place
on a torus, that is, as long as it has conserved action variables I, . For molecules the situation is
approximately given by normal mode motion [32]. For an atomic bound state one valence electron
in the central field approximation fulfills this condition as well, with fixed (energy-dependent) action
and angular momentum.

The observables for the most detailed differential cross section are now the angles of the fragments
in suitable (Jacobi) coordinates ©Q, and 2, and the kinetic energy associated with one Jacobi vector,
E,. Via conservation of the total energy E, the energy of the motion along the other Jacobi vector
is fixed by the initial state, characterized by an action vector I~ for the bound subsystem and by
the momentum p~ for the projectile as already known from potential scattering. The cross section
reads

+ + +
N — i DQIAQIAL

, G »/dxdyd%ydﬁé(!)l~QY)5(Q2—Q;)6(E,—ET)&(I—I‘), (15)

where the components of #~ with normalization (2r)* are the angular variables conjugated to the
actions I~. As from Eq. (12) to Eq. (13) the cross section reduces to

o _ 1 s~ Mot 6
dQ,dQ,dE,  (2m)} <~ d(cos 0y, ¢y, cos 0, 2, E)

where we have moved to a differential notation instead of the differences in Eq. (13). Also, from

now on we drop for simplicity the ‘+’ sign for the final state variables.

Excitation and rearrangement: Since we have already introduced the classical description of a
bound state excitation and rearrangement can also be described. Instead of the angles and energy
(Q,,E)) in the coordinate one, we have now an action vector I; describing the bound state in the
final channel. For rearrangement the roles simply are exchanged in the final channel (1 < 2). For
completeness we give the final results for the cross sections:
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Excitation, A + (BC),- — A+ (BC),:
dSO' 1 a(xi_a yz'_’ ’11_ )
dI] d.Qz - (2ﬂ)3za(171,c0502,¢2) ’ (17)

Rearrangement, A + (BC),- — C + (4B),:

¢ 1 Zﬁ@(:’c,-‘,yi‘,nf") . (18)
dLdQ,  (2rn) <2l cos0i,¢))

We have only derived cross sections for three particles. However, an extension to more particles
does not involve any new ¢lements and can be easily inferred from the three-particle cross sections.
Some care is needed if the separation of the fragments, as they appear in the scattering events, is
described in different Jacobi coordinates before and after the collision.

2.2. Reduction of phase space for non-periodic motion

A full (semi-)classical study of only three particles demands already control over 12 phase-space
dimensions which is even with today’s computer power quite problematic. Moreover, for the purpose
of understanding the basic raechanisms and phenomena, it seems to be more desirable to split the
description of a system into partitions whose effective phase space is reduced to a manageable
volume. This does not necessarily imply the construction of a model which is unrealistic under
experimental conditions. If one is only interested in rather global quantities such as integrated (total)
or singly differential cross sections, the analysis of the classical problem with respect to partial fixed
points can help to effectively reduce the phase space which has to be taken into account.

2.2.1. Invariant manifolds

Fixed points, important to characterize bounded motion in phase space [38], do not necessarily
occur for unbounded motion, which is typical for scattering. Nevertheless, some coordinates may
exist which are periodic, i.e.

pilty) = po . qilta) = qo. (19)

where ¢, = nT is a multiple of the basic period 7. More frequently, one will encounter the situation
that a coordinate keeps a specific value for all times, i.e.,

pit)=0, q(t)=q, (20)

which is a special case of Eq. (19). A pair of phase space variables with this property we will call
a partial fixed point, partial since only the value of a specific pair (g;, p;) is periodic (or fixed).
The dynamics of trajectories whose initial conditions are on the invariant manifold defined by the
phase space variables orthogonal to (g;, p;) remains on this manifold. Hence, the effective dynamics
is reduced to a phase space whose dimensionality has decreased by two for a (simple) partial fixed
oint.
P Classical transition probebilities and invariant manifolds: The existence of an invariant manifold
due to a partial fixed point leads to block-diagonal form of the Jacobi matrix whose determinant,
which decides transition prodabilities classically (see Eqs. (8) and (14)), factorizes. Assume e.g. that
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we have an eight-dimensional phase space (p,..., ps,q1,...,qs) Where (g, = q;, p; = 0) represent
a partial fixed point. A change of (pa, p3, pa.q2.¢3.q4) will not influence the fixed point values.

R

Consequently, the partial derivatives ¢p;/¢g; = 0 (j = 2,3,4) and the determinant of the Jacobi
matrix factorizes,

opy.ps.py)
o(q7.97.43)

|o(py)

o(pr,....py) _
’a(ql*)

o(gfs...,q1)

(21)

The first determinant approximates the contribution to the propagator in the fixed point variables and
the second determinant involves the coordinates orthogonal to the partial fixed point.

Stability analysis of partial fixed points: The time evolution of small deviations dy = (0py,....0p,.
q,...,0q,) from a fixed point can be determined from the linearization of the Hamilton flow 7y
about the fixed point [39],

M = /M, (22)

where M(7) is the stability matrix with elements M; = 8y,(¢)/d7,(0). The dynamical matrix
/(1) =T,#(¢) is composed of the Hamilton matrix # = ¢*H/Cy0y and an auxiliary matrix

r, - ((1’ ‘01) . (23)

From det(M — A) = 0 one obtzins the Liapunov exponents of the partial fixed point,

N—1

. 1 .
/i(t) = n In Ai(t) = Nll_l:r;o N E a,(jt/N) . (24)
; =

Thereby, an eigenvector of the dynamical matrix (which is a linear combination of the d7,) changes
in a small time interval A¢ = ¢/N according to

Suy(At) = duy e, (25)

where du;, = 0ur(0) and 4; ~ g, within Ar. However, as Eq. (24) shows, the Liapunov exponent
is in general a time average over the eigenvalues @, taken at successive time steps ¢, = ji/N. The
partial fixed point is stable if the 4; are purely imaginary and unstable if they are real. Because of
Eq. (24) this property follows directly from the corresponding property of the eigenvalues a;(¢) of
the dynamical matrix.

A partial fixed point as defined above decouples from the other phase-space variables (see Eq.
(21)). Consequently, the stability matrix M can be written in block diagonal form with the deter-
minant taking a product form det(M — A) = det(M" — A)det(M’ — A), where M* is the stability
matrix of the fixed point variables and M’ is the stability matrix for the rest of the phase space. We
will discuss an example in the next section.

Dynamics on invariant manifolds can be used to approximate observables if the motion linearized
about the coordinates of the partial fixed point is stable. Imagine that a stable partial fixed point
has been found in the domain of a variable over which is integrated for the desired observable. A
reasonable approximation would be to assume that the true result is proportional to the value at the
fixed point since the dynamics outside the stable fixed point will not lead to qualitatively different
results (but tend to those of the partial fixed point).
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41_2

Fig. 1. The initial conditions in a typical scattering experiment. The v-axis is perpendicular to the paper plane, b represents
the impact parameter.

The situation is very different for an unstable partial fixed point. Since the system is asymptotically
open (in the sense that all trajectories reach infinity in coordinate space for infinite time) an initial
value slightly away from an unstable partial fixed point may lead to a qualitatively different result
compared to the one at the fixed point. Of course, this phenomenon is reminiscent of the stability
properties of true fixed poins.

2.2.2. Planar three-body scattering

We illustrate the concept of partial fixed points in connection with a typical scattering process
A-+(BC) where the forces are two-body forces only. We use independent particle coordinates r; = ry¢
and r, = rzc in which the Hamiltonian can be represented as

2 2
_ P i 7 + PP
2myc 2mpc mc

+ Vi(r1) + Valry) + V(R) (26)

with the reduced masses m,; = m,mg/(m, +my) and R = r, —ry; see also Fig. 1. The typical initial
conditions for a scattering event contain a trajectory for the projectile 4 and the bound system (BC)
which can lie in the same plane, i.e. p,; = y; = 0. These initial conditions define in a natural way
a partial fixed point y*. However, we have to see if this partial fixed point is stable. Firstly, we
calculate small deviations from y* = (p,., pv2, ¥1,¥2) = (0,0,0,0) directly from the equations of
motion:

.. [ CH 0*H
0P =70 (5;1) = =D 5=,

; 0yi0y;
— . aH - azH ~
(5}’1- =0l — = E ':b_T‘é'}'j . (27)
apy.i ;J Op,\’. ic')’j

Eq. (27) can be compactly written in the form of Eq. (22). Since the stability properties of the
partial fixed point follow from the eigenvalues of the dynamical matrix (see Eq. (24)) we need
the Hamilton matrix #* about the partial fixed point y* = (p,1, p.2, »1, ¥2) = 0 for our example
Eq. (26):
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tt 0 0
C*H* t 0 0
:#* - = = N S
b = e T 00w v | (28)
00 —v v
where
t = l/’mAC ) th, = l/’lch R = 1//’7;1(. ,
(29)
ovio e ie1a
V= —— ). — — —p = ;. y — .
iR R Il wa v=w, v, I ;

Note that the Hamilton matrix about the partial fixed point contains only first derivatives of the
potential, i.e. forces. This is in contrast to a stability matrix at a generic phase space point where
second derivatives of the potential appear. These terms disappear at a partial fixed point since they
occur multiplied by the components of the phase space point which are zero at the partial fixed
point. The eigenvalues of A" are determined as usual by the characteristic polynomial equation

. . ) w v my + mp + me
Prpe <ﬂ P ) L AT IE TN (e 4 (w4 wa)o) = 0. (30)

+ —
myc Mpc M5 m smghic

Purely imaginary eigenvalues for a stable partial fixed point constitute a rather restrictive condition
since it must hold for any value of every phase space variable orthogonal to the partial fixed point.
It can be shown that a sufficient and necessary condition for imaginary roots of Eq. (30) is

wiwy + (w) +wy)v > 0. 31)

A physical realization of condition, Eq. (31), is the gravitational three-body problem. The attractive
forces stabilize the plane in which the three bodies move initially.

However, in the microscopic world we are interested in the dynamics of charged particles where
the typical situation is that two particles (4 and B) repel each other while they are attracted by C,
with w; > 0 and v < 0. Then, a configuration with (almost) stable motion in the plane consists
of two heavy and one light particle, e.g. my = mz>mc. In this case we get approximately linear
stability (4> = 0) in one direction and oscillatory behavior in the other direction since Eq. (30)
reduces to

2202+ (Ume)(wy +wr)) =0 (32)

This behavior results for any combination of two heavy and one light particle.

The planar dynamics of electron—atom and positron—atom scattering is generally unstable. We dis-
cuss electron—atom (ion) scattering first. With the potentials ¥; = —Z/r, and ¥ = 1/R the inequality,
Eq. (31), can be written as

sin%® + cosa® — Z(1 — sin(2a)cos #)*? < 0, (33)

where tanx = r,/r, and cos @ = rr,/(r112). In Fig. 2 the regions of stability are shown for electron—
hydrogen scattering (Z = 1). The same diagram (part a) holds also for positron—hydrogen scattering.
One sees that the repulsion between the two electrons creates instability with respect to motion in the
plane. The stability develops differently for the electron and the positron projectile if the charge Z of
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Fig. 2. Maps for the stability of planar motion for three charged particles, the coordinates are explained in the text. Part
(a) represents the electron~hydrogen and the positron-hydrogen system, part (b) is for e™ —O"" and part (c) for e - 0.

the target ion is raised. Fig. 2b demonstrates that higher Z stabilizes the electron—ion system while
it destabilizes the positron—ion scattering system (Fig. 2c¢). In summary, the stability analysis shows
that the partial fixed points which define planar scattering are unstable for electron/positron—atom
scattering. Hence, planar scattering is not a good approximation for these cases.

However, if we find another fixed point in a stable region of Fig. 2 we may use the corresponding,
even lower dimensional phase space, as a good approximation. In Fig. 2a and Fig. 2b the line 6 = =
lies in the stable region. It corresponds to a collinear configuration where the particle in the middle
screens the charges of like sign of the two outer particles. In the next section we will prove that
sin § = 0 defines partial fixed points and will examine their stability. Our starting point is the planar
Hamiltonian which still has the form of Eq. (24). For convenience, we define 8 = 0, — 6, explicitly as
a dynamical variable with conjugate momentum py. The counterpart is the angle ¢ = ¢, + 0, whose
conjugate momentum is the total angular momentum, p, = L. For simplicity, we will demonstrate
the derivation of the fixed point for two light and one heavy particle with the Hamiltonian

2 1 +L? 1 1
BoZy(i+] L (LS pane ey, (34)
2

2 )
2 17, i

2.2.3. Collinear three-body scattering

As already mentioned, the Hamiltonian Eq. (34) has partial fixed points defined by 6* = 0 or
0* = m and p; = L* = 0. The structure of the stability matrix for deviations (dpp. oL, 60, 69) from
the fixed point is similar to Eq. (28) where now

aVI"ll"z
vlzﬁRchos(J, n=0v=0,
1 1 1 1
h=h=—5+-3, === =. (35)
N rnoon

This leads to the characteristic polynomial P(1) = A*(4* + f,v,). Hence, the fixed point at 6* = &
is stable and the fixed point at £ = 0 is unstable or vice versa depending on the sign of ¢V/dR.
The roots 2> = 0 indicatz that the total angular momentum L is a cyclic variable (constant of
motion). We will analyze the collinear motion (6 = 1) in the context of electron impact ionization in
Section 5.
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Depending on the observable of interest, additional fixed points may reduce the effective phase
space further. Obviously, for the calculation of cross sections differential in the angles 0;, the phase
space cannot be reduced beyond the planar dynamics. For cross sections, only differential in the
energy of the fragments, collinear collision dynamics may be used. Note, however, that the partial
fixed-point analysis reveals properties under the most general circumstances. It does not preclude the
possibility of integrable motion vnder special dynamical conditions. Such an example is provided by
the so-called planetary two-electron configurations [40]. They have both electrons on the same side,
which corresponds to a globally unstable configuration. Nevertheless, the planetary modes represent
integrable motion. This is possible according to our stability map (Fig. 2) as long as the integrable
motion restricts the range of the angles ¢, 0 to the stable regions.

2.3. Projectors onto fragments in reduced phase space

If we reduce the effort to calculate cross sections to collinear phase space we lose any angular
information and, moreover, the ability to calculate absolute cross sections. What is left, is the energy
sharing of the fragments. Forma'ly, we may write on the collinear manifold:

e d'o dr
dQ,dQ-de - dQ,Q, de’

(36)

where
die* 00, p5. 07,0
dQ,Q, B c(cos 0, ¢, cos th, 1)

(37)

is the cross section at the partial fixed point and dP/de describes the energy sharing of the fragments.
However, this energy sharing determines if two or three fragments are created after the collision.
If particle 4 is free after the collision and its energy ¢ > FE then the system (BC) has neces-
sarily negative energy and is bcund. Hence, we can define the three-particle formation probability
as

d*e* (£ dP
WE) = QdQ,——— [ de— =0c"P5(E). 38
7i(B) = [ddaggs [ 4 = o PE) (38)
Moreover, we may assume the total probability to be normalized:
+o0 dP
1 =P(E)= / daa =P, (E)Y+ P(E). 39)

The probabilities P; and P, = 1 — P; represent projectors onto two-body and three-body fragment
spaces on the collinear phase-space manifold. With these projectors we can define a parameter-free
ratio between two-body and three-body fragmentation with the respective cross sections ¢, and &;.
Since the fixed point contains the dominant contribution to the dynamics, we may write

o3/oy = P3/(1 — P3). (40)

We can even calculate absolute three-body fragmentation cross sections with the help of these
projectors if a total cross section gy, for the scattering process is available. The latter is normally
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much easier to calculate and a useful formulation of o3 reads
03 X2 Oy P3/Proy - (41)

In Section 6 we will apply the idea of projectors onto fragment spaces on reduced phase-space
manifolds to double photoionization of helium.

Finally, we remark that for a system interacting solely through Coulomb forces, a rather peculiar
global fixed point exists. This fixed point is the singular point where all particles are together. It
will be analyzed in Section 5 and in Section 5 we show that its stability characterizes the ionization
cross section of an atom at threshold £ = 0 [41].

So far, we have worked within the framework of classical mechanics. However, all results carry
over to the semiclassical expressions which are constructed with classical information only.

2.4. Phenomenological derivation of the semiclassical cross section

2.4.1. The semiclassical propagator

As a rule of thumb, the semiclassical approximation to the quantum mechanical propagator in a
standard Cartesian representation, (x|U(¢)|x7), can be obtained from the classical probability density,
Eq. (4), by

Usc(rx™.0) = 3\ /2 (e xm )2 (42)
J

where @; is the action and v; = }_, sign(4,), the number of sign changes of the eigenvalues /; of the
Jacobi determinant ; along the trajectory j. Although Eq. (42) contains only classical information
it represents a complex araplitude with the possibility of interference. A rigorous derivation of
Eq. (42) proceeds from the Feynman path integral representation of the propagator U(t) leading in
stationary-phase approximation to the semiclassical limit where only the paths with the least action
@ (the classical paths) contribute.

2.4.2. Semiclassical transition matrix elements and observables

In principle, Eq. (42) is also applicable to observables and transition elements. There are at least
two ways to do this. The first possibility is to approximate the initial and final states semiclassically
(classically) as well. This version is closest to the classical case, with the only difference that any
classical action of a bound state motion is now quantized as prescribed in the EBK quantization.
Hence, we can substitute tne action vectors I by the quantum number vectors a. This allows us to
use the initial-state phase-space variables n~ and #~ for phase-space integration and leads to the
formulation

—1/2

i2

d 1 /s v bl
n A(n, ,1;’ t)eld),-;hAn,m- . (43)

dy;

J

- 1
<n\A(t)ln )SCL = EE)N’Q;
The semiclassical expression, Eq. (43), preserves the classical structure to a large extent. It is most
suitable for the purpose o interpretation and intuitive understanding of processes and has the great
advantage of being very simple if the sum contains only a few classical paths.
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On the other hand, if very many paths contribute an alternative semiclassical formulation gains
attractivity where the initial and final states |i) and |f) remain quantum mechanical,

AWl = [ ddx™ (1) (RAOI sy (611
= [ dxdv w Op A Dser (44

Here, A(x,x7,1)scL 1s the semiclassical probability density to find the observable 4 at x and time 7,
_ 1
A(x, X7, t)scL = FEZ

i

—12

dx; D h—ivm 2
el A(x,p;, t)e®h i (45)

dp-

As it stands this formulation is still a boundary value problem which requires root search to simul-
taneously satisfy the boundaries x and x~. However, as first shown by Miller [42], it is easy to
transform the problem to an initial-state formulation which avoids the time-consuming root search
procedure, using the canonical transformation from final coordinate x to initial momentum p~,
|dp~/dx|. The semiclassical transition amplitude takes the form

1

1 dx; |'? o m s
<f\A(f)|i>scL = ﬁiz'/dpidxn//;(x)‘#(xf) ‘Epﬂ A(X’P)e@"'h—n'h s (46)
J

where

x=x(p;/,x7), p=pp;.x).

This initial value representation in connection with Monte-Carlo integration of Eq. (46) has been
used recently to successfully generate semiclassical spectra including resonance widths [26-29].

2.4.3. Semiclassical cross sections
Using Egs. (42) and (43) we can immediately translate the classical cross sections from Eqgs.
(13), (16) and (18) into semiclassical cross sections. For potential scattering we get

2

do _ lim
dQ -

’ 1/2

ox; L y)

Z‘ o(cos b, @)

J

(47)

l D h—ivim/2

Note that the action @; in Eq. (47) and in all semiclassical cross sections is special in two respects.
First, it is an action difference between the action from a trajectory propagated under the full Hamil-
tonian H and under the asymptotic (‘free’) Hamiltonian H,. This is a consequence of the definition
of the S-matrix as [44, Ch. 8d]

S = lim "¢ 2 = Jim UJ(1)UQRNHU| (7). (48)

t—0o0 f-—00

Second, since the scattering amplitude is defined from S—matrix elements in momentum space, the
action is expressed in generalized momentum coordinates,

P /4
P, =APi(p,p .E)= /7q,(Hg)dp’—/h q,(H)dp' . (49)

P 14
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where g(H ) and ¢(H,) stand for a trajectory under H and H,, respectively. Fragmentation into three
particles described by the fivefold differential cross section reads
2

l"?

da ) I

T O LCRRIRL D,
40,40, dE, ~ 12 Gy

0(cos 01, ¢y, c0s O, ¢y, Ey)

1P/ h—ivimi2

2

J

(50)

Excitation and rearrangement are expressed similarly whereby the classical action is replaced by the
corresponding quantum number function » taken at the discrete, quantized values as described later
on in Eq. (71). Generally, the semiclassical cross sections as described above differ from the classical
ones through (a) the quantized values of the action vectors I, (b) through the complex contribution
of each path j to the scattering amplitude due to the phase factor, and (c), if necessary, through
the symmetrization for indistinguishable particles. The determination of the action ¢, for each path
needs some care if the final and initial state are defined in different sets of Jacobi coordinates; for
details see Refs. [31, 43].

2.5. The semiclassical cross section derived from the quantum S-matrix

To derive the expressions for the semiclassical cross sections from the quantum cross sections,
one could start again from the time-dependent formulation of Eq. (9) which is also quantum me-
chanically valid. However, we will provide here a derivation which takes as a starting point the more
familiar time-independent formulation with the T-matrix directly related to the scattering amplitude.
The construction will be exemplified with potential scattering.

To make contact with the semiclassical approximation of the propagator, we need the fundamental
quantum relation [44, Ch. 8]

pIS—1lp~) = =2nit. (E — E7)T(p,p” ) - (51
For potential scattering the scattering amplitude is expressed through the T-matrix as {44, Ch. 3]
f(0) = mQuik ¥ T(p.p~) (52)

with 0 = arccos[pp~/(pp~)] and the reduced mass m. The construction of a semiclassical scatter-
ing amplitude from Egs. (51) and (52) consists of two steps [45). Firstly, the usual semiclassical
approximation to the propazator, in this case the S-matrix, must be constructed. This has been done
many times before in the literature and we only refer to the result (Eq. (42)). The second step
is less well known but easier to perform. Since semiclassically we have the S-matrix we need to
‘invert’ the energy conserving d-function in Eq. (51) to obtain the T-matrix. Energy conservation
means invariance of the system against translation in time [46, Ch. II]. In terms of trajectories which
represent the system and which are the backbone of the semiclassical propagator translational in-
variance in time means invariance of the propagator against spatial translation along the trajectories.
This fact has already been used in the formulation of the classical cross section with Eqs. (11) and

(12).
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The o-function in Eq. (5§1) may be written as a limit in time [34], [II, App. 2],

t 2
NE —E7) = —o p—p~ Yu2mh
( )= (P=r)= p '—'oo (2n1fim> ¢ (53)

Then the quantum scattering ampolitude in terms of the S-matrix expressed as the time limit of
propagators (Eq. (48)) reads

(2mﬁm 12 B
for)="~ oo( (plUS(HUEOUI@) ~ 1) (54)
where the time variable ¢ stands here for the final time 1 — oo and also for the negative initial
time, + = —¢~. Using the semiclassical expression, Eq. (42), for the propagator in momentum

representation we may write

172
el‘b}/(pJ’ .22)/ﬁ41\",ﬂ/2’ (55)

fp.p7) = lim Z

Vim cp
with the action difference as in Eq. (49),

¢f(Psp—7E) = 11_13?0 A(i)j(pup;’zt) . (56)
The primed sum in Eq. (55) indicates that non-scattered trajectories have to be omitted from the
sum. As a next step we can eliminate the explicit time dependencies in Eq. (55) using the asymptotic
property of free classical motion outside the potential for large times,

lim p(t) = poc = mx(2)/t . (57)

Applying Eq. (57) to both, the factor p outside as well as to p in the determinant of Eq. (55),
yields

eid?,(p,p— =t VR —ivm2 . (58)

- __ 1 roloxT
fo.p )—,grgo;r*

The scattering amplitude in form of Eq. (58) has been derived by Pechukas in a different way, by
construction of a semiclassical wave function [10]. To obtain the familiar form of the scattering
cross section, we must choose the appropriate coordinates. We assume that the particle is initially at
a point with Cartesian coordinates x~ = (x~,y~,z~ ), where z~ <0 and p~ = (0,0, p7). The final
point of the trajectories is described in spherical coordinates r = (7 sin @ cos @, » sin © sin @, rcos @)
with p = pr, with (@, ¢) being the scattering angles. Note that the formulation does not rely on a
spherically symmetric potential. Then,

cx cx|| cr

-~

cx—

(59)

O0x~

6!‘]
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N e | . . . . ~ .
where |0x/Cr| = r?sin O is the determinant of the Jacobian for the transformation between Carte-
sian and spherical coordinates and

or or Or

0x— Gy~ 0z~

b | 0 0 @O
x| o o e (60)
cp 0@ GO
T Gy

Now, we have to use the invariance against translation in time induced by the energy conservation,
For a given trajectory this means that shifting time is equivalent to shifting the starting point about
some increment along the trajectory. In other words, a shift dz— of the starting point along the
trajectory will not affect the scattering angle and will only cause an irrelevant shift dr along the
trajectory at the final point. Hence, dr/0z~ ~ 1 while ¢@/0z~ =~ 0@/0z~ =~ 0 and we arrive at

lim [0x/2x” ™' = (1/r*)do/dQ, (61)

where dQ = sin® d@ d¢. This step parallels the transition from Eqgs. (11)~(13) in the derivation of
the classical crossection. Combining Egs. (58) and (61) we see that the contribution of an individual
trajectory to the semiclassical scattering amplitude is indeed of the form (do/dQ)'2ell® =21 a5
phenomenologically derived in Eq. (47). Moreover, Eq. (58) is also valid for Coulomb potentials,
despite their long tail, since no asymptotic wave function or some equivalent is necessary to determine
the scattering amplitude.

In general, many classical paths can contribute to a differential cross section. If there is one pair
of trajectories among them with the same starting and ending points in momentum and time and
with a difference of action less than #, the semiclassical description fails. Examples are the classical
rainbow and glory effects [5].

3. Classical and semiclassical properties of scaling systems
3.1. Homogeneous potentials, hyperspherical coordinates and the virial theorem

Homogeneous potentials. In classical as well as in quantum mechanics a homogeneous interaction
has profound consequences for the dynamics of a system. The Coulomb potential, through which

nuclei and electrons in atoms and molecules interact, is homogeneous of degree £ = —1 since it
fulfills the general scaling relation

V(x1,X2,...) = A XV (Ax), Axa,..0) (62)
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Hyperspherical coordinates. There is a set of coordinates which is very helpful in dealing with
homogeneous potentials namely hyperspherical coordinates® in which the potential of Eq. (62)
takes the simple form

V(xi,x2,...) = V(#,Q) = C(R)A . (63)

With the r; = (x;, ;,2;) being a set of mass weighted Jacobi coordinates, the hyperradius Z = /> 7?7
measures the radius of the 3N —dimensional sphere in which the N particles can be found. The other
variables in configuration space consist of a set of hyperangles Q = (Q,,Q,,...,%,,%....), where
the €, express the position of r; in the three-dimensional space while the angles «; specify the
relative lengths of the vectors r;, e.g. «; = arctan(r/r;). The canonical conjugated momenta are a
generalized angular momentum A(€2) and the hyperradial momentum 2 = d#/d:. We have used
these coordinates already dealing with the stability of partial fixed points in three-body systems in
Section 2.2.2.

The virial theorem. Probably, the best-known consequence of a homogeneous interaction is linked
to the virial theorem, which states (classically and quantum mechanically) that

(kinetic energy), = —% <:quFj> . (64)
J av

Classically, the average is taken over time and quantum mechanically over the wave function of a
stationary state. The F; are the components of external and internal forces on the coordinates ¢; of
the system which may consist of many particles. The classical as well as the quantum mechanical
proof of Eq. (64) is remarkably simple and can be found in Ref. [49].

The r.h.s. of Eq. (64) is proportional to the force in the direction of the hyperradius of the system
and hence we may rewrite Eq. (64) as

» A 1,
— = —— (RF : 65
< 2 + 2%2>av 2 <1 .%>av ( )
If we insert now the radial force F, = —kC(§£2)%*' resulting from a homogeneous potential like

Eq. (63) we obtain the virial theorem for scaling systems,
(kinetic energy), = 1k (pctential energy), . (66)

For k = 2 (quadratic potential) this is the familiar result that, on average, potential and kinetic
energy are equal and half the total energy for an oscillator.

In the following we will investigate the classical scaling properties for Coulomb systems in more
detail and we will discuss classical and semiclassical implications which are less well known than
the virial theorem.

% The construction of hyperspherical coordinates for N particles is described in Ref. [47], a more abstract derivation of
the Laplace operator on a N-dimensioral sphere and its eigenfunctions can be found in Ref. [48].
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3.2. Classical scaling and semiclassical eigenvalues

Suppose we have a Ham:ltonian of the form

E= H:Z% NI
j

2
2 +2%2

where the potential is homogeneous of degree £ as in Eq. (62). Then it is possible to construct a
scaled, energy-independent, Hamiltonian through the transformation

+ ()7, (67)

H =HEE,, p= p\JE/E;, x=3(E/E)", (68)

where E, is an arbitrary coristant energy to keep the units of unscaled and scaled variables identical.
Quantities with the dimension of an action (like angular momentum) and the action itself scale then
as

@ = P(EJE,) -2 (69)
and for the time we get wirth ¢+ = d®/dE the scaling
t = H(E/Ey)*~072 (70)

The scaled Hamiltonian has the constant value H = E,. We also note that hyperspherical coordinates
scale like the ordinary Cartesian coordinates, i.e. # like a length, 2 like a momentum and A like
an angular momentum. All angles €2 are of course not affected by the scaling.

As it is well known energy levels of one-dimensional systems are semiclassically obtained by
quantizing the action [39, Ch. 7.3]

O(E,) = D(E/Ey)" D = 2nh(n + 1). (71)

In higher-dimensional systems it is possible to quantize single stable (and even slightly unstable)
periodic orbits [40, 20]. The quantization condition, Eq. (71), must be slightly generalized in this
case with n + } replaced by n — u, where u contains information about the dynamics of the system
in all directions in phase space which are perpendicular to the local direction of the periodic orbit.
The wave functions which correspond to the quantized energies are said to be scarred along those
orbits [50].

For a scaling system the semiclassical quantization implies the existence of a series of states based
on one periodic orbit whose action together with the scaling relation determines the spacing of the
quantized energies according to Eq. (71),

(13 —2ki(2+k)
— — , 72
E, E0(27tﬁ(n—,u)) (72)
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Prominent examples are periodic orbits in a Coulomb system which lead with & = —1 in Eq. (62)
to the existence of Rydberg series built on these orbits with
N 2
®/(2nh
E, = —E, (_/(__)) . (73)
n—p

In this case we would interpret ®/(2nh) as an effective charge and p as a quantum defect and E,
is conveniently chosen to be the Rydberg constant.

For one-dimensional systems with homogeneous potentials the fundamental action ®(£ = Ey) can
often be calculated easily and the semiclassical energies from Eq. (7'2) are quite accurate for all but
the lowest levels. The same is true in higher-dimensional systems for the shorter periodic orbits.

Also noteworthy in the context of quantizing scaling systems is another quasiclassical method,
dimensional scaling [S1]. This method is most suitable to approximate ground states since it re-
tains the commutator to all orders in % [52]. However, dimensional scaling has also been applied
successfully to describe resonances [53].

3.3. The hyperradius as a function of time in a scaling system

We now come to the consequences of classical scaling. Under certain conditions one can determine
— without explicit calculation of “he trajectories — the kind and number of extrema of the hyperradius
Z(t) of single classical trajectories in scaling systems. For this purpose we note that at an extremum
of # we have # = 0 = 2 and rherefore from energy conservation

E = A*2% + C()A" . (74)

The kind of extremum is determined by the second derivative of # which can be expressed through
Hamilton’s equations as

9:—%:%-%@""‘. (75)
We do not know the sign of C(Q); however, we may use Eq. (74) to rewrite Eq. (75) as

P = E;‘_%% - ZI; . (76)
Now, 2 is positive, i.e. all extrema of # are minima in the following three cases:

k>0and £ <0 (77a2)

k=0 (77b)

0>k>-2and E>0. (77¢)
Similarly, all extrema of # are maxima under the condition

k<-2 and E < 0. (78)

If these conditions apply, we can draw the following conclusion: Since a trajectory is continuous in
time it can have at most one riinimum (or maximum in the case of Eq. (78)) if all of its extrema
must be minima (maxima).
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Here we will discuss only the cases which are interesting for scattering situations. Since the
asymptotic conditions imply an infinite hyperradius the only possibility is a single minimum. More-
over, the potential must vanish for Z — oc for a well-defined scattering problem. This leaves the
trivial case (Eq. (77b)) of constant potential and the interesting case (Eq. (77¢)) which contains
most importantly the Coulomb interaction, & = —1. Hence, for positive total energies E the hy-
perradius A(t) of each trajeciory in a Coulombic multi-particle system has a single minimum. As
we will see later this property of a Coulomb system is related to the absence of resonances for
positive energies in Coulomb systems in a similar way as this is the case quantum mechanically as
shown by Simon [54]. Briefly,.the classical signature of a resonance is a time delay in the trajec-
tories which is indicated by multiple extrema in the hyperradius compared to the direct trajectories
with a single turning point in . For positive energies in a Coulomb system we have proven that
only ‘direct’ trajectories with a single turning point exist. We also note in passing that the simplest
application of these scaling properties is Rutherford scattering. In this case the hyperradius is the
ordinary radial coordinate, the distance between the two charged particles, and C(Q) = Z,7Z, is just
the product charge which does not depend on the angle. We will discuss potential scattering between
two particles in more detail in Section 4.

Finally, it is clear that no fixed points can exist for Coulombic systems at positive energies due to
the single minimum in the hyperradius. However, partial fixed points as introduced in Section 2.2.1
do not require periodic motion and they exist in a scattering system involving Coulombic forces.

3.4. The all-particle collisior. manifold in Coulomb systems

In this section we will derive the all-particle collision manifold for a system of three charged
particles, more specifically for the two-electron atom. However, the results can be easily generalized
to an arbitrary number of charged particles with arbitrary masses.

3.4.1. Regularization of the all-particle coalescence

For the two-electron atom, we have already reduced the full phase space to the collinear collision
manifold due to partial fixed points in Sections 2.2.2 and 2.2.3. Can we find a global fixed point
by completing the successive construction of partial fixed points for the variables % and # on the
collinear collision manifold? It is obvious that the standard construction of # = %, and # = 0
will not work in this case since this is the condition for the minimum in # which characterizes
individually each trajectory but not globally a partial fixed point. Hence we have to look for the
other possibility, # = 2, and # = 0. However, this is not a straightforward task since # = 0
is a singular point for Coulombic potentials. Moreover, we have to secure the boundary condition
A > 0 which can be done by defining a new variable # = u*> with conjugate momentum p, = 2u?.
The singular behavior of the equations of motion at ¥ = 0 can be regularized by forming a new
Hamiltonian H — E of value zero. It can be multiplied by a function f( p;,¢;) which may depend
on any phase-space variables

h=(H—~E)f=0. (79)
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The construction leads to

dp; ch dp
dey, — oq cq,f (80)
and represents a canonical transformation (i.e. the form of Hamilton’s equations is preserved) if
= fdt,. Hence, f introduces & new time scale which may explicitly depend on the actual phase-
space variables. This regularization is used in celestial mechanics [55] as well as in the formalism of
path integrals for singular potentials [56]. For the Coulomb problem we define ' = f(u) = u* with
dt = u?dt, which has the reasonable effect that for constant time intervals Az, the real time intervals
At become smaller when the singularity is approached. Putting the regularization and the point
transformation # = u* together, we arrive at the new Hamiltonian for the collinear two-electron
problem

Py _
lz: 8 2 2+C(1)— =0, (81)
where
VA Z 1
C(a)= —— — + - . (82)

Sin o COS o SIN % ~+ COS X

The Hamiltonian in Eq. (81) is similar to that of an inverted two-dimensional oscillator and was
used for the first time by Eckhardt [41] to determine the stability properties of the triple collision
manifold. To find possible partial fixed points we need the equations of motion:

dp,/dt, = (p2ju’) + 2Eu,, dp,/dt, = —dC/dx,
dll//d[u = lllp“ s da/dl‘" — px/"uz

For u = 0 the differential equations of Eq. (83) may still become singular. Hence, we need another
transformation of the time to dt = udt, and a non-canonical transformation P, = p,/u. Denoting the
time derivative d/dt by a dot we have finally

p,=P.+2E’,  P,=—(dC/du)— P,p,/4,
(84)
li:%puua o= P,.

3.4.2. Stability analysis of the global fixed point

For Eq. (84) u* = P: = d(C/da = 0 defines a couple of partial fixed points with dC/da = 0 at
x* = m/4. Inserting these values into the Hamiltonian Eq. (81) we get p! = £(—8C(«))"*. Hence,
(u* = 0, p7) indeed constitutes a partial fixed point in the sense of Section 2.2.1 with the peculiar
property that the fixed point is at the singularity # = 0 which defines the coalescence of all three
particles.

The stability of the fixed point is now easily determined by constructing the stability matrix from
Eq. (84) with 67 = Mdy (see Section 2.2.1). The characteristic polynomial for the eigenvalues reads

* dZC*
,(%,) <, + By docz):() (85)
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and has the roots

o1 12 @c
YN (ST A
nrE Ty ( 2 Vit da2>’

3=0,  l=3ip; (86)

with C* = C(«”). The eigenvalues 4; show that the dynamics on the triple collision manifold is no
longer symplectic which is formally a consequence of the last (non-canonical) transformation of the
variables. The time evolution of the eigenvectors §7;(t) = cos ;00 + sin &;0P, with tan &, = 4; reads
as in Eq. (27). In Section 5.2.1 we will need the stability matrix element (6P,/dx~)~'. In terms of
the eigenvectors dy; we have

. cos &, 1 TOyT — cos &1eT oy
OPX — .g, ')Vl : ,g VYZ , (87)
sin &,cos & — sin &, cos &

which implies
OP,/6a~ = (e — ™) /(A — 12). (88)

Using du(t) = exp(p;/41t)0u~ we may replace 7 in Eq. (88) by du which measures the distance
from the triple collision manifold since u* = 0:

OP, /o0 = (Su/du M7 — (dufdu~ YWPi j(Qy — 1r). (89)

To summarize, through successive construction of partial fixed points we have determined a global
fixed point (in all phase space variables) which is generic for Coulombic many particle systems and
which corresponds to the coalescence of all particles. For two electron atoms it is characterized by
the variables total angular momentum L* = 0, hyperradius # = 0, the angles 60* = n, a* = n/4,
the momenta P; = P; = 0, and finally, the radial momentum p? = +(—8C(a*))"2. We will see in
Section 5.2.1 that this fixed point directly determines the cross section for complete fragmentation
at £ =0.

4. Semiclassical potential scattering

In this section we will start to apply the semiclassical scattering description to Coulomb prob-
lems. Since the Coulomb pctential is spherically symmetric an additional simplification arises if the
scattering amplitude or S-matrix is expanded into partial waves. Although not very suitable for the
Coulomb problem, the formalation of potential scattering in terms of semiclassical phase shifts nev-
ertheless has been the method of choice for a long time. The reason is easy to understand: Based
in one or the other way on the WKB-approximation, traditional semiclassical methods have been
essentially one-dimensional. Since scattering from a spherically symmetric potential can be reduced
to a problem in the radial coordinate by expanding the scattering amplitude into partial waves, an
early application of semiclassical methods to scattering problems was the semiclassical formulation
of phase shifts. The approximation is in general useful for a sufficiently small de Broglie wavelength
A = h/p of the incident particle compared with the range a of the potential.
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Using all constants of motion for a diagonal representation of the S-matrix we can write
[44, p. 181]

(E,6,m|S|E™,¢7,m™) = sf(EYME — E" )81 Spm- - (90)
Since the S-matrix is unitary it can be written as a phase
s(E) = e, (91)

where 9, is called the phase shift. The scattering amplitude is proportional to matrix elements of the
S-matrix in momentum representation. For each partial wave with angular momentum / the angles
have been already integrated over and only the radial part of Eq. (49) is left. It is not affected by
the integration of the S-matrix over the angles to be performed for the representation Eq. (90) in
[,I=. We can conclude that the semiclassical phase shift is given by the radial action difference in
momentum space,

L, 2 [P 2 [r=
NFEA®m=f/ r(po)dpo — 5 [ H(p)dp. (92)
#Jo tJo
where
pi(r) = pi, —2mV — L*/F*, (93)
par)y = pi —L*/r§. (94)

The limits of the integral are clefined through the asymptotic momentum p. = +/2mE and the
momentum p = 0 at the turning points » = r,, (with potential V') and ro = b = L/p.. (with V' =0)
for a trajectory with impact parameter b. In this formulation the correct phase shift §, = 0 for free
motion is automatically obtained. The semiclassical phase @, for free motion is easily calculated
from the first term in AP,

P Poc
[ rdm =1 [ (e~ s dpy = w2, 95)
0 0

However, what remains unclear is the relation of the quantum number / to the classical angular
momentum L. Should the radial problem be taken from quantum mechanics implying that L/h =
VI(I+ 1) or should we consecuently apply semiclassical quantization rules implying that L/A =
1417

In2 answering this question as it was done in the literature, we briefly review the traditional
derivation of the semiclassical phase shifts in spatial representation. Before we begin, the partial
wave expansion should be quoted for completeness. It reads for the scattering amplitude [44, Ch. 6]

f0)= iZgsz(cose), (96)
P15
where
g =+ (™ 1) (97)

with the scattering angle .



298 J.-M. Rost/ Physics Reports 297 (1998} 271-344
4.1. Scattering amplitude from semiclassical phase shifts

Clearly, the phase shifts raust follow from solving the radial problem for each partial wave /,

& 2mV(r) L)} pl B
( K T T Y(r) =0, (98)

with the functional dependence L*(/)/A*> = [(I + 1). The phase shift is defined in terms of the
asymptotic solution to Eq. (98):

Y (r — oc) — sin ( ’V p% + g) ) (99)
The asymptotic WKB-wave function reads
VEB(r — 00) — sin(pact/h — In/2 + ;). (100)

Comparing Eq. (99) with Eq. (100) we see that
W < dr (U+m  per
b)&KB_/ = 5 2/

=) P 2 A
_ 7= dp (4w

Using Eq. (95) in Eq. (101) the WKB phase shift for free motion becomes 6; = (—L(/ Vh+1+m/2
which does not reduce to the correct value zero if the quantum mechanical value L*/h* = [({ + 1) is
used in p(r). Also, the behavior of the radial wave function near the origin » = 0 is not predicted
correctly by the naive WKB approach. Already in 1926, Kramers [57] noticed that these deficiencies
could be eliminated when /(/+1) was replaced by (/ +%)2. The substitution of the angular momentum
VIT+T1) — 1+ % is called Langer modification after Langer who obtained this substitution from
an analysis of the problem with a transformation of the radial coordinate into a Cartesian coordinate
r=c¢" [58].

This history provides a lesson about the delicate details of semiclassical approximations and recalls
the fact that standard correspondences between quantum and semiclassical objects should only be
formulated in Cartesian coordinates. Essentially, the Langer modification results indeed from the
mapping of the radial coordinate r € [0,00[ into the Cartesian coordinate x €] — oc, oc| and from
the application of the quantization condition and the connecting formulae in this set of coordinates.
Transforming back to radial coordinates finally yields the modification of the angular momentum. A
recent application of this transformation can be found in Ref. [59]. Even more recently, Friedrich and
coworkers have proposed a new correction which works better than the Langer modification [60].
The same problem of formulating semiclassical quantities in non-Cartesian coordinates emerges in
the context of path integrals. The path integral, asymptotic in %, involves e.g. in spherical coordinates
a curvature correction which amounts exactly to the Langer modification [24, Ch. 13.5].

Incidentally, one could have started from the beginning by treating all degrees semiclassically.
Quantizing the angular action (the angular momentum) in the usual way leads immediately to L>/A* =
(I + 1)* and the regularization of the radial problem is no longer necessary. The reason for the
difficulty in the WKB phase shift defined from Eq. (101) lies in the fact that essentially two phases
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are subtracted from each other where the one for free motion, (/+ % )n/2, is taken from exact quantum
mechanics while the other one, Ln/(2%), comes from a semiclassical approximation. If both phases
are calculated on the same footing as in the formulation of the phase shift with the action difference
of Eq. (92) this problem does not occur. The observation leads to a generally valid notion in the
context of semiclassical techniques: Results are more reliable if the semiclassical approximation is
applied consistently to all relevart quantities.

The ‘collisional’ action [67, 37] of Eq. (92) defines not only the semiclassical phase shift but
also determines through partial cerivatives important classical quantities for scattering such as the
deflection function @ and the collision time delay 7, i.e. the time delay between a free trajectory
and a trajectory in the presence of the potential,

O(E,L) = ¢A®, /0L,  oE,L)=3AdRE|, . (102)

The relations are analogous to the entropy in statistical mechanics where here (L,©@) and (E, 1)
define pairs of conjugate variables with the total action differential given by

dAP(E, L) = O(E, L)AL + «(E,L)dE . (103)
Similarly, changing the independent variable in A® requires a Legendre transformation, e.g.
AP(E, Q)= AD(E,L) — LO . (104)

The construction of a semiclassical scattering amplitude using the partial wave sum, Eq. (96), and
the semiclassical phase shifts, Eq. (92), requires three steps of approximations as first noticed by
Ford and Wheeler [5]. In the first step the sum over / is replaced by an integral over L. However,
doing this in a naive way can lead to serious errors because the summands in Eq. (96) are highly
oscillatory. The best transformation to convert a sum into an integral semiclassically is the Poisson
summation formula

S =% d e /0 digli(L)]e™ ™ | (105)
(=0

‘u=—o00

where the index p indicates in our context how many times a path has circled the origin (i.e. the
scattering center). The naive sum is recovered for paths without multiple revolutions, u = 0.

The second step approximates the summands in Eq. (96) by their large L limit. This includes the
phase shift §; which is taken from Eq. (92) and the approximate form for the Legendre polynomials

2h N\ Lo «
, ~ | ———— — = = 106
PI(L)(COS 0) (LTC Sln(f))/ COS ( 7 4) ( )

which is valid everywhere but close to 0 or n. For these limits other formulae can be used, see [30,
Ch. 6]. Using Egs. (92), (105) and (106) the scattering amplitude, Eq. (96), takes the form

1(0) ~ —Fl—(2nﬁsin B)12 3 et ALY 4 v, (107)

U=—00

where

I’UI — /.x dLLl,’2ei[A(PL~L(:|:('n~2;m)]/h . (108)
0
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In a third level of approximation the integrals of Eq. (108) are evaluated (for small %) in stationary-
phase approximation: Only those values L(f) contribute for which the exponent in Eq. (108) is
stationary,

AP /AL = F0 — 2um . (109)
Recalling Eq. (102) we realize that the deflection angle
© = F0 - 2un (110)

and that through the stationary-phase approximation only classical paths are selected from the inte-
grals of Eq. (108) for the resulting semiclassical scattering amplitude

i/2
— Lj(g) / ik
f0)=3"9 (pgosm 9\d@/dL,|> et (111

J

Here, ®; = A®,(O) = AP;(L) — LO 1is the collisional action in the variable & (Eq. (104)).

In the present context, once again, we are more interested in cases where a small number of trajec-
tories contribute to an observable. Hence, the direct description through the semiclassical scattering
amplitude in terms of classical trajectories is more appropriate. This approach has been formulated
in an intriguing paper by Pechukas [10].

4.2. Coulomb scattering

4.2.1. Deflection function and Rutherford cross section

We know (see text below Eq. (14)) that the classical deflection function is the relevant object
for potential scattering in a spherically symmetric potential. It formulates the deflection angle © as
a function of the impact parameter, ©(b), or as a function of the angular momentum &(L). For
a standard scattering situation p~ = (0.0, p~) and hence L = bp~. For attractive potentials the
deflection angle @ may not be identical to the scattering angle ¢ since a trajectory may circle the
scattering center some times before it recedes from it. For a central potential the deflection function
can be directly calculated with Egs. (92), (95) and (102),

O(b) =1 — 2b/ 9§ (1 —2mV(r)/ pt, — b)) "7, (112)
w ¥

where r; denotes the largest turning point, i.e. where the square root becomes zero. For the Coulomb
potential V(r) = Z,Z,/r with charges Z, and Z, of the two particles the integral Eq. (112) can be
solved analytically to give @(b) = 2arctan[Z,Z,/(2Eb)]. Since O(b) is monotonic it can easily
be inverted to obtain H(®) and subsequently db/d® which leads with Eq. (13) to the classical
Rutherford cross section

dot <2.22>2 1
4E ] sin(6/2)*°

(113)

do

Due to the monotony of the deflection function, Eq. (112), there is a unique relation between 6
and b, i.e. only a single trajectory contributes to the differential cross section. This implies also that
the semiclassical cross section is identical to the classical cross section since a single contribution
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does not lead to interferences in Eq. (47). Moreover, as it is well known, the classical Rutherford
cross section is even quantum mechanically exact and the same cross section is also obtained in
first Born approximation [44, Ch. 14}. Hence, despite the difficulties one encounters in the presence
of the Coulomb potential (defining modified phase shifts, etc.) the deflection function leads without
any complications to the (even quantum mechanically correct) answer.

Clearly, the Coulomb potential is a very special potential due to the high symmetry of the involved
dynamics which can be represented quantum mechanically by the O(4) group for negative energies
[61]. It has been shown by Gutzwiller [6] and by Percival and coworkers in a series of papers
[62—65] that — if all these symmerries are used — the Coulomb problem can be completely described
semiclassically, essentially through the construction of a semiclassical Greens function which remains
quantum mechanically correct. However, it is possible to obtain semiclassical scattering amplitudes
which provide the quantum mechanically correct answer without these refined mathematical tools.
This is interesting when quantum interferences occur as they do for potential scattering of identical,
charged particles (e.g. x—x scattering) also known as non-relativistic Mott scattering. The direct
approach with the deflection function leads in this case once again to the quantum mechanically
correct answer [45] which will be briefly sketched.

4.2.2. Semiclassical Mott scattering

Non-relativistic Mott scattering is defined as the elastic collision between two identical parti-
cles. Since the particles are not distinguishable quantum mechanical interferences occur between the
‘direct’ and the ‘exchange’ amplitude.® Using the relative momentum p = p, — p, the exchange of
the particles corresponds to p — —p and the cross section reads

do/dQ =L f(p.p ) £ f(p.—p I, (114)

where the sum of the scattering amplitudes from Eq. (58) refers to bosons and the difference to
fermions and p denotes the final momentum while p~ stands for the initial momentum. In addition
to Eq. (113) we now need the action difference Eq. (56) which is given by [24, p. 182]

_ZZm VT+A+1 . (p* = P2 )(p~) — pi)
P it d-1 pilp—p P ’

Eq. (115) gives the action for any two momenta p,p~ which are connected by a classical trajectory
of energy E. However, according to Egs. (56), (57) we need the action only in the asymptotic
regime outside the range of the potential, where p, p~ — p... Hence, for all nonzero scattering
angles (p # p ), it is clear that 4 <1 and

Ad(p,p E) = (115)

4 YAVA )
lim A®(p,p ,E)=2|00— 2 [sin @/2]> , (116)
PP =P \ o0
with
7 2 2 2
gy = 28 1P poo)((f? i 2 (117)
2P P

3 The interference effect was first predicted by Mott and experimentally seen by Chadwick [66]. see also Taylor [44].
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The constant g, = hJ, is the semiclassical phase shift for angular momentum L = 0 and does
not depend on the scattering angle 0 = arccos[p - p~/(pp~)]. Putting together all the pieces the
semiclassical Mott scattering cross section, Eq. (114), reads

do (Z[Zz)2 { 1 i " 2cos[Z,Zym/ po, In(cot 6/2)] (118)

TA 4 + ; P .
dQ 4E sin*0,2  cos*0,2 sin“0/2 cos20/2

and is identical to the exact cuantum cross section [44]. Apart from the symmetrization, only one tra-
jectory contributes per final scattering angle, i.e., there is only one classical ‘root’ to the double-ended
boundary condition piim = P, Prna = P~ . This means that caustic singularities are not a problem,
since caustics result from the ‘rainbow’ effect of two (or more) roots coalescing.

We complete our discussion of the simplest possible process which leads to a final state of two
charged particles in the continuum with a remark on the semiclassical cross section of this process
calculated with the semiclassical phase shifts of Eq. (92). Due to the fact that there is only one
classical path for each scattering angle 0 which is uniquely related to some angular momentum L
or impact parameter b = L/p., the scattering amplitude, Eq. (111), contains only one term (apart
from symmetrization). However, there is no contradiction to the rule of thumb that semiclassical (or
classical) approximations are useful in the limit of large quantum numbers or in a situation where
many partial waves contribute. In fact, Coulomb scattering always involves all partial waves / since
the potential has infinite range. (A well known consequence is the divergence of the integrated
cross section). Hence, for any differential cross section one is always in the limit of large quantum
numbers.

5. Inelastic scattering

In this section we will deal with three-body Coulomb systems. For simplicity, we restrict the
discussion to two-electron atoms, described by the Hamiltonian

ps Z Z 1

pi
j7a 48 - 119
2 + 2 R R 1 ( )

where Z is the nuclear charge and the r;, are the electron—nucleus vectors. Many aspects of the
following discussion apply in slightly modified form to particles with arbitrary masses. In these
cases the coordinates must be replaced by a set of respective Jacobi coordinates (see Eq. (24)).

Belonging to the class of simple but not analytically solvable problems, three charged particles
have been in the center of attention since the very beginning of quantum mechanics. Early attempts to
quantize the helium atom [11] and the H ion [68] in a similar way as Bohr-Sommerfeld succeeded
to do with the hydrogen atom failed. This certainly was one reason why the old ‘quantum theory’,
which is essentially the precursor of today’s semiclassical theory, was neglected from the late 1920s
on when the quantum theory itself was born. Moreover, it turned out to be relatively easy to describe
the ground state of helium quantum mechanically, and most importantly to prove theoretically that
this state is stable [2—4].

Nowadays we know, mostly through work from the group of the late Dieter Wintgen [69], that
it is possible to quantize helium semiclassically. The semiclassical mechanics of the classical orbits
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from the early days of atomic physics, e.g. the Langmuir orbit, has been worked out as well [70].
Nevertheless, bound states and in particular the ground state still present a challenge to the semi-
classical approach, because the underlying classical dynamics has only a set of orbits of measure
zero (periodic orbits) which do not lead to autoionization in some finite time. We will come to this
point in the context of double photoionization of helium in Section 6.

In the present section we will study inelastic scattering, namely ionization in its simplest form,
electron-hydrogen scattering. As already noted in the previous section, semiclassical scattering ap-
proximations have been studied for a long time, however, mostly for potential scattering. A semi-
classical treatment of inelastic scattering first became popular in physical chemistry, where Miller
[12-14], Marcus [15, 16] and others studied reactive scattering. The reason that molecular scat-
tering problems were treated fully semiclassically before this was done with electron scattering
lies probably in the standard argument for the semiclassical limit: Atoms and molecules reach
shorter de Broglie wavelengths than electrons and seem to be more suitable for semiclassical
mechanics. Moreover, the singularity, particularly of the attractive Coulomb force, indicated
complications.

It is a primary goal of this article to demonstrate that there is no reason to fear these obstacles.
The singularity causes only technical problems and even has advantages: Loosely speaking, it pushes
the possible source of caustics, a nasty limitation for the application of semiclassical theory, ‘out to
infinity” where it is of (almost) no harm. We will explain this later in more detail. The applicability
of semiclassical methods can be assessed in a rough way by a refined version of the short wavelength
condition. The relative change of the wave number k(x) must be small within a local wavelength
{(x) =2n/k [71],

Ox)=Adlnk(x)/dx<1. (120)

For high energies (i.e. when the kinetic energy dominates) this condition is trivially fulfilled. How-
ever, for the Coulomb potential the condition leads even near the singularity only to a square root
divergence, since Q(r — 0) x r~ 2. Moreover, as already mentioned, the Coulomb singularity helps
to avoid caustics in the semiclassical approximation which are related to potentials of finite depth.
Other advantages of the Coulomb potential in connection with (semi-)classics are the scaling prop-
erties which have been discussed in some detail in Section 3. Focusing on scattering, the severe
conceptual and technical problems of quantum scattering with the long range Coulomb force do not
appear in a semiclassical scattering theory which is based on the S-matrix and not on the T-matrix
whose mathematical justification for several charged particles is questionable [72]. Of course, the
problems which arise from the logarithmic phase shift are also encountered in form of a logarith-
mically diverging classical action which appeared already in the last section for semiclassical Mott
scattering. In molecular dynamics programs and with the so-called CTMC method [73] it has be-
come possible to calculate classically integrated or low-dimensional differential observables (cross
sections) in large phase spaces. Semiclassical calculations have not reached this level yet, one has
to find individual trajectories in order to identify coherent contributions to the propagator (see the
discussion in Section 2). Nevertneless, the progress is promising [26-29] and has been, once again,
mostly achieved with molecular systems. Here, we are rather interested to work out the special
properties of Coulomb systems with respect to semiclassical mechanics than to perform and analyze
large-scale semiclassical calculations.
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5.1. Classical collinear electron—-atom scattering

5.1.1. Integral cross sections

Over the years many approximations have been proposed to reduce the dimensionality of the
scattering problem. A prominent example is the so-called s-wave model where the interaction of the
electrons is restricted to the line r| = r, [74,75]. For a semiclassical approach, the natural reduction
is a collinear phase space which has been defined and motivated in Section 2.2.3 by means of partial
fixed points. The collinear configuration with the electrons on opposite sides of the nucleus is stable
and therefore a suitable approximation for angular integrated cross sections [76, 77].

We may ask if there are other fixed points which would reduce the phase space even further for
the energy-integrated probability of excitation and ionization. As already mentioned, there is indeed
a partial fixed point at », = r;, p; = — p, (see the discussion of the triple collision manifold, Section
3.4); however this fixed point cannot be used to reduce the phase space for two reasons. First of all
it is (globally) unstable; second, it is not contained in the initial conditions for colliding an electron
with an atom (here we have r; >r;), and related to this observation, the fixed point describes (for
E > 0) an ionizing trajectory but no excitation. This partial fixed point has been used by Kazan-
sky and Ostrovsky [78, 79] in a series of papers to calculate the angle-resolved differential cross
section of double photoionization of helium with equal energy sharing of the electrons. Clearly, in
this case the partial fixed point corresponds formally to the manifold of final observables. However,
we will see in Section 6 that in a quasi-classical model of the double-photoionization process equal
energy sharing is only reached asymptotically by certain trajectories which all start close to the nu-
cleus with asymmetric initial conditions. Hence, they are not contained in the fixed-point manifold
vy = r.

Coming back to the collinear scattering case we will proceed by constructing the approximate
cross section. For simplicity, we restrict ourselves to an initial bound state of /=0 expressed through
its radial action angle variables (/7,77 ). Initial variables which are fixed (stars indicate partial
fixed points) are now the action /-, the interelectronic angle 0%, the impact parameter (or equiv-
alently the total angular momentum) b*, the two out of plane Cartesian coordinates y; with re-
spective momenta p}; = 0 and the momentum of the projectile p~. As demonstrated in Section
2.2.1 the consequence of partial fixed points is a factorization of the Jacobi determinant, Eq. (16),
which describes the classical cross section. Variables within the collinear manifold do not depend
on fixed point variables. Hence, 0n/CyF = 0n/d0* = 0n/db* = 0 and the cross section takes the
form

do/de(E) = #(¢e,E)a™, (121)
with ¢* as in Eq. (38) and
dpP 1 ¢y
7 =-——=-, 122
7(&.E) de 2mie (122)

the probability to find an electron with energy ¢ on the fixed point manifold after the collision. This
probability is normalized with respect to the collinear phase space: All particles that started in the
collinear phase space remain there and the summation of all the possibilities in the collinear phase
space must be unity. Of course, this result can be found directly if the scattering is formulated on
the collinear manifold.
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To summarize, if an experimental situation can be found where the fixed-point conditions apply, it
is sufficient to calculate the reaction probability #(¢, £') on the collinear manifold for an approximate
(not absolute) cross section.

The collinear reaction probability: As noted above, we can formulate the reaction probability
P(E,¢) of Eq. (122) directly as a rate in close analogy to Eq. (9). The relevant observables are
initially the action 7~ of the radial bound motion of the target electron or, equivalently, the energy of
the bound motion. This determines the momentum of the projectile electron at a given total energy
E. Hence, we choose as initial variables the conjugate pairs (/—,% ) for the bound electron and
(r—, p7) for the projectile. The flux is in one dimension given by @, = v/Ar~. The only observable
after the collision is the energy sharing between the electrons. We fix the energy of one electron
&". The reaction probability now reads

APE) _ . Ap d

m 7*—/'dpdrd1dn(5(1 I )(p—p )e—et). (123)

Pt E)= —
. B)y=——=lm =y

Using the initial-phase-space variables for integration with the normalization I'* = 2nA p~ Ar~ for
one bound and one free particle, we may simplify Eq. (123) similar to Eq. (11) and get (suppressing
the ‘+’ sign for final-state variables)

1

P(e,E) = EZ

i

dn;
de

(124)

Alternatively, we may perform the time derivative in Eq. (123) with the asymptotic angle 5~ (t7) =
wt~ + 1o of the bound motion instead of the position of the projectile »7(#) as in Eq. (12). In this
case we get

1 dr;

P(eE) = et (125)

The normalization R = 2mv/w, which is independent of the properties of a particular reaction tra-
jectory j, has a simple meaning [76]. It has the dimension of a length which measures the distance
the projectile travels during one period 7' = 2n/w of the target electron. The reaction probability,
Eq. (124), is a slightly generalized version of Miller’s classical S-matrix for collinear reactive scat-
tering [31] where the present formulation includes the possibility of fragmentation into three particles
in the continuum. The dynamically relevant quantity in Eq. (125) is the deflection function &(»7).

5.1.2. The collinear orbits and the regularization of the equations of motion

The restriction to the collinear configuration space has the advantage that it is possible to visualize
the trajectories in ordinary graphs. The collinear ¢~ + H(1ls) scattering can lead classically to three
different processes which are distinguished by the possible energy sharing of the electrons. Assume
that electron 2 is bound initially, i.e. &, < 0, and that the total energy of the system is £ > 0. The
collision can lead to
1. Excitation. ¢, > E,
2. Fragmentation: & > 0, & > 0,
3. Exchange: &, > E.
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Fig. 3. Trajectories in collinear electron—hydrogen collision at a total energy of £ = 0.1 a.u. The nucleus is located at the
origin: (a) excitation, (b) fragmentation, (c) exchange.

The respective ranges for the energies ¢; are additionally limited by energy conservation. For [¢| — oc
we have & + & = E. Typical trajectories are shown in Fig. 3. The nucleus is located at the origin
and »; = 0 corresponds to a collision between the nucleus and electron i. These collisions lead to
an abrupt change of the radial electron momentum p; from —oc to 400 since there is no angular
momentum barrier. For a numerical calculation of the trajectories as shown in Fig. 3 singularities
appear when an electron bounces back from the nucleus (#; = 0 or »» = 0). The regularization of
these singularities proceeds similarly as in Section 3.4.
Regularization of the equations of motion. The relevant Hamiltonian for collinear two-electron
motion is
2 2
P N »n Z Z 1

+ .
2 2 r rnoor R

(126)

The regularization is performed similarly as in Section 3.4.1 for # = 0. To regularize the Coulomb
singularities ; = 0, we introduce a point transformation to oscillator-like coordinates where r, = Q7.
The conjugated momenta turn out to be p; = P;/(2Q;). The new momenta P; remain finite at r, = 0.
The regularization is completed with a change of the time variable such that the singularity is passed
in small time steps with respect to real time, dt = r,r2/(r) 4+ r,)ds. To keep the form of Hamilton’s
equations invariant under the transformation of the time variable, we must work with a Hamiltonian
of value zero which can b2 multiplied by the necessary time differentials, # = (H — E)d¢/dt = 0.
For this form of # we get

dx — %ﬂ — (lfiit — cH (127)
dt ~ drdt  Spdr  op

The singularity free, collinear Hamiltonian reads finally

PG+ PO 0% 00
8(0F + 03) QT+ 03¢ O+
5.1.3. The deflection function

The classical deflection function is determined numerically with the Hamiltonian Eq. (126). The
initial conditions for a trajectory are selected with the bound electron starting at the outer turning

(128)
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Fig. 4. Classical deflection function for the final energy ¢ of the projectile electron as a function of its initial position
1000 au+r~ at a total energy of £ = 0.1 a.u.. The intervals indicate the range of initial conditions leading to excitation
(1), fragmentation (2), and exchange (3).

point which is given by p, = 0 while r, is determined by the energy e;. Hence, electron 2
has the same initial conditions in phase space for all trajectories. The projectile electron has the
momentum p; < 0 which is fixed by the energy conservation & + i(p; )’ = E. However, the
position r; = ro + r; is different for each trajectory where rqy is some large distance (we have
chosen 1000a.u.) and »; <R with R from Eq. (125).

The deflection function is shown in Fig. 4. Since the energy of the projectile electron has been
recorded, excitation corresponds to ¢/E > 1, fragmentation occurs for 0 < ¢/F < 1 and the
rest of initial conditions »~ leads to exchange with ¢ < 0. The deflection function of Fig. 4 is
monotonic. This has two consecuences which are both very welcome for a semiclassical analysis.
First, there is only a single trejectory which contributes to a final energy & Second, since the
deflection function is even strictly monotonic, its derivative is never zero and no caustics exist
which complicate the semiclassical treatment. The situation is very similar to the case of Rutherford
scattering: The deflection function there is monotonic, only a single trajectory gives the differential
cross section, and in both cases each trajectory has a single minimum in its (hyper-)radius. However,
the collinear three-body system is much more complicated because the analogue to the angular
momentum of the Rutherford scettering, the momentum p, conjugated to the hyperangle arctan(r,/r)
(see Section 3), is not a constant of motion.

Is this surprisingly simple result for collinear scattering realized in an experimental situation? We
have to look for conditions where it is sufficient that the L = 0 partial cross section is available.

5.1.4. A note on zero angular momentum collisions

For dominant S-wave scattering one would immediately think of threshold collision where only the
S-wave survives for £ — 0 [44. Ch. 11]. However, this result holds only for short-range potentials.
It turns out that in the Coulomb case the threshold region is also described well by the S-wave
only. However, this has a very different reason which can be seen from the scaling properties. We
know that the total angular momentum L is conserved by the Hamiltonian Eq. (119). Hence, we
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may write this Hamiltonian in energy-scaled hyperspherical coordinates (see Section 3.1) as

. P A o
H[ = — ) 4= < .
2 2R R

Recalling the scaling of angular momentum, Eq. (69), we see that for any fixed L we have with
E — 0 that L = L(E/Ey)"? — 0. This means that the scaled Hamiltonian for any partial wave L
goes over into the Hamiltonian for L = L = 0 in the limit £ — 0. In contrast to the short range
potential not only the S-wavz contributes at threshold but all partial waves L contribute (with a priori
unknown weight) like the S-wave. Hence, we can hope that the S-wave from collinear collisions

gives a realistic picture of the integrated fragmentation cross section and the energy sharing near
threshold.

" (129)

5.2. Ionization of hydrogen by electron impact near threshold

We come to a fundamental process in atomic physics, electron—-hydrogen scattering. Despite its
simplicity, it was only a fsw years ago that this collision could be treated in a full numerical
calculation which reproduced for the first time the integrated ionization cross section on an absolute
scale from about 10 to 500eV excess energy [80]. The range from threshold to 10 eV could not be
computed due to the highly oscillatory behavior of the used basis functions [80]. Recent attempts
to get closer to threshold with the so-called hyperspherical diabatic bisector method [81] have been
successful down to about 1eV where the same difficulties prohibited to compute the cross section
down to threshold. Hence, this oscillatory behavior seems to be generic for the limit £ — 0. It can
be directly seen in a path-integral representation for the S-matrix,

XHIS(E)x ™) = / F[x)e! " (130)

where @ is the Lagrangian action along any path x(z). From Section 3 we know that the action
scales with energy as @ =: @/\E. Hence, for E — 0 (just like for # — 0) the integrand in
Eq. (130) will oscillate rapidly.

On the other hand, the situation seems to be very suitable for a semiclassical approach for the
same reason. Moreover, it is exactly the problem which can be described according to our previous
considerations on the collinear manifold.

Indeed, in 1953 Wannier [82] was the first to predict an anomalous power law ¢ o E''"*7 for
the ionization cross section close to threshold. Without the tools of modern nonlinear dynamics,
he derived this result by calculating the phase-space flow which reaches the region of three free
particles. In the next section we will show that this power law comes from the instability of a
global fixed point on the triple collision manifold (TCM) as discussed in Section 3.4. However,
since a global fixed point for positive energies is only possible in the limit £ — 0 the power law is
— even within the limitatiors of classical mechanics — strictly valid only at threshold £ = 0.

There have been attempts to calculate the ionization cross section close to threshold classically by
CTMC methods [83]. However, this is a difficult task since the accuracy of the CTMC methods lives
from statistical significance which is difficult to obtain for the ionization cross section which goes to
zero for E — 0. Although the numerical classical data were not accurate enough to compare them
with the experiment they have confirmed qualitatively Wannier’s analysis. Over the years a lot of
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work has been invested into a ‘translation’ of Wannier’s classical approach to quantum mechanics.
The result was a WKB approach where the wavefunction was expanded about the classical TCM and
lead to the same and a few additional results as Wannier’s classical consideration [84-90, 41]. Still,
a comparison with experiment (beyond the asymptotic behavior near £ = 0 where the experimental
values are uncertain) was not possible.

Moreover, it still was not completely accepted that Wannier’s perspective on threshold ioniza-
tion was correct to begin with [91-93]. An alternative formulation by Temkin [94-96] based on
his quantum mechanical dipole theory drew a very different picture of the mechanism for threshold
ionization. Its quantitative predictions could not be discriminated against Wannier’s result by com-
parison with the experiment. Last not least there had been so much work over the years in the name
of Wannier’s ‘threshold scenario’ that it is difficult to say precisely what this jargon means. As of
today Wannier’s threshold law is generally agreed upon. This is due to some convincing results over
the last few years, beginning with a (semi-)classical calculation [76] in very good agreement with
the corresponding experimental cross section [97]. Later, Feagin achieved similar agreement with
a fourth-order Wannier threshold theory [98]. Further insight into the threshold behavior has been
gained recently by Macek and coworkers [99-102] with the hidden crossing theory, a semiclassical
formulation of quantum transitions in the complex plane of adiabatic potential curves, originally
formulated by Solovev for heavy ion collisions* [104, 105].

An interesting example for the confusion which reigned for a long time the threshold problem was
emphasized by Richter and Wintgen [106] and concerns the so called Wannier orbit. This trajectory
on the potential ridge, emerging from the TCM keeping all partial fixed points but the radial one in
A (i.e. collinear electrons with r = —r,) was believed to be the leading path to ionization. However,
as Richter and Wintgen note correctly, this trajectory does not occur among scattering paths since it
is exponentially unstable [106]. Indeed, Wannier never wrote that this trajectory lead to ionization,
quite on the contrary, he wrote in his remarkable paper from 1953 [82] that the trajectories will be
in general asymmetric with respect to the two electrons and will only reach asymptotically for large
times (i.e. far away from the nucleus) the ridge with r; =~ —r,.

With the concept of partial fixed points as introduced in Section 2 and applied to the electron-atom
system at the beginning of this section it is almost obvious where this misunderstanding came from.
The ridge contains an unstable partial fixed point tan o™ = r|/r, = 1 as we have seen. Therefore, it
cannot be used to approximate collision dynamics for finite energies E. Rather, one must treat the
unstable degree of freedom explicitly on the collinear manifold as described in the beginning of this
section. For the behavior of the cross section at threshold, however, the properties of the TCM may
be used to arrive at an analytical result.

5.2.1. Analytical cross section for threshold ionization from the instability of the triple collision
manifold

Intuitively, one would expect that at very low energies E ~ 0 the collision is already decided far
away from the scattering center (nucleus). This is indeed the case, however, it is difficult to deal
with quantities when their values approach infinity. Therefore, we switch to scaled coordinates where

# This theory focuses on series of avoided crossings as a function of a real adiabatic parameter. The curves cross at
complex values of the adiabatic parameter and the locus of all the crossings form a path in the complex plane. Isolated
avoided crossings have been treated in the complex plane as well, see e.g. Ref. [103] and references therein.
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a scaled finite distance 7, leads through r = 7 Ey/E to an infinite unscaled distance » for £ — 0
according to Eq. (68).

The initial state: The target electron is bound before the collision with some upper limit r, for
its distance to the nucleus, more precisely , = # sina < ry. At the partial fixed point o* = n/4
we have in scaled coordinates

A < roE/Eysin«* (131)

which means that # — 0 for £ — 0. Hence, the initial bound state of the target projects the system
onto the triple collision man fold for £ — 0. On the other hand, a finite £ is proportional to the
distance 6 from the TCM and for the regularized radial variable ¥ = v/# we may write

3™ = \JE/Equq (132)

with g finite.

The final state: An ionizing event is characterized by both electrons reaching infinite distance
from the nucleus after the collision. This is possible at the partial fixed point x* for # — oo with
a finite arbitrary scaled #, which can be achieved by an arbitrarily small but finite distance from
the TCM (u™ = 0),

ou=1uy—u =dg. (133)

The ionization probability: We have seen that the ionization process close to £ — 0 can be
represented in scaled coordinates as the variation about the TCM. To get a quantitative expression
for the ionization probability we must evaluate P(e, £) from Eq. (125) on the TCM. Using the

appropriate variables on the TCM we can rewrite

dr~ da” dP,
da— dP, de |

P(e,E) = %

. (134)

The first and third derivative in Eq. (134) only represent coordinate transformations, which can be
easily calculated,

dr/da |, = V2 |dPdel ey = 17 4/ p; - (135)

The second derivative in Eq. (134) represents the important stability matrix element which has been
calculated already in Section 3.4.2 (Eq. (89)). However, with the help of Egs. (132), (133) we can
convert the distance du from the TCM into a dependence on the energy £, and in the limit £ — 0
we get the simple form

(6_&_)" _ (@ofuoy <£>i (136)
0%~ 7 — A \Ey

with { = 24,/p; where %, is the eigenvalue from Eq. (86). The exponent { is identical to the
well-known Wannier coefficient and takes the value { = 1.127 for electron-hydrogen scattering.
Since the scale £, of the energy £ is not known in the present approximation, it is not possible
to calculate the absolute value of the ionization probability. Hence, it is also not worthwhile to
explicitly write down all tie constants which emerge from the derivatives of Eq. (135) and we
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leave it to the reader to convince himself that these constants remain finite in the limit £ — 0. The
final result from Eqs. (134)-(136) for the ionization probability can be written in the form

) dg E :
P(E—0)=—=(—
(e ) o ( Eo) (137)
which can be trivially integrated for the total ionization cross section
ay(E — 0) = ot (E/E,) (138)

with the constants ¢} and E, remaining undetermined in the analytical derivation of the threshold
ionization cross section from the triple collision manifold. However, we can determine E, within a
semiclassical S-matrix calculation as will be shown in the following.

5.2.2. The classical ionization cross section

For the ionization probability on the collinear collision manifold we have to sum over all initial
conditions which lead to ionization, i.¢. to a final energy 0 < ¢ < E for one electron. Since the
deflection function &(r~) (Fig. 4) is monotonic the summation is over a continuous interval. With
Egs. (121), (122) and (125) we obtain

L e A
PEY= [ @Y 24
(E) R/O 4 = (139)

Although the deflection function is monotonic with only one trajectory leading to a final electron
energy ¢ the classical result nevertheless is not the same as the semiclassical result. The situation
is similar to Mott scattering (Section 4.2.2), we have to take into account that the electrons are
indistinguishable.

5.2.3. The semiclassical ionization cross section

The Pauli principle requires the scattering amplitude to be symmetrized (the total wave function
for fermions must be antisymmetric). For this reason we have contributions from fwo trajectories.
One leads to the desired final energy ¢ of the, let us say, projectile electron, the other one leads to
E — ¢ (with the target electron of energy ¢). Semiclassically, this might lead to an interference due
to an action difference between the two paths, similarly as in the case of Mott scattering (Section
4.2.2). According to Egs. (16), (121) and (122) we can write the S-matrix element for a collision
where the projectile electron goes from energy &~ to e:

do*

1§ g = PL(B) =[S (B) + Se—e (E),

052 ST = P (B) = 150 (B) = Se (B (140)
with the S-matrix element

S;’_(r;*(E) — \/:m‘)ei(d¢(c.::’.5)ﬂvn,'2) . (141)

The total wave function, which must be antisymmetric for fermions, factorizes in a spin-dependent
part and a spatial part in the LS-coupling scheme. Hence, the symmetric ‘+ scattering amplitude
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goes with an antisymmetric spin wave function, i.e. for two electrons in a spin singlet state, 'S°,
and vice versa.

Although surprising it is not difficult to see that the action along the two paths is the same. We
start from the initial state consisting of a bound (Kepler) orbit with fixed energy and eccentricity
zero (no angular momentum) and a free projectile with momentum p;. We want to prove that the
action for an orbit that goes f-om this initial state to a final continuum state with momenta p,, p,
is the same as for an orbit which starts with the same initial state but ends at a final state with
exchanged electrons, p,, pi. The action differential d® = ridp, + r,dp, itself is symmetric under
electron exchange. We have to prove that

pi.p2 p2.p
[ ae= [ ao, (142)
Py oy PP
where p, denotes the initial momentum on the Kepler ellipse. Interchanging the indices 1 < 2 on
the r.h.s of Eq. (142) reveals that Eq. (142) is valid if p; = p, . Since p, is fixed by the projectile
energy we must be able to choose the initial momentum on the Kepler ellipse p; = p;. This
choice is indeed always possible for two reasons. First, in principle, all momenta p;, €] — oc, o[
are available along a Kepler ellipse. Second, we are free to choose the starting point on the Kepler
ellipse. Although the initial phase #~ is determined by the final momenta p; (see Eq. (122)) for
fixed initial position »~ of the projectile we may still shift the entire system in the asymptotic region
(t— — —oc) by some increment 47~ without changing the action integral Eq. (142). This follows
from the construction of the collisional action, Eq. (95), according to the conditions of a collision.
Recalling that asymptotically we have r~ = p;/mt™ and 5~ = wt~ we can always find a At~
with p;(4¢t7) = p7 . Hence, the action of the direct and the exchanged path are indeed identical.
Nevertheless, the semiclassical result does still not reduce to the classical one, although it might be
expressed by knowing the classical differential cross section (probability) only.

Enerqgy sharing between the electrons. For further analyzing the symmetry properties of the scat-
tering amplitude under electron exchange, it is convenient to introduce a scaled energy variable

= ¢/E — 1 with the electron exchange given by inversion, x — —x. Keeping in mind that only one
trajectory contributes to S, .- (E) the symmetrized probabilities, Eq. (140), are now simply given by
PE_(E)=1(VP(xx7) £ VP(—x.x7))*. (143)

Normalized to P, they are shown in Fig. 5 for energies spanning three orders of magnitude from
E = 1072 to 1l a.u. In the singlet configuration there is at threshold a preference of about 5% for equal
energy sharing. This threshold energy sharing was also obtained by Read [108] and Gailitis [109]
in classical trajectory calculations without a physical initial state. The semiclassical S-matrix result
with a well-defined initial state, together with these previous results, confirm that certain properties
of threshold ionization are independent of the initial state as already predicted by Wannier [82].
However, only in the limit £ — O the energy distribution is universal with a 5% preference for
equal energy sharing. As described in Ref. [76] this preference decreases towards a “transition
region” around 3 eV excess energy where the energy distribution is flat within 1%. For higher
energies a preferred unequal energy sharing is approached (with a fast projectile electron and a
slow target electron). In the >S° symmetry there is no transition since equal energy sharing is not
allowed. Hence, the shape of the cross section changes only slightly for different excess energies
(Fig. 6). The ratio of triplet to singlet probability is reflected by P /P; which demonstrates that the
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Fig. 5. The energy-sharing probability P*(x) normalized to the value at x = 0 for various excess energies, £ = 107% a.u.
in (a), E=10"2a.u. in (b), £ = 107" a.u. in (¢) and £ = la.u. in (d). The exact values are denoted with circles, the
solid line and the dashed line correspond to approximations, see text.

triplet probability is orders of magnitudes smaller relative to the singlet probability for small excess
energies. At £ = 1 a.u. both probabilities have the same order of magnitude (compare Fig. 5d with
Fig. 6d). The behavior can be understood analytically from a perturbation expansion about the triple
collision manifold.

Analytical interpretation of the differential scattering cross section. The unsymmetrized scattering
amplitude #(x) can be represented as a sum of two functions 7,(x) and P,(x) which are symmetric
and antisymmetric under electron exchange. These two functions scale differently with the total
energy,

Px,x ,E)x E*,  Pux,x .E)xE™, (144)

where { = 1.127 is the Wannier exponent. The reason for the scaling can be found from an analysis
of the triple collision manifold (TCM) which is responsible for the ionization dynamics in the limit
E — 0 [41]. Essentially, each contact of a trajectory with the TCM leads to a factor E* in the
probability for this trajectory. For trajectories contributing to P, one contact is sufficient while for
the antisymmetric probabilities two contacts with the TCM are necessary. This explains the scaling
Eqg. (144) which is demonstrated in Fig. 7 for an energy range spanning the same three orders of
magnitude, 102 au. < £ < lau. as in the previous figures. While the total energy dependence
follows Eq. (144) very well, the dependence of P,(x) and P,(x) on x changes appreciably from
1073 to la.u. excess energy.
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As an immediate consequence of Eq. (144) we can expand the mixed term in the singlet and
triplet probabilities P* from Eq. (143) according to

PH(x,x™,E) & Py(x) — P(x)*/4P,(x) x E*,

) (145)
P (x,x",E) =~ P,(x)*/2P,(x) x E- .
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The approximation Eq. (145), shown in Figs. 5 and 6 with solid lines, is excellent for small excess
energies and even for £ = 1a.u. still reasonable. From Eq. (145) follows that P*/P~ ~ E~% which
is for £ = 1/10a.u. still a factor of 100.

With regard to the question of semiclassical corrections to the classical result close to threshold,
our analysis shows that even the triplet cross section is classical in the sense that no # dependence
occurs. Due to the symmetry of the action S(x) under electron exchange, classical probabilities in
the form of Eq. (143) are sufficient to describe the symmetrized cross sections. The result might
prove interesting for the justificat.on of purely classical trajectory methods such as the CTMC. With
the classical probabilities obtained by these methods symmetrized cross sections could be constructed
according to Eq. (143).

Most Wannier-like threshold approaches use a quadratic approximation about the Wannier saddle
(x = 0,0,; = 180"). In this context it is interesting to note that the energy-sharing distribution P*(x)
can only be represented by a function quadratic in x in a very limited region around x = 0 (see dashed
lines in Fig. 5a and Fig. 5c¢). The necessity to go beyond the quadratic approximation has also been
emphasized recently by Kazansky and Ostrovsky [79] and Feagin [98] in his fourth-order Wannier
threshold theory. Another necessary extension of the Wannier theory towards reliable differential
observables like the energy sharing probability is a realistic description of the initial state. Without
invoking the Wannier picture the semiclassical S-matrix approach satisfies both criteria. Hence, the
transition from the threshold behavior manifested in preferred equal energy sharing to the preference
for unequal energy sharing characteristic for higher excess energies could be demonstrated here and
awaits experimental confirmation.

The total cross section. It 1s formally obtained for a given symmetry by integration of Eq. (143),

-1/2
PAE) = [ PE(E)ax (146)
—1.2
As expected from the energy scaling Eq. (144) the singlet cross section for £ — 0 follows the
Wannier power law P*(E) o E''?7 (dashed line in Fig. 8) and the triplet cross section behaves
as P~(E) o E***'. More interestingly, the symmetrized cross section P(E) lies very close to the
purely classical total cross section, Eq. (139). This follows from Eq. (145) since

2 172
P (E)~ /,m P,(x)dx = /_W(P(x) + P(—x))dx = 2Py(E) . (147)

Thus, the Pauli principle has mainly the effect of doubling the classical cross section for 'S symmetry
as can be expected for perfect constructive interference. Based on the underlying classical trajectories
we can interpret the >S cross section with the semiclassical S-matrix as a destructive interference
effect between the two classical paths whose contribution to the scattering amplitude must be summed
coherently. For an experiment with unpolarized electrons, triplet and singlet cross sections must be
averaged over. Translated to our context ‘+’ and ‘—’ states are equally often realized (by partial
waves of different angular momentum, spin and parity). Hence, according to Eq. (147) P(E — 0) =
Y(P* + P7) — P, since P~ is negligible in the limit £ — 0.

" In the “classical” electron impact ionization experiment of McGowan and Clarke [97] the to-
tal cross section has been measured from 0 to 8¢V excess energy. It is shown together with the
present result of semiclassical S-matrix theory in Fig. 8. Only the overall normalization was matched
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Fig. 9. Total ionization cross section as in Fig. 8. Some experimental points (open circles) are shown together with the
normalized semiclassical theory (solid line) and several fits: Eq. (148) (+), Eq. (149) (x), Eq. (150) (A).

at some arbitrary energy (5.84¢V). The good agreement of the theoretical curve with the experi-
mental data justifies a posteriori our approximations, first of all the semiclassical approach, and
within this approach the restriction to the L = 0 contribution and to the partial fixed point at
},; = 180°. Still, the theoretical curve must be normalized to the data at one point since under the
present approximations it is not possible to predict an absolute cross section. However, our inclu-
sion of the initial state determines the energy scale which is in most threshold theories another fit
parameter.

Form of the cross section. Since the total cross section is smooth, almost any correction term to
the asymptotic power law together with the two fit parameters £y, g, for the energy axes and the
absolute magnitude of the cross section will reproduce the experimental curve. This is demonstrated
in Fig. 9 for the three analytical forms of the cross section

o= O'()xl‘127(1 + GX) , (148)
o = apx""(1 — av/x), (149)
6 = O'oxl‘lm/(l +ax)2.127 . (150)

where x = E/E,. As can be seen from Fig. 9 all fits are close to the experimental cross section, only
the ‘normal’ Taylor expansion, Eq. (148), is a bit more off than the other two fits. This insensitivity
certainly shows that the total cross section is not a suitable observable to prove the quality of
threshold theories which include two fitting parameters (essentially the scale of the two axes, 6y and
E,). On the other hand, one could suspect this insensitivity to imply the existence of a universal
shape function for ionization cross sections where only the two scale factors gy and E, depend on
the specific collision system.
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Table 1

Examples of Wannier exponents for various collisional systems with the same potential, but different masses for projectile
(mp) and target (mr)

np mr :

e My 1 o< 1.127
e —-H 1 1836 1.127
et Mo 1 o0 2.651
et-H 1 1836 2.650
p My 1836 o 1.160
p -H 1836 1836 1.199
pt-M,. 1836 > 98.675
p+ H 1836 1836 69.74

5.3. Universal parameterization for the ionization cross section of atoms

Beginning with Thomson in 1912 [110] there have been many attempts over the years to para-
meterize cross sections semi-empirically. Probably, the best-known example is the Lotz formula
which describes ionization of atoms by electron impact with the emphasis on the high-energy end
[112-114]. An overview of other parameterizations is given in Ref. [115], recent results on electron
impact can be found in Ref. [116]. All these formulae try to parameterize the cross section with
the ionization potential / and a number of fitting parameters. In many cases it is even possible to
include electrons from different shells. However, in none of these formulae the low-energy power-law
behavior has been built in.

5.3.1. The universal shape function for direct fragmentation

A typical ionization cross section resulting from direct ionization is a rather structureless curve with
one maximum characterized by (oy, Ey). The asymptotic behavior for E — 0 has been discussed in
detail. It is given by the classical power law E* where { depends again on the collision system (see
Table 1). For high energies, the classical behavior has been known since Thomson to be £~', while
quantum mechanics introduces a logarithmic correction with the cross section falling off as InE/E
for very high energies. For a siraple form of the cross section from threshold to energies beyond the
maximum we assume the classical behavior in both limits of £. We may combine the two limits in
a natural way by writing the ionization cross section as the product

1 E \°
151
J(E)OCE+EO<E+EO> , (151)

where E is the excess energy of the system measured from the ionization threshold. The first factor
(E+E,)"" in Eq. (151) reproduces the classical high-energy limit with g(E> 1) o< E~'. The second
factor, while approaching unity for large E, reduces to the classical power-law behavior (E/E,)- near
the ionization threshold E = 0. The constant £, = E\/{ is fixed by the maximum of the cross section,
ou = 6(En). In order to give a shape function which can be easily applied to experimental situations
we use dimensionless variables y = ¢/oy and x = E/Ey where gy and £y can be determined either
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Fig. 10. Part (a) shows experimen:al cross sections for the ionization of hydrogen by various projectiles plotted in scaled
coordinates v = ag/awm versus £/E\. The solid line is the shape function Eq. (152), no fit parameters are needed. Proton
impact [118] is indicated by open squares and positron impact (v + 0.5, Ref. [119]) by filled circles. Antiproton impact
with helium as a target is shown with filled squares (v + 1, Ref. [120]), and electron impact with open circles (¥ + 1.5,
Ref. [126]). Part (b) shows theoretical shape functions, Eq. (152), for the systems of part (a).

from theory or experiment. (The latter case amounts to fitting the cross section with two parameters,
om and Eyp.) Then, Eq. (157) reads

_o(x) _ fix)
"= ow TR (152)
where
1 X .
_/‘;(X):HC_I <x+<:—‘> : (153)

The normalization of Eq. (152) with f(1) guarantees that y = 1 at the position x = 1 of the maxi-
mum of the cross section. Hence, the shape of the ionization cross section, Eq. (152), is parameter
free. It compares favorably with the experiment as can be seen in Fig. 10 where the experimental
cross sections are plotted in the reduced units x and y together with the {-dependent shape-function
Eq. (152). The respective exponent { determines the width of the peak in the ionization cross sec-
tions. This width becomes smaller for increasing { as can be seen in Fig. 10b where only the
theoretical shape functions are plotted for the same collisional systems as in Fig. 10a.

Compared to all existing parameterizations of cross sections, Eqgs. (151) and (152) include the
threshold behavior. This results in a unified view of collisions involving very different projectiles:
The same analytical form of the shape function describes electron—atom, positron—atom, proton—atom
and antiproton—atom ionization [117]. All these ionization processes (in Fig. 10 with hydrogen or
helium as the target atom) are equally well reproduced by the respective shape function. The lower
energies are problematic for antiparticle impact (filled symbols in Fig. 10a) since direct fragmentation
must be experimentally discriminated against positronium or anti-hydrogen formation.

The representation of the low-energy tail of the ionization cross section for electron ({ = 1.127)
and positron ({ = 2.65) impact is mostly accepted [121] and well established (see Ref. [77] and
references therein) and the possibility to parameterize the cross sections for these processes with
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Fig. 11. lonization of hydrogen by electrons (a)., positrons (b) and protons (c). Part (d) shows ionization of helium
by antiprotons. Symbols and experimental data are the same as in Fig. 10. The solid line is the respective cross section
Eq. (151) with Ey and oy fitted to the experimental data, for the dashed lines see text.

Eq. (151) is certainly less surprising than for heavy particle impact which is therefore the crucial
test for the universality of the proposed parameterization.

From proton impact one knows that ionization at threshold is highly suppressed and one would
probably not expect any relevance of the threshold power law with { &~ 70 in this case. However,
as Fig. 1lc shows, this is not true. Rather, the large exponent { reflects the suppression of threshold
ionization and is apparently needzd to reproduce the shape of the ionization cross section. Maybe even
more interestingly, “threshold ionization” is not suppressed for heavy anti-particle impact ({ = 1.20
for antiprotons on hydrogen). Indeed, in scaled coordinates, the shape for electron-impact ionization
and antiproton-impact ionization is almost the same (Fig. 10b).

To apply Eq. (152) one needs to know the exponent { which is defined through

oo b L C) (154)
T4\ 16 20

where C” = d°C/d;* with
C(y) = O _ Dx On (155)

osin(y +y) o osin(n —7) 0 cos(y)
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for —y < y < y,. The angles are

y; = arcsin[+/m >m;3/m;]

with the reduced masses m;; = m;m;/(m; + m;) between particles i and ;. Finally,
I
Qi = ZiZj\/m;/M

with M = 2521 m; being the total mass and the particles labeled with Z;Z, > 0 holding for
the respective charges Z;. The function C(y) in Eq. (155) is the effective, coordinate-dependent
three-particle Coulomb charge on the collinear manifold, using mass-scaled coordinates. In the
two-electron case, C(7y) reduces to Eq. (82); however, y is different from the angle x used in
Eq. (82). The angle 7, is defined through C’(79) = 0 and must be obtained numerically unless the
particles 1 and 2 are identical in which case v, = 0. However, small differences in ; have little
influence on the shape function and for practical purposes it will be sufficient to use the limit of
infinite mass for the target as provided in Table 1.

Electron impact: A closer inspection of Fig, 11a reveals that the shape function Eq. (152) over-
shoots the actual cross section near the maximum slightly. This is not observed in the other three
cases. Electron-impact ionization differs from the other three collisional systems through the indistin-
guishable target and projectile electrons. The Pauli principle imposes an additional symmetry which
leads to two partial cross sections. According to Eq. (145) they behave as E- and E* close to
threshold. On the other hand, for high energies, symmetrization is unimportant since projectile and
target electron differ very much in energy. In this situation we may extend the shape function to the
form

Fsym(x) = [:(x)+ pfi:(px), (156)

where p = E'/EL"’, now a true fitting parameter, is the ratio of the maximum positions of the
contributions /- and f3;. The relative weight of f: and f3; in Eq. (156) is fixed by the requirement
that both components contribute equally in the asymptotic range for large £ where the ionized target
and the projectile electron are virtually distinguishable through their large difference in velocity.
Note, that for Eq. (156) x = E/EY) =1 is not the position of the maximum of the cross section
anymore. Fig. 1la shows the two contributions f. and f3- separately, the sum — also dashed but
hardly visible — fits the experimental cross section very well. It can be seen that f73: is indeed
strongly suppressed as compared to f- close to threshold £ = 0 and correspondingly reaches its
maximum at a higher energy, E‘S;) > Efw}

Heavy ion impact: For heavy ion collisions (i.e. projectiles with masses of the order of 10°m. and
charges Z > 1), { &~ \/p [122], where p is the reduced mass of projectile and target in atomic units,
ie. { = 10 (see Table 1). Eq. (153) may be simplified in this case by taking the limit { — oo.
Then we have

lim f{(x) = (1/x)e '™ . (157)

Indeed, the shape according to Eq. (157) (dashed) is indistinguishable from the shape of Eq. (153)
(solid) with the ‘correct’ { = 69.7 in Fig. 1lc. This implies e.g. that all cross sections for different
charge states of the heavy projectile 4¥* will be represented by one scaled curve as in Fig. 10b
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Fig. 13. Electron impact (a) and positron impact (b) ionization cross sections of atoms. The axes have been scaled to
the respective maximum values oy and Ey. The data in (a) represent the hydrogen target () as in Fig. 10, and from
Ref. [125] helium (+), nitrogen (x ), carbon (L), and oxygen (A ). The data in (b) are for the hydrogen target (+) as in
Fig. 10, and from Ref. [127] for heliura (), argon (). H2 () and for neon (X ).

with the scaling properties only dependent on the position and value of the maximum of the cross
section. We present one example for the application of Eq. (157) in the context of extremly slow
heavy ion collisions for which rzcently direct ionization has been measured for the first time [123].
In Fig. 12 we show a comparison of the experiment for O*" + He — O%" + He™ + ¢~

Quite generally, the function, Eq. (153), implies identical shapes for the ionization cross section
involving different targets but the same projectile. This is demonstrated in Fig. 13 for electron-impact
and for positron-impact ionization. The poor agreement among the positron cross sections close to
the fragmentation threshold can be attributed to the difficult subtraction of the background in the
experiment, i.e. positronium formation which also produces a positive ion.

It would certainly be desirable to link the (experimental) position of the maximum Ey to the
ionization potential / which is in most cases theoretically known. From the high-energy limit of the
classical Thomson formula, one can derive a connection between oy and Ey [111] which would
reduce the priori unknown quantities for the prediction of an absolute cross section to one parameter.
Unfortunately, this classical relation does not reflect the experimental situation very well and a
theoretical foundation of the empirical values (owm,Em) is still lacking.
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5.3.2. Universal near-threshold ionization cross section

In the case of electron-atom collisions near threshold, a relation between the energy scale Fy
and the ionization potential has been established, once again, empirically. In Ref. [77] it was found
that the ionization cross sections g, for various target electrons could be expressed through the
hydrogenic cross section g using the scaling relation

a4(E) = Bion(psE) . (158)

Fig. 14 shows ionization cross sections of valence shell electrons for He(1s), Na(3s) and, as already
discussed, H(1s). In addition, three innershell ionization cross sections are shown, namely Ne(Is),
Ar(1s) and Xe(2p). The solid lines correspond to Eq. (158) with suitable scaling parameters f, and
p4. As can be seen the agreement is generally good despite the great variation of the ionization
potential from around 5eV for Na to nearly SkeV for Xe. On a logarithmic scale lnp4 is a linear
function of In p(/,) with a slope of -% (Fig. 15a). Hence, we may approximate

13.6eV\>*
. (159)

o) = (5

With Eq. (158), only the absolute scale of the individual cross sections ¢, remains undetermined.
To demonstrate the validity of Eq. (159) we show in Fig. 15b all experimental cross sections from
Fig. 14, scaled to the hydrogenic cross section according to Eq. (159).

This result indicates that the cross section for any threshold ionization behaves like the hydrogenic
cross section characterized with the Wannier exponent (. Particularly for inner shell ionization this
deserves some explanation. The electron pair leaving the atom from an inner shell region must
penetrate the entire atomic clectron cloud [88]. Slow electrons might be even passed by the Auger
electron following the decay of the inner shell hole. Subsequently, the slow ionized electron will
see a core whose charge has increased by one and it is conceivable that a significant fraction of the
slow electrons will not escape but fall back into the nucleus. These hindered ionization events should
change the ionization characteristics compared to a structureless target. Why do such processes not
alter the energy dependence of the cross section? The energy-sharing function (Fig. 5) provides an
explanation. This function is relatively smooth (from threshold to 8¢V excess energy in hydrogen
the maximum difference between the probability for an electron with energy ¢ ~ 0 and e = £/2 is
not more than 8% (compare with Fig. Sc of Ref. [76]). In a crude approximation we could assume
that the energy sharing is constant. In this case, the eventually missing tail of slow electrons in
the energy-sharing distribution of the ionization yield of inner shell electrons will mainly affect the
absolute value of the signal (which is represented by £, in Eq. (158)) but not the functional energy
dependence of the total ionization cross section.

5.4. Chaotic scattering and resonance formation in electron-hydrogen collisions

The connection between ionization and two-electron resonances has been the subject of theo-
retical interest for some time. A long standing conjecture (see, for example, Ref. [132]) has in-
terpreted the symmetrically excited two-electron resonances as being formed from standing waves
along the potential ridge (solid wave fronts in Fig. 16). These standing waves have been thought
of as a continuation of thz escaping wavepackets along the ridge above threshold, in analogy to
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Fig. 14. Total ionization cross sections in arbitrary units. The solid line is the hydrogen cross section with adapted scaling
parameters according to Eq. (158). The ionization cross sections (a)-(c) are for the valence shell electrons {a) H(ls)
[97], (b) He(ls) [128] and (c) Na(3s) [129]. In (d)~(f) innershell ionization is shown for (d) Ne(ls) [130], (¢) Ar(Is)
and (f) Xe(2p) (both Ref. [131]).

the two-body problem. However, due to its instability the quasi-standing waves of resonant states
never ride on the ridge r, = r, but rather cross it a number of times during their lifetime (see Fig.
16). This conclusion is suggested by the adiabatic hyperspherical [133, 134] and molecular [135]
work on resonances, if correctly interpreted, as well as by the semiclassical work using periodic
orbits [106, 20]. It also follows from the nodal patterns of ‘exact’ numerical resonance wave fun-
ctions [136].
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Fig. 16. Schematic illustration of wave fronts for a possible quasi-stationary state along (solid) and across (dashed) the
potential ridge at »; = »; and 0> = n. The arrows point to the periodic motion of the wave fronts. The light solid line
indicates the potential boundary for an energy of £ = —0.1a.u.

If the symmetrically excited two-electron resonances have their wave fronts dominantly across the
ridge it is less clear how ionizing waves should evolve from these resonant states tuning the energy
through the ionization threstold. So far there has been no method which could be used to describe
resonances as well as the ionization within one framework, e.g. a simulated scattering experiment.
The semiclassical S-matrix provides such a framework and we can study the structure of relevant
classical trajectories to understand the evolution from resonances to ionization and the connection
between these two processes. We calculate the scattering amplitude for a simulated scattering exper-
iment with hydrogen as a target and an electron as the projectile on the collinear manifold, exactly
like in Eq. (139) for ionization. We only have to lower the energy of the projectile so that the total
energy becomes negative [107].
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Fig. 18. Details of Fig. 17 illustrating iterval 2. Note the self-similar structure of the fractal comparing Figs. 17, 18a and
18b.

5.4.1. Qualitative analysis

The deflection function is, as before, the important object for the (semi-)classical analysis. It is
shown in Fig. 17 for an energy of £ = —0.la.u. There is still the interval 1 representing classi-
cal exchange processes which looks very similar to the corresponding interval 1 for energies above
threshold (Fig. 4). This is also true for the interval 3 representing excitation. However, the interval 2,
which stands for ionization, has been replaced by a fractal object with self similar structure (interval
2, see Fig. 18) that represents chaotic scattering.® A similar fractal structure was observed in an
electron-He™" scattering simulation with classical trajectories [138]. Apparently, what had been ion-
ization above threshold turns into chaotic scattering below threshold. In the early studies of reactive
scattering chaotic scattering was already observed although the apparatus of nonlinear dynamics to

deal with this phenomenon was not at hand back then [139].

* For a mathematical description of chaotic scattering see Ref. [137].
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Fig. 19. Delayed trajectories with initial conditions »~ from interval 2, for the coding of the segments in (a), see text.

Chaotic trajectories are responsible for the fractal structure of the deflection function and they
are the key to the connection between chaotic scattering and ionization. Following a trajectory from
the interval 2 in time (Fig. 19a), the first element is the incoming part (dashed line). The second
element (dotted line) shows that the trajectory indeed has ionizing character, reminiscent of its initial
condition that falls into the :nterval 2 leading to ionization above threshold. However, we are now
below threshold and the electrons do not have sufficient energy to escape. Eventually, they must
hit the potential boundary (light solid line) and the trajectory must turn around. What follows now
is a new element of the scattering orbit (dark solid line), only present for orbits that belong to
the interval 2 below threshcld. The two electrons bounce in some sequence (that is characteristic
for the specific orbit and can be used to classify the orbit rigorously with a binary code) into the
nucleus before the trajectory eventually exits using the usual outgoing element (long dashed line) to
become an exchange or an excitation event. The binary code is that of a periodic orbit which the
scattering trajectory approaches for some time. In the case of Fig. 19a the relevant periodic orbit is
the shortest one of the two-clectron system. It can be characterized by the code ‘01" where 0° and
‘1’ stand for a collision of electrons 1 and 2 with the nucleus, respectively. The periodic orbits can
be organized into families according to the bouncing sequence of the electrons reflected by the codes
[141]. Certain periodic orbits have infinitely long codes and correspondingly a period which tends
to infinity. They constitute chaotic dynamics for the two-electron system. Following one of these
periodic orbits and eventually bouncing many times into the nucleus creates a time delay compared
to the direct trajectories from the intervals 1 and 3. This time delay is the signature of resonance
scattering and it is this element of the scattering orbit that has been identified recently with the
dynamics of quasi-stationarv resonant states [140].

To summarize briefly, a chaotic scattering trajectory as in Fig. 19 has four elements, the incoming
part (dashed) the ionizing part (dotted), the resonance part (solid) and the outgoing part (long
dashed). It thus combines the ionizing part through which it is related to the real ionizing trajectory
above threshold with the resonant part that is responsible for a characteristic time delay.

Memory loss: From the structure of the classical deflection function &(r~) above (Fig. 4) and
below (Fig. 17) threshold and the structure of the orbits belonging to the respective interval 2 it is
clear that resonance scattering and ionization are related. However, there is a subtle feature induced
by the chaotic motion that reaches into the seemingly regular regime of ionization. The extreme
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sensitivity to initial conditions characteristic for the chaotic trajectories below threshold and visible
in the fractal structure of the deflection function e(r~) appears above threshold as a remarkable
insensitivity to the initial state from which the atom was ionized. This effect can be understood by
interpreting the chaotic scattering trajectories as orbits that neither lead to direct excitation nor to
exchange but to ‘ionization’. Hcwever, since this is energetically not possible, the electrons along
these orbits bounce many times into the nucleus until the orbit has sufficiently forgotten its initial
‘ionizing’ character and eventually finds a conventional exchange or excitation exit channel. Thus, the
effect of loss of memory of initial conditions above threshold, attributed by Wannier to the (assumed)
ergodic character of the dynamics [82] is much more obvious in the chaotic regime below threshold
and one might loosely say that the necessity for the electrons to forget the initial conditions in order
to leave the nucleus create the chaotic behavior of the trajectories. A consequence of the memory
loss above threshold is the independence of the energy sharing Eq. (140) from the initial state (see
Section 5.2.3).

5.4.2. Quantitative analysis and comparison with experiment

At a first glance it might seem hopeless to deal with a fractal object like the interval 2 in Fig. 18.
Nevertheless, we can form the analogy to the total ionization cross section. Instead of integrating all
contributions from interval 2 over all electron energies ¢ as in Eq. (139) for ionization, we integrate
now over all contributions from the interval 2. The quantity we will obtain is the probability for
resonance scattering, i.e. the probability that the electron suffered a time delay in the scattering
event and, for a short time, an (excited) three-body complex had been formed. For each ¢ there is
not only one but an infinite set of trajectories {i} contributing to the sum of Eq. (125). However,
to each index i belongs a continuous branch of trajectories with all energies ¢. This branch yields
upon integration over & a small subinterval d;. The sum over i recovers then the entire interval
Ar~(2) = >, 0; of chaotic scattering, which replaces A4r~(2) in Eq. (139),

1 00
Pt’rac(E) = EZ/ de

de |71 =6 Ar(2)

— 00

Thus, the probability for resonance formation below threshold is in exact analogy to the total ion-
ization cross section (Eq. (139)) above threshold. Together the probabilities represent three-body
events where both electrons have to participate in the scattering process simultaneously.

Experimentally, such events have been detected by measuring extremely slow (‘zero kinetic
energy’, ¢ ~ 0) electrons produced in electron—atom collisions [128] or in photoionization [142].
Assuming that the energy distribution of the electron do/de is almost flat for energies E ~ 0 (see
Section 5.2.3 and Refs. [128, 76]) the probability Py,  for three-body events, Eq. (160), is related
to the slow electron spectrum through

6.-o(E) =~ 0. P(E)/E . (161)

The constant of proportionality ¢, is expected to be different for negative and positive energies E.
The actual ratio 6_/o, depends on experimental parameters (such as pressure in the gas cell) and is
not yet fully understood [142]. Nevertheless, the energy dependence can be checked against P(E).
The cross section Eq. (161) calculated with P(F) from Eq. (160) is shown in Fig. 20 with black
points. The spectrum has been normalized to the experimental data from Ref. [128] (open squares)
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Fig. 20. Cross section for the production of slow electrons following electron impact on atoms close to the fragmentation
threshold. The open squares ate experimental data for a He(ls®) target [128]. The black circles are the theory for a
hydrogen target H(1s). The solid lin2 is a fit of the theory according to Eq. (162).

separately for £ > 0 (0.) and E < 0 (o_). The solid line is a parametrization of the theoretical
cross section with the function

oo(E) = o= |E[""'(1 +a|E|'? + bE), (162)

where { = 1.127. For £ > 0, Eq. (162) reflects the ‘classical” result (Section 5.2 and Refs. [82,76])
that the total ionization cross section close to threshold is proportional to the 1.127th power of E.
Noting from Fig. 20 and Eq. (162) that this holds also below threshold we can conclude that |E|"1?7
originates in the three-body amplitude of the S-matrix and should be independent of the process
through which it was activated. The residual dynamics, essentially the density of states, depend
on the initial state and the excitation as a whole (by photon or particle impact, etc.) and varies
slowly with energy. This includes slow electrons from direct excitation. Hence, we can take these
contributions into account with a Taylor expansion about £ = 0 in Eq. (162) represented by the
energy-independent parameters ¢ and b. Since @ and b depend on the actual threshold process they
are not universal like the threshold exponent (.

Through comparison with the experiment we have established so far that the classical three-body
cross section Eq. (160) is a meaningful quantity close to the fragmentation threshold. However, one
might suspect that the good agreement between experiment and theory below threshold is misleading:
The absence of structure in the cross section could be a consequence of the finite-energy resolution
on the experimental side and an artifact of the classical treatment on the theoretical side.

More light can be shed on this problem with a quantum mechanical calculation of the two-electron
resonances just below threshold. Of particular interest is the trend of the widths I” as a function
of energy E. The widths, formulated as transition matrix elements with an S-matrix [143, Ch. 14],
contain the same three-body amplitude as the cross section for ionization/resonant scattering. Hence,
we expect an energy dependence |E|* for widths of states which approach in the limit £ — 0~ a
similar geometrical configuration as it is given by the collinear manifold through the classical fixed
point with § = m. These states are exactly the resonances which were for some times interpreted
as standing waves on the ridge of the potential »; = r,. In the literature they are often referred
to as ridge states, Wannier resonances, saddle resonances or intrashell resonances. The last name
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Fig. 21. Relative error of the fit Eq. (162) for 'S® saddle resonances in A~ shown with black columns. For comparison
the error for a fit with a linear exponent { = 1 is shown with white columns.

indicates that these resonances are characterized by approximately equal principal quantum numbers
n, = n. = N of both electrons. Widths 'y and positions Ey for the saddle resonances 2 < N < 8
in A/~ have been calculated quantum mechanically with a complex scaling algorithm [144]. Fig. 21
shows the relative error for the fit of I'y/Ey with Eq. (162). To demonstrate the sensitivity on the
exponent { = 1.127 we also give the fit with a linear exponent { = 1 which reproduces the quantum
mechanical widths not very weil.

Thus, the picture of the threshold dynamics for £ — 0~ obtained classically is quantum mechan-
ically confirmed. In particular, the energy dependence of the widths I' o |E|"'*" implies that these
resonances will strongly overlap because their spacing 4Ey — Ey_; ox N7? o |E|'® decreases faster
towards £ = 0 than their widtas. Indeed, the N = 8 resonance was the highest saddle resonance
isolated enough so that a converged complex energy could be obtained. The experimental spectrum
in Fig. 20 does not exhibit isolated resonances for the displayed energy range of £ > —0.15eV.
Although not conclusive due tc the experimental energy resolution this observation is nevertheless
consistent with our quantum calculation because the N = 8 resonance lies at £ = —0.28¢eV.

On the other side, a quasiregular part of the spectrum will prevail towards threshold although
the energy intervals it occupies become smaller and smaller compared to the intervals the irregular
spectrum covers. The surviving regular spectrum consists of configurations where n, >n,> 1, that
is where electron one is very far outside the already highly excited core with the second electron.
Such a configuration also implies little interaction between the two electrons and leads consequently
to a very long lifetime of these asymmetric resonances making them difficult to observe in the
experiment.

Nevertheless, one interesting conclusion for the high precision experiments currently being prepared
in the limit E — 0~ can be drawn from the present discussion: the spectrum of isolated resonances
that can be related to approximate constants of motion [135] should disappear for £ — 0. Further-
more, the energy dependence of the widths for saddle resonances, which have been related to the
Wannier ionization mechanism for a long time, is given by the Wannier power law for |[E| — 0.
Different power laws |E|* have been predicted [79, 145-147] for the widths which neither agree
among themselves nor with our result apart from a recent prediction of an approximately linear
behavior { & 1 for helium [148]. A direct comparison is complicated by the fact that the quantities
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which have been discussed (partial cross section for excitation, intensity at resonance, total width,
etc.) are slightly different. However, it should be stressed that our I' o |E|"'* is the result of a fit
to data from very accurate gaantum mechanical calculations. This is important since the exponent {
is surprisingly sensitive to the accuracy of the resonance parameters. Hence, the energy dependence
of widths obtained within some approximation or extracted from numerical data of lower accuracy
should be interpreted with care.

Overall, we can conclude that the fragmentation threshold connects smoothly the intimately related
processes of resonance formation and ionization through the energy dependence |E|"'?’. There are
still a number of open ques:ions. For instance, it is necessary to understand /ow the complicated
spectrum of multiple Rydberg and dipole-like series of resonances disappears with £ — 07, It is
conceivable [148] that in a small energy range a global fluctuation pattern like that of Ericson
fluctuations known from nuclear physics [149] replaces the resonance structure before the cross
section becomes smooth verv close to £ = 0.

6. Photoionization of atoms

In this section we will describe a combined quantum (semi-)classical approach to photo processes.
We will begin with the total photo cross section. For smooth potentials, the total photo cross section
is essentially an initial-state property since over all final states that are energetically allowed has
been summed. This is most obvious in the time-dependent representation where the absorption cross
section is formulated as a time-dependent dipole polarizability [150, 151]. In this formulation one
can approximate the dynamics, i.e. the propagator, leaving the initial state exact (quantum mechani-
cal). The probably best-known approximation in this context is the reflection principle in molecular
physics. It is a quasiclassical approximation because commutators (i.e. the order of £ and higher)
are neglected in the propagator. After a short description of the traditional molecular application we
will demonstrate how this concept can be applied to our problem of electronic motion in Coulomb
problems instead of nuclear motion in molecules.

Hereafter, we will use the semiclassical concepts of propagation in reduced phase space as already
described in the previous sections to estimate with little effort the ratio of double to single photoion-
ization in helium. The idea here is to identify projectors in connection with partial fixed points
which can be related to physical observables. The energy sharing between the electrons, already
discussed in the last section, is a suitable variable to determine the projectors for single and double
ionization.

The first step consists of & theoretical approach for the total cross section of atoms which is such
a global quantity that the interaction and correlation of the electrons must only be probed on a
short time scale. The ratio of single to double ionization is the next, least differential observable.
The projectors onto these spaces can be understood as the long time limit of the propagation only
performed in those parts of phase space which are most relevant to decide two or three particle
fragmentation. The combination of both steps allows to predict the absolute cross section for double
photoionization.

The (semi-)classical formalation of photoionization as presented here has also a very interesting
(and not yet solved) aspect concerning the two-electron ground state of helium. How does one
represent this state classically where all trajectories but the periodic orbits autoionize after a finite
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time? This is due to the electron—¢lectron interaction and the missing lower limit for classical electron
energies which always allows one electron to fall into the nucleus while the other one escapes.

Since this is not a review about photoionization primarily we do not even attempt to present
an overview over the huge body of work which has been accumulated in the literature. A good
overview until 1988 is provided in Ref. [152].

6.1. The total photo-cross section: an analytical approximation

6.1.1. The reflection principle for molecules
The general time-dependent expression for photoabsorption reads [150]

21

o(w) = /m dt (¥|D(D) D(1)| ) e (163)

o
with the time-dependent dipole operator
D(1) = e #1 Dy | (164)

In the argument of the exponental in Eq. (164) we have suppressed 1/A which is unity in atomic
units. The frequency of the photon determines the final energy E; through w = Ey — E;, where ¥ is
the initial wave function with eigenenergy E; and x¢ is the fine structure constant. Photoabsorption
in a molecule under the Born—Oppenheimer and Condon approximation (vertical transitions) means
that the photon is absorbed by an electron whereby the nuclear dynamics is shifted from a lower
potential curve described by the Hamiltonian H, to a higher potential curve with Hamiltonian H,
for the nuclear motion. The dipole moment D, does not depend on nuclear degrees of freedom in
the Condon approximation. Hence, we can simplify Eq. (163), which refers to the nuclear motion,
as

2mop i

[o¢]

o(w) = / de (P |zt py gior | (165)
where ¥ now represents the initial nuclear wave function and p* is the squared electronic dipole
matrix element. The dynamical problem to be solved involves forward propagation of the state ¥
until time ¢ on the ‘lower’ potential surface which is characterized by H,, followed by a backward
propagation on the ‘upper’ surface with H,. If we use for both propagations the same approximation
we can hope that errors will partially cancel. Writing H, — Hy = A the obvious approximation is
the zeroth-order term of the Baker—Hausdorfl expansion

e*i(HUfA)zeiHor ~ e»im ] (166)

This amounts to neglecting all commutators between H, and H; and is therefore essentially a
(semi-)classical approximation which can also be derived in a slightly different spirit from an ex-
pansion in #. The result is known in molecular physics as the reflection principle [150]. One can
include the second-order term in the commutator which is proportional to ips? in the exponential.
However, the action of the p operator onto the wave function is not readily calculated and one
usually replaces the operator by its expectation value, p ~ (p). Since for stationary states ¥ the
expectation value of the momeritum is zero there is no additional contribution. However, this term
is important if ¥ represents a moving object, e.g. a wavepacket [153].
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In the molecular context A = V; — V; is usually the difference between the lower and the
upper potential surface. In coordinate representation exp[iA(r)¢] reduces to a phase and the time in-
tegral can be performed analytically leading to a J-function which relates the position » in the wave
function to the photon frequency . Hence, the photo cross section a(w) o |P(r(w))]* ‘reflects’
quite directly the wave function, more precisely the probability density.

6.1.2. A reflection principle for photoabsorption in atoms

On a first glance it is not possible to use the ideas of the molecular reflection principle for
atoms. First, the dipole operator depends now on the dynamically relevant coordinates of the elec-
trons. Second, in atoms dynamics does not take place on different potential surfaces leading to
a difference A of the respective Hamiltonians. However, as we will show, both obstacles can be
overcome.

One electron: For transparency, we will discuss the case of one electron first. In the atomic case
the only difference before and after the absorption is the angular momentum. This difference may
be used to create different ‘radial’ Hamiltonians before and after the absorption. We separate the
angular degrees of freedom in Eq. (163) algebraically by inserting a complete set 3 |/m) (Im| of
spherical harmonics at the appropriate places. Recalling that the dipole moment is a vector operator
and assuming, for simplicity, linear polarization along the z-axis all sums collapse to one term and
we get

(®|D(0Y D()|¥) = /)x dr g die iyttt | (167)
where

Y = (00|r¥) =282 re ", (168)
and e~ = (/0]e"|10) with

1d> Z Ki+1)
== 7T e

. (169)

To be slightly more general we have used a screened hydrogenic wave function with effective charge
B. The pure hydrogenic case is obtained by setting f = Z. For reasons that will become clear in a
moment we will use the acceleration form for the dipole moment

1
Dg = ,——COS@ (170)

and therefore

1 Z1
= 0) = —=——. 171
dy = {10]D,|00) Tiiwr (171)
Having defined two effective Hamiltonians we still have to solve the problem that the dipole operator
Eq. (171) depends on » which leads to complicated commutators with the propagators in Eq. (167).
However, in the form of Eq. (171) the dipole operator is proportional to the centrifugal potential in
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Fig. 22. Total photoabsorption cross section for hydrogen, full line: from Eq. (174), dotted line: exact result, dashed line:
high-energy approximation, the scaling function is oae(y) = (2n2*)/(3Z%(3* +1)*). Part (a) in logarithmic representation,
part (b) with the major energy dependence ¢ (y) factored out.

H; and we can write [154]

2naZ? [ . _ ,
o(w)= 307 / de (W|(Hy — Hy)e (Hy — Hp)e™ |yr) e
_ naZ? [ —iH 1 iyt oot
= 30 /»oc de (le™ e ) e (172)

This identity can easily be verified by differentiating the integrand of Eq. (172) twice with respect
to time and using the fact that v is an eigenfunction of H,.

Now, the form of Eq. (172) is identical to the nuclear dynamics of photoabsorption in molecules
under the Born-Oppenheimer and Condon approximation of Eqs. (165) and (166).

With Eqgs. (172) and (166) we can finally write the total cross section as

2TC(X22 e i 1
s(@)~ T [ dnlle e (173)

We will call Eq. (173) the hybrid approximation. It is quantum mechanical as far as the initial
state and the exactly calculated commutators between the dipole moment and the propagator are
concerned. Only the ‘difference’ of the propagation with H, and H, is approximated classically (see
Eq. (166)).

The time integration in Eq. (173) leads now to a d-function fixing the radial variable to r = = '2.
The final result with the wave function Eq. (168) is

AR S ™
og(w) = E?\/—iﬁe v )

where x = 2w/f*. Note that the quantum-classical hybrid formulae, Egs. (173) and (174), fulfill the
sum rule for the oscillator strength. This is clear since the sum rule is the short-time limit and the
only approximation was made in the time propagation.

In Fig. 22 the present result for hydrogen is compared to the exact cross section [155, pp. 299-304]
and the usual high-energy approximation where the final state is replaced by a plane wave [155].
Eq. (174) is a reasonable approximation from threshold to several hundred eV and its superiority

(174)
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over the high-energy approximation is clearly seen. The hybrid formula has the correct high-energy
dependence of w72 with a prefactor that is by 11% too large compared to the exact cross section.
However, this will only have an effect well beyond 10* eV where Compton scattering will play an
increasing role.

Many electrons: The described hybrid approach can be applied to calculate total photo-cross
sections for many-electron systems with the Hamiltonian H = Hy + # where H, = Z,.HU) and
h=Y 4,V with ‘

HY = _% ij _ g ,

Fj

N (175)
Pk — I/|V_,~ - "kt .

In the spirit of the reflection principle the additional approximation of a classical propagation of the
electron—electron interactions / is introduced. This is accomplished by using the first term of the
Baker—Hausdorff formula in

ei(Hﬁ+h)l ~ ei[{ofeihf —_ H eiH‘”[ H eiV[ S . (176)

J Jk>j
Under the approximation Eq. (176) we can write

o(w) = na [T dt (W21 (0)2(0)|¥) e, (177)

O J

where the time-dependent dipole operator has now the form

g(t) —_ ZD(j)(t) — E:e—iH(,/lng)j)eiHl./)[ . (178)
J J

The interpretation of Eq. (.77) is simple: The dipole operator for each electron j is propagated
by the isolated dynamics of this electron only. However, electron—electron correlation has not been
completely neglected in Eq. (177). First, the interelectronic potentials are included classically and
appear indirectly through the energy difference w = E; — Ej. Second, there are ‘cross’-terms be-
tween dipole operators of different electrons, (¥ |DYV(0)D®)(¢)|¥). These terms probe the electron
correlation inherent in the initial-state wave function ¥. The effect becomes already visible for a
two-electron atom.

Two electrons: helium: ‘With a properly symmetrized ground-state wave function ¥ we may
write

a(w) = 4% /m de((P|DMV 0D (W) + (WIDPT0)D ()| ) )et . (179)

The first term in Eq. (179) describes the one-electron contribution and the second term represents
the correlation effect. It is absent for an uncorrelated initial state of the two electrons,

B3
p — L o= Britr) , (180)
T
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Fig. 23. Total photoabsorption cross section for helium, full line: from Eq. (181) with initial energy £; = 2.848a.u. (see
text), dashed line: with experimental eaergy (indistinguishable from full line), black points (only in (b)): data from a
calculation by Pont and Shakeshaft [156], dotted line: experiment [157].

under which the cross section sumplifies so far that it can be even evaluated analytically with the
reflection approximation, Eq. (166), leading to the essentially hydrogenic result

AL S .
s 3\/2‘ 72

where again x = 2w/f?. For helium (ff = Z—5/16, Z = 2) we compare in Fig. 23 the approximation
Eq. (181) with the experiment by Samson et al. [157]) and with numerically converged data from

By

Pont and Shakeshaft [156]. One sees immediately that the high-energy behavior ¢ x w72, as
derived by Byron and Joachain [158], is correctly reproduced. Below the double-ionization threshold
(79eV) resonances are interpolated smoothly by the hybrid formula (Fig. 23). The values from
Eq. (181) are slightly too low for moderate energies compared to the numerical and the experimental
data. This finding is consistent with the one-electron case (Fig. 22) and is therefore not due to the
more complicated two-electron dynamics. A slightly better agreement of the hybrid-formula with the
experiment and the numerical calculation is obtained if in the photon frequency w = E — E; the
initial state energy is used which is produced by the approximated wave function Eq. (180), namely
E; = 2.848 a.u. (Fig. 23).

The fact that photoabsorption in the two-electron system is well represented by the hybrid for-
mula permits the conclusion that the physical picture behind the present approach is reasonable:
initially, one electron absorbs the photon and takes all its angular momentum and energy. This is
reflected in the total photo-cross section which is sensitive mainly to short time dynamics. Correlated
many-electron dynamics develops subsequently and will lead to an exchange of energy and angular
momentum between the electrons and in the case of helium eventually to some double-ionization
events [159]. These long-time effects can of course not be described by the crude approximations,
Egs. (166) and (176), to the propagator.

o(©) = 204(w) = -V (181)

6.2. Double photoionization of helium

Double photoionization is one of the most studied problems of correlated electron motion, theo-
retically as well as experimentally. The difficult problem of multidifferential cross sections has been
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advanced considerably over the last years and theoretical [160, 161] and experimental [162, 163]
results are in good agreement. A seemingly simpler observable, the ratio between double and single
ionization, p = ¢ /g*, is still under dispute. Even the most recent and advanced full numerical
results do not agree very well among each other [156, 164, 165]. The experimental data [170-178],
even recent ones [167, 168], do neither agree among each other nor with the theoretical values.

The ratio p = o /6" is ideally suited for the application of the concept of projectors in re-
duced phase space as introduced in Section 2.3. Essentially, we will calculate the single- and
double-ionization probability at the stable partial fixed point, i.e. the collinear manifold. The
final state is the same as for electron-impact ionization. The initial state, however, needs a careful
definition.

6.2.1. The problem of a classical two-electron bound state: The initial state

Classically, a stable bound state with two electrons does not exist. While in quantum mechanics
the uncertainty principle prevents an electron from falling into the nucleus, this can and will happen
for almost all initial conditions of two-electron trajectories. Consequently, the other electron takes
the energy and leaves the atom which is ionized. Only for periodic orbits (most of them are,
however, unstable) this does not happen. Presently, it is not clear how to represent the two-electron
ground state fully dynamically in a semiclassical theory. An interesting approach to semiclassical
ground states of non-separable systems using semiclassical path integrals in imaginary time has been
proposed recently [169]. Fortunately, for the photoabsorption process this is not necessary since the
stationary motion of the two electrons in the ground state does not have to be followed in time.
Rather, we can take a snapshot in the very moment the photon is absorbed and follow from that
time on the correlated two-electron dynamics which is non-stationary on the final energy surface. We
model the two electrons in the ground state before the photon is absorbed on the collinear collision
manifold with an analytical phase-space distribution which is close to the various planar periodic
orbits presently discussed for the helium atom [182]. We put the two electrons in a completely
out of phase motion on a quarter circle of fixed hyperradius #, = (¥ + r3)"? = l.4a.u. This
value comes from the average hyperradius (4.15 in energy scaled atomic units, see Ref. [182])
divided by the appropriate energy for the ground state (which is for the corresponding classical orbit
roughly —2.97a.u. in WKB quantization [182]). With the interelectronic angle ¢ = =, the resulting
phase-space distribution is a one-parameter manifold dependent on the phase 0 < # < n/2 of the
orbit on the circle of radius #,. This phase-space distribution is close to the periodic orbit of least
action (i.e. the shortest periodic orbit) which is known to contribute dominantly to the ground-state
energy in a semiclassical representation of the Greens function with periodic orbits [20].

6.2.2. The absorption of the photon and the final state
As a next step we have to formulate the absorption of the photon. We assume that initially one
electron absorbs the photon, i.e. takes all its energy and momentum,

(P Y =)V +20,  (prY=(m), (182)

where @ = E — E’. We use unmarked variables for the final state after propagation, variables with
the superscript minus for quantities referring to the initial state after the photoabsorption on the new
energy shell E = E~ + w, and primed variables for the initial state before the photon has been
absorbed.
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Fig. 24. Classical deflection function (see text) for the helium electron pair after absorption of a photon.

Propagation of the electron pair: After the photoabsorption the two electrons are propagated under
the full Hamiltonian on the coll:near manifold and can exchange energy due to the electron—electron
interaction. The initial variable s the phase »~ on the hypercircle #, and the final observable is, as
before, the energy ¢ of one electron. Hence, the deflection function &(x~ ), shown in Fig. 24, is the
crucial dynamical function. The dipole amplitude is constructed according to Eq. (43) and reads

d(e,EE) =S \/,(6,E' E)expli®; — iv;m/2] (183)
i
with

2 |dy~
GNe.EE)= = |-
(e ) n‘de

(ri(e)+ry (&), (184)
;

the classical probability for the jth orbit leading to a final energy & of one electron following photon
impact. ®; is the classical action and v; the Maslov index of the jth orbit, while r| (&) = H#ycosn~(¢)
and r; = HA,sinn~ are the positions of the electrons before, or identically, immediately after the
absorption. The deflection function (Fig. 24) is monotonic apart from two small intervals Ay~ where
extrema are formed which lead to caustics. We will circumvent the problem which results from the
caustics by approximating the total ionization probability in the restricted phase space classically,

’ o / 2 2
PD(E,E):/_OCEJ:,%(s,E,E)de:,%0(1+;c—>. (185)

6.2.3. Single- and double-ionization cross sections

The ratio of single-to-double photoionization: For the double-ionizing events (0 < ¢ < E) only
one trajectory contributes to the sum in Eq. (184) (see Fig. 24). However, we must take into account
the Pauli principle for the identical electrons and add to the contribution from the trajectory with
final energy ¢ the amplitude from the trajectory where the other electron has energy ¢. The action
is invariant under electron exchange, ®(¢, E',E) = @®(E — ¢, E',E). Hence, the differential probability
for finding one electron with energy ¢ in a double-ionized state after photon impact reads

Po(e,E'E) = |%(e,E',E)"> + Z(E — ¢,E'E)'*|* . (186)
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Fig. 25. Ratio of double-to-single photoionization, solid line: theory according to Eq. (187), other theories (curves have
been graphically extracted from the respective publications): dashed line [164]; dotted line [165] (acceleration gauge);
dotted-dashed line [180] (velocity gauge, smoothed); long dashes [179] (velocity gauge), data from Ref. [181] are similar
to Ref. [164] and are not shown; experiments: (@) [173]): filled triangles [167]; filled squares [168]; [178]; (A) [177);
(7) [172): () [170}; (QO) [176].

From Eq. (186) we obtain eesily the probability Pg* for photo-double ionization

E2
PYY(EEy= | Pp(e.E',E)de. (187)
0

The desired ratio of ¢™*/5" is now given by P5"/(Pp — P{") and is shown in Fig. 25 along

with experimental and other theoretical results. Excellent agreement is achieved in the threshold
region (Fig. 25a) with the best available experimental data by Kossmann et al. [173, 174]. Here,
the theoretical and experimental data reproduce the classical result by Wannier in the limit £ — 0,
namely, 6" x E£'%¢ The semiclassical ratio lies higher than most of the experimental data in the
intermediate energy region (Fig. 25b).

Absolute double-photoionization cross section: Having the total photo-cross section from
Section 6.1 at hand together with the probabilities for two-body and three-body fragmentation from
Egs. (185) and (187) we caa apply Eq. (41) for the double-ionization cross section:

o =(Py"/Pp)op . (188)

The result is shown in Fig. 26. While the agreement is remarkably good in the threshold region one
sees (as in Fig. 25) an increasing deviation towards higher energies. As mentioned above, this is
to be expected since the calculation of process (B), the propagation of the correlated two-electron
dynamics after the absorption of the photon has been carried out in a restricted phase space only.

A full semiclassical propagation of the electron pair would certainly improve the asymptotic
behavior for E — oc. Another problem which must be solved in this context is the representation of
the initial state. Here, it has been modeled by a phase-space distribution on a fixed hyperradius Z,.
Conceptual improvement of the present approach will depend mainly upon future ideas how to model
a two-electron ground state classically. Interestingly, the discrepancy among full numerical treatments
of the double-photoionization process has been also attributed to the approximate representation of
the helium ground state [165].
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Fig. 26. The absolute photo-double ionization cross section as a function of the energy above the double-ionization
threshold. The present theory and data by Pont and Shakeshaft [156] are shown as solid and broken lines, respectively.
Experimental data are from Ref. [178] (&) and from Kossmann et al. [173,174] (@).

One might find it surprising that the cross sections for atomic photo-double ionization far from
threshold can be described by an electron motion restricted to the collinear phase space. However,
again, this can be understood from a similar behavior below threshold which is reflected by the
propensity rules for photoabsorption from the ground state into doubly excited states of helium
[134, 135, 166]. There, it is found that predominantly two-electron resonant states are populated
whose geometry in a body-fixed frame approaches for high excitation energies a collinear con-
figuration. More importantly, from a general perspective, the seemingly oversimplified picture of
atomic photo-double ionization as a two-step process is confirmed by the quantitative comparison
with the experiment. Recently, this two-step process has been independently suggested to under-
stand the distribution of the recoil momentum of the He*"-ion after photo-double ionization which
is directly observable in experiments performed by cold target recoil ion momentum spectroscopy
[167].

To summarize, with a quantum-classical hybrid approach it has been possible to calculate the
absolute single and double ionization cross sections following photon impact on helium. The ratio
o*t /6" has been calculated semiclassically by propagation of the two-electron dynamics starting from
a classical initial-phase-space distribution, and the absolute total cross section has been calculated
analytically with a standard quantum wavefunction for the Helium ground state and a classical
reflection approximation for the dynamics.

7. Outlook

Semiclassical methods have been advanced remarkably over the last ten years. Considering the
fact that they will always be an approximation this might seem to be very astonishing, moreover
in an environment of computing power which also has exploded over the last decade, and which
allows for more and more protlems to be solved fully quantum mechanically. There are (at least)
four reasons for this development which will also determine the future perspective of semiclassical
methods.
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1. The increasing computing power and the related visualization techniques have given a push to
modern semiclassical methods as well: It is no longer a problem to compute billions of classical
trajectories and it is also relatively easy to visualize individual trajectories, bundles, or wavefronts.
In particular, the recent success of time-dependent semiclassical studies of molecular problems
relies on this computing power.

2. The numerical results of increasingly sophisticated quantum treatments must be understood and
interpreted. This is another source of renewed demand for semiclassical approximations. In par-
ticular, the connection between classical chaos and corresponding quantum behavior has driven
the interest in semiclassical methods.

3. For problems which are easier to handle in a semiclassical approximation such an approach will
always be ahead of a full quantum treatment in the sense that with given numerical capacities
one can tackle, €.g., a few degrees of freedom more semiclassically than quantum mechanically.

4. Finally, there might be a few problems which are almost impossible to solve fully quantum
mechanically since they are intrinsically semiclassical.

Certainly to the last category belongs the threshold problem of particles which interact through

Coulomb forces. This has bzen a major motivation to study Coulombic problems semiclassically,

as reported here. However, in addition a number of characteristic features of the classical system

have emerged, from the stability propertics of a Coulombic few-body system in a plane, or in
even more drastically reduced configuration spaces, to the single minimum for the hyperradius of

a Coulomb trajectory at positive energies. It could be shown that the last property has dramatic

effects on the entire spectrum of a system of Coulombic particles (absence of resonances for £ > 0,

threshold behavior for £ = 0, etc.). These results are an example of category 2 from above.

With new semiclassical techniques still in development it is perfectly reasonable to investigate
test cases for which quanturr results are available for comparison. For the future and in reference to
point 3, however, it is desirable to have an error estimate of a semiclassical approach, or, put it
positively, to know the range of applicability in a suitable parameter space. Clearly, any asymptotic
theory has difficulties with this question. However, progress in this respect is necessary for semi-
classical results to be taken seriously where no quantum results are available for comparison.
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