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The description of threshold fragmentation under long range repulsive forces is presented.
dominant energy dependence near threshold is isolated by decomposing the cross section in
product of a background part and a barrier penetration probability resulting from the repulsive Coulo
interaction. This tunneling probability contains the dominant energy variation and it can be calcula
analytically based on the same principles as Wannier’s description [Phys. Rev.90, 817 (1953)] for
threshold ionization under attractive forces. Good agreement is found with the available experime
cross sections on detachment by electron impact fromD2, O2, andB2. [S0031-9007(99)08480-X]

PACS numbers: 34.80.Dp, 03.65.Sq, 34.10.+x
c

so
in
hi
sh
th
u
o
s
o
-
p
r

he
c
t-
o
s
a

a
re

ar
h
,
th

g
ra
po

ot
he

n

n
en

gs
t to

ent
end
g
ron
ver
rify

iza-

-
me
las-
ge

l-
ical
a-
te.
in

e

. It
nt

by
Storage ring based experiments on threshold deta
ment from the deuteron (D2) and the oxygen (O2) neg-
ative ions by electron impact [1–3], and recently al
from B2 [4], have stimulated the theoretical interest
the mechanism and the quantitative description of t
process [5–9]. It is a fundamental question how thre
old detachment proceeds since for very low energies
impacting electron does not even reach the atom beca
it is repelled by the loosely bound electron. Early the
retical work on this problem tried to describe the proce
by asymptotic properties of the wave function for the tw
electrons in the continuum after the collision [10], follow
ing the spirit of Wigner’s treatment for two-body break u
[11]. However, the predicted cross section agrees poo
with the experimental results.

Some recent theoretical treatments, following anot
idea of the early days [12], emphasize the importan
of tunneling contributions, by either treating the impac
ing electron as a constant perturbing electric field [2]
merging a quantum and a classical description [5]. A
tonishingly good agreement with the experiment, even
low energies near threshold, comes from a coupled ch
nel calculation in the impact-parameter formalism whe
a classical trajectory is used for the relative motion of t
get and projectile electron and the electron to be detac
is described quantum mechanically [7]. These results
least the shape of the cross section, depend little on
polarization potential used, as Linet al. emphasize [7].
Results of similar accuracy have been reported usin
lowest order distorted-wave scheme, however, in cont
to [7], with a sensitive dependence on the polarization
tential [8].

Without a full calculation of all electrons, one cann
avoid to use parameters in one or another way, eit
directly in the simpler models [1,2] or indirectly in
the more involved calculations modeling polarizatio
potentials for the loosely bound electron [5–9].

The theoretical work so far remains inconclusive co
cerning a dominant mechanism of threshold detachm
0031-9007y99y82(8)y1652(4)$15.00
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and the reason for the seemingly contradicting findin
concerning the robustness of the results with respec
changes in the polarization potential is unknown.

A successful description of near threshold detachm
focusing on threshold properties should naturally dep
very little on details of the polarization since the lon
range repulsion between target and projectile elect
dominates. Moreover, such an approach should unco
a mechanism for threshold detachment and thereby cla
the issue of robustness with respect to different polar
tion potentials.

In the following we will show that threshold de
tachment by electrons can be described with the sa
technique which has led to the successful (and purely c
sical) description of threshold ionization under long ran
attractiveCoulomb forces, pioneered by Wannier [13].

However, in order to learn how to deal with repu
sive Coulomb forces, one must go back to a semiclass
formulation of threshold ionization and analyze the re
son why Wannier’s classical treatment was appropria
Semiclassically, one may write the scattering amplitude
the form [14]

f ­
X

j

q
Pj expfiFjsEdyh̄ 2 injpy2g , (1)

where the sum runs over all scattering orbitsj which
contribute with the weight

p
Pj . The phase contains th

Maslov indexnj [15] and the actionFj along the orbit
which may be expressed as

FjsEd ­ fjsEdE21y2, (2)

wherefjsE ! 0d ­ const [14]. This special form is a
consequence of the homogeneous Coulomb interaction
is crucial for the justification of the classical treatme
sinceE ! 0, i.e., approaching threshold, andh̄ ! 0 have
the same effect in Eq. (1). IfFj is real, which is the
case for all classically allowed trajectories, one arrives
stationary phase approximation (forE ! 0 or h̄ ! 0) at
the result
© 1999 The American Physical Society



VOLUME 82, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 22 FEBRUARY 1999

of

n
e

nt
iu
ed
d
th

ge
al

ld

rin
n

n
s

du

is

)
an

d
ia
o

ilit
rs
is
al

lves
its

e
lar

h
mb
int
e

on
oint
re

g
n-

o
ces
itial

ed

ec-
he
old
s ­
X

j

Pj ­ sCL , (3)

which sums all individual contributionsPj of the trajecto-
ries to the classical cross sectionsCL.

Looking for the dominant energy dependence
ssE ! 0d we decompose the cross section into

ssEd ­ sBsEdPsEd , (4)

where sBsEd is a smooth background cross sectio
with sBsE ! 0d ­ const. Wannier showed that th
dominant energy dependencePsEd ­ Pp is contained in
a single fixed point orbitj ­ p [13]. Formally, this orbit
represents an outgoing trajectory with fixed angleup ­ p

between the two electrons and symmetric distancesr1 ­
r2 of electron 1 and 2 from the core. It is convenie
to use hyperspherical coordinates with an overall rad
r2 ­ r2

1 1 r2
2 of the system and the hyperangle defin

by tana ­ r1yr2. The orbit represents a classical fixe
point because the classical equations of motion with
full Hamiltonian do not changesa, ud in time, i.e.,astd ­
ap ­ py4 and ustd ­ up ­ p. The potential energy
of the two electrons interacting with a core of char
Z can be written in the form of a Coulomb potenti
with an angular dependent charge,V ­ Csa, udyr. For
Z . 1y4 the potential at the fixed point is withCp ­
Csap, upd , 0 attractive. Hence the relevant thresho
orbit at E $ 0 is classically allowed with a real action
Fp. Then, as sketched above, the semiclassical scatte
amplitude leads forE ! 0 to the classical cross sectio
with a dominant energy variation of the form

PCLsEd ­ sEyE0db ; b ­

s
100Z 2 9
32Z 2 4

2
1
4

, (5)

as derived by Wannier [13].
On the other hand, for a fixed point chargeCp . 0

the Coulomb interaction is repulsive. Then, the releva
threshold orbit is classically forbidden and represent
tunneling trajectory with imaginary actionFp ­ iGp. In
this case the semiclassical cross section does not re
to the classical one in the limitE ! 0. Rather, its major
energy dependence results from a tunneling mechan
which produces a Gamow factor

PsEd ­ expf22GpsEdyh̄g . (6)

Clearly, the threshold cross section is through Eq. (6h̄
dependent. Nevertheless, the important dynamical qu
tities, namely, the tunneling actionGp, are still given clas-
sically, as will be shown next.

In the traditional description of classically allowe
threshold fragmentation of charged particles the init
configuration is unimportant—the energy dependence
the cross section is completely determined by the stab
of the final fragment configuration. This stability ente
Pp of the escape orbit. That only the fixed point orbit
relevant close to threshold is justified by the fact that
available energy (which approaches zero forE ! 0 and
s
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r ! `) must be put into the radial degree of freedomr in
order to fragment the system. Hence, the system evo
asymptotically in a frozen configuration where neither
geometrical shape (u ­ up) nor the relative interparticle
distancesr1yr2 ­ tanap change. Moreover, due to th
Coulomb scaling properties, any partial wave with angu
momentumL reduces in scaled coordinates to anS wave
since the scaled angular momentum readsL̃ ­ L

p
E [14].

Therefore, only theS wave has to be considered whic
remains also valid in the case of a repulsive Coulo
force. Finally, for two escaping electrons, the fixed po
configurationup ­ p and ap ­ py4 remains the sam
for all charges of the core including the limitZ ­ 0 which
applies to the neutral atom for our problem of electr
detachment. Hence, the radial motion on the fixed p
manifold is governed by the Hamiltonian (atomic units a
used unless otherwise stated)

Hp ­
P2

r

2
1

Csap, upd
r

, (7)

where the effective chargeCp ­ 221y2 results from the
evaluation of the electron-electron repulsionV ­ j$r1 2
$r2j

21 at the fixed point.
For each energyE ­ Hp we can calculate the tunnelin

actionGpsEd entering Eq. (6) from the imaginary mome
tum p ­ s2P2

r d1y2 of Eq. (7),

Gp ­
Z rt

ri

p dr . (8)

The integration limits are the outer turning pointrt

where the orbit becomes classically allowed,psrtd ­
0, and a starting pointri; see Fig. 1. In contrast t
threshold fragmentation under attractive Coulomb for
tunneling threshold fragmentation depends on the in
configuration, at least as far as the value ofri in Eq. (8) is

FIG. 1. Sketch of tunneling threshold dynamics on the fix
point manifold with potentialCpsrd from Eq. (7). The classi-
cally allowed incoming and outgoing trajectories on the resp
tive energiesEi andEf are shown (dashed lines), as well as t
tunneling part (solid thick line) which determines the thresh
fragmentation probability.
1653
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concerned, which will influence shape and magnitude
PsEd in Eq. (6).

In a very crude approximation one could putri ­ 0
arguing that the electronic momentum transfer requ
the recoil to be absorbed by the nucleus and its pos
is where the outgoing electrons should start. Howe
in the light of the (small) tunneling probability whic
determines threshold detachment according to Eq
close to E ­ 0 this is certainly too crude. For sma
excess energy the projectile electron impacts roughly w
the binding energyI which is of the order of 1 eV
Repelled by the loosely bound electron the projectile w
never reachri ø 0 at this low impact energy. Mor
realistically, one can approximateri by the classica
turning point of the incoming electron, as it appears
the fixed point manifold whose dynamics is specifi
by Eq. (7). Hence, to determine this turning point
the incoming electron we putPr ­ 0 in Eq. (7) at the
incoming electron energy ofEi ­ E 1 I to yield

ri ­ CpysE 1 Id . (9)

The initial momentum of theoutgoing electron pair
psrid ­

p
2I follows from the Hamiltonian Eq. (7) on th

final energy surfaceEf ­ E. The situation is sketched i
Fig. 1. Using Eqs. (8) and (9) the threshold detachm
probability Eq. (6) reads in dimensionless units explici

PsEd ­ exp

"
24Ca

s
mec2

2E

√
arctan

s
I
E

2

p
IE

I 1 E

!#
,

(10)

wherea ­ 1y137 is the fine structure constant,mec2 ­
511 keV is the rest mass of the electron, andC ­ Cp

is the repelling charge of the two electrons on
fixed point manifold in units ofe; see Eq. (7). One
can cast Eq. (10) into a more familiar form of atom
units by noting thatmec2ya2 ­ e2ya0 ­ 27.2116 eV
is just the atomic energy unit. Clearly, the tunneli
mechanism breaks the scaling invariance ofPsEd for
different systems characterized by different ionizat
potentialsI sincePsEd does not depend only onEyI but
also onm0c2yE. This is one of the major difference
compared to Wannier’s classical result [Eq. (5)]
threshold ionization under attractive Coulomb forces.

Different PsEd are shown in Fig. 2 with solid line
corresponding to detachment from the ionsB2, D2,
and O2, respectively. The “experimental” tunnelin
probabilities are extracted by fitting the experimen
cross sections (Fig. 3) to Eq. (4) with

sBsEd ­ s0ysb0 1 EyId , (11)

wheres0, b0 are fitting parameters. ThesBsEd obtained
in this way are shown in Fig. 4 for completeness a
exhibit the expected monotonically decreasing behavio

As a final support for the analyticalPsEd from Eq. (10)
we have fitted the experimental cross sections withs0,
b0 and I as free parameters. The result forI was
1654
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FIG. 2. Experimental detachment probabilities, obtained
dividing the cross section bysBsEd from Eq. (11). The coding
of the data is as in Fig. 3. TheoreticalPsEd from Eq. (6).

0.297 6 0.008, 0.79 6 0.03, and1.58 6 0.04 eV , which
is close to the accurate values of0.28, 0.75, and 1.46 eV
for B2, D2, andO2, respectively.

The present description differs from various publish
tunneling models approximating in one or another w
the actual electron motion by tunneling. In the pres
treatment, only the dominant energy dependence of
cross section is derived from a fixed point orbit whi
represents a tunneling trajectory. However, this trajec
does not correspond to a true, physical two electron o
Rather, it is a stationary point solution for̄h ! 0, in
complete analogy to Wannier’s solution for the classica
allowed case of attractive forces. This stationary po
calculated in the limitE ! 0 does not depend at all o
the polarization potential. Only the binding energy
the target electron entersPsEd through ri as defined in
Eq. (9) from the turning point of the incoming trajector
It is exactly this element which is similarly contained
the calculation of Ref. [7]. Hence, this impact parame

FIG. 3. Detachment cross section by electron impact a
function of excess energy forB2 (circles) from 4, O2

(triangles), andD2 (diamonds) from 1. The solid lines ar
the cross sections from Eq. (4).
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FIG. 4. Background cross sectionssBsEd for B2 (solid line),
D2 (dashed line), andO2 (dotted line); see text.

calculation captures an essential feature of the thres
detachment dynamics making the whole calculation rob
against details of the polarization potential. These det
will influence on the other hand the background cr
sectionsBsEd much more strongly. The distorted wav
calculation [8] by nature approximates the thresh
region from an expansion of the high energy limit whi
is much more sensitive on details of the (shorter ran
polarization potential.

In summary, separating the rapidly changing deta
ment probabilityPsEd from the background cross se
tion sBsEd we have shown that threshold fragmentat
under asymptotic repulsive Coulomb forces can be tre
on the same footing as the well established thresh
ionization under attractive Coulomb forces. In contr
to the classical result for attractive forces, threshold
tachment of negative ions by electrons can be interpr
to proceed via quantum mechanical tunneling of the o
going electron pair. This implies a breaking of the sc
invariance ofPsEd with respect to energy sincePsEd de-
pends onmec2yE irrespectively of the target propertie
while PCLsEd [Eq. (5)] under attractive Coulomb force
is scale invariant. Yet,PsEd for threshold detachmen
old
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can be described semiclassically due to the dominant
pulsive) Coulomb interaction which ensures through
scaling properties thatE ! 0 also meansh̄ ! 0 [see
Eq. (2)]. The same scaling properties also reduce
dominant energy dependence of all partial waves to t
of L ­ 0. Therefore,PsEd can be determined from the S
wave only, as has been done in the present work.
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