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Intermanifold similarities in partial photoionization cross sections of helium
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Using the eigenchannelR-matrix method we calculate partial photoionization cross sections from the ground
state of the helium atom for incident photon energies up to theN59 manifold. The wide energy range covered
by our calculations permits a thorough investigation of general patterns in the cross sections which were first
discussed by Menzel and coworkers@Phys. Rev. A54, 2080~1996!#. The existence of these patterns can easily
be understood in terms of propensity rules for autoionization. As the photon energy is increased the regular
patterns are locally interrupted by perturber states until they fade out indicating the progressive breakdown of
the propensity rules and the underlying approximate quantum numbers. We demonstrate that the destructive
influence of isolated perturbers can be compensated with an energy-dependent quantum defect.

DOI: 10.1103/PhysRevA.65.042715 PACS number~s!: 32.80.Fb, 32.80.Dz
na
n
s
th
b

d
m
a

ule

ta
o
tio
ti
to
le
rg
a
-
ve
n

ve
e
g

a
ct

d
ct
in
-
t

ion
ently

ns
re-

ch
ce

in
ill
egin
we
the

re
ex-
rk
ight
les
n-
ex-
imi-
n

ntro-
e of
: In
de-
a-

to-
eir
tron
he
the
I. INTRODUCTION

Consisting of only three particles, two electrons, and
nucleus, the helium atom nevertheless possesses rich dy
ics with complex features. Hence, helium has always bee
focus of research and it has incessantly been used as a te
ground of fundamental concepts. In every energy regime
correlated dynamics of the two electrons can be probed
photon impact. This has been the most precise metho
investigation in terms of energy resolution although so
limitations exist since only those excited states can be
cessed whose population is allowed via dipole selection r
from the initial state~usually the ground state!. The domain
of high double excitation can be scrutinized in greater de
with the advance of the experimental and theoretical to
available. A leading theme in these studies is the explora
of regularities in the observables of this classically chao
three-body Coulomb system. Moreover, one would like
know how chaotic features emerge when the doub
ionization threshold is approached by increasing the ene

Most experiments have concentrated on total photo
sorption cross sections@1–4#. This is also true for calcula
tions using the method of complex rotation which ha
reached the highest excitation energy so far. The reaso
simply that complex rotation allows for the most effecti
computation of resonances in terms of their complex en
gies~where the real part is the energy position and the ima
nary part half the resonance width!. However, these widths
are total widths and only nondifferential observables such
the total photoabsorption cross section can be constru
without losing the effectivity of the approach@5–8#.

Yet, as has been demonstrated recently, interesting a
tional features such as radiative and relativistic effe
emerge by, e.g., measuring the photon emission follow
the photo excitation@9–12#. It turns out that this signal re
veals the splitting of the He1 threshold due to spin-orbi
1050-2947/2002/65~4!/042715~9!/$20.00 65 0427
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coupling. Moreover, in some experiments@13,14# partial
photoionization cross sections following photoabsorpt
into doubly excited states have been measured, most rec
up to energies of theN55 excitation threshold of He1 @15#.
In the latter work similarities between partial cross sectio
belonging to different manifolds have been observed and
lated to the propensity rules for doubly excited states@16–
18#. This type of similarity has to be distinguished fromin-
tramanifold similarities of partial photo cross sections su
as mirroring and mimicking, as first noted by Liu and Stara
@19#.

In the present paper, we explore the origin ofintermani-
fold similarities of partial photoionization cross sections
detail. As a function of increasing excitation energy we w
describe and explain how these similarities emerge and b
to disappear again for very high excitation. To this end,
have calculated the partial ionization cross sections up to
ninth threshold of He1. The corresponding energies a
much higher than those which were reached previously,
perimentally as well as numerically. This allows us to wo
out the similarities of the cross-section pattern across e
manifolds and to illustrate in detail how the propensity ru
lead to those similarities. Our results confirm Menzel’s co
clusions for the energy regime he considered. At higher
citation energies, perturber states seem to destroy the s
larity pattern. However, as we will show, a regularizatio
based on an energy-dependent quantum defect can be i
duced which restores the similarities even in the presenc
isolated perturbers. The paper is organized as follows
Sec. II, we present the partial cross sections and briefly
scribe computational details. In Sec. III, we briefly summ
rize the propensity rules for dipole excitation and for au
ionization of two-electron resonances, as well as th
classification schemes. We also recall adiabatic two-elec
potential curves which facilitate the understanding of t
classification and propensity rules, before we formulate
©2002 The American Physical Society15-1
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general scheme of the intermanifold patterns with the help
the propensity rules. In Sec. IV, we interpret the patterns
the partial cross sections across the manifolds with
scheme. The paper ends with a summary in Sec. V.

II. PARTIAL PHOTOIONIZATION CROSS SECTIONS
OF HELIUM UP TO NÄ9 LEVEL OF He ¿

A. Numerical procedure

In the present paper, the eigenchannelR-matrix method
@20,21# combined with a close-coupling scheme@22# is em-
ployed in order to calculate the partial cross sections
single photoionization of the helium atom.

The eigenchannelR-matrix method has been successfu
applied to single photoionization@23# and photodetachmen
@24# of atomic systems with two active electrons. The m
important concept of theR-matrix theory is to partition the
configuration space into two regions, namely, the reac
region, where the short-range interactions between one
ticle and a compact target are complicated, and the exte
region, where the system can be reduced to a two-body p
lem involving long-range interactions. For the current pap
the reaction region is that part of six-dimensional configu
tion space for which both electrons lie within a sphere
radius r 0. The reaction surfaceS is the set of points for
which max(r 1 ,r 2)5r 0, wherer 1 andr 2 are the electron dis
tances from the nucleus. The method has been describe
detail in the literature@21,22,25#. Therefore, we present her
only a brief overview and some numerical details.

Within the reaction region, using a set of Slater determ
nants composed of properly chosen one-electron orbitals
electron-electron interaction is fully taken into account
applying bound-state configuration interaction techniques
a given energy the eigenchannelR-matrix method aims to
determine varationally a basis set of wave functions, the
calledR-matrix eigenchannel wave functions, which are
thogonal and complete over the reaction surfaceS enclosing
the reaction region, and their negative logarithmic deri
tives being constant overS. The helium wave functions o
experimentally observed channels can be represented by
ear combinations of the eigenchannel wave functions t
constructed within the reaction region.

In the external region, since only single ionization pr
cesses are considered, it is assumed that there is only a s
electron while the other electron is bound. Instead of app
ing the conventional multichannel quantum defect the
@21#, Panet al. @22# developed an approach using a clos
coupling scheme to obtain a basis set of multichannel w
functions which describe the outgoing electron and the
sidual ion. In addition to the Coulomb potential, all multipo
interactions in the external region are included numerica
to account for the polarization of the residual ion. Note th
although the asymptotic behavior of a one-electron c
tinuum wave function in a Coulomb field is well known@26#,
this description of a singly ionized state in a two-electr
atom is exact only at an infinite distance from the nucle
Since one can only integrate the close-coupling equa
starting from a finite distance, we use WKB representati
@27# for the wave function instead at a suitably large d
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tance. To describe an experimentally observed channel,
has to form a linear combination of these multichannel ba
wave functions according to the incoming-wave bound
condition @22#.

By matching the linear combinations of the multichann
basis functions for the two regions, one can determine
exact final state wave-functionsC i

(2) which describe the
experimentally observed channelsi. The partial cross sec
tions can be calculated according to the standard form
@28#:

s i5
4p2v

c
u^C i

(2)uDuC0&u2, ~2.1!

wherev is the photon energy,D is the dipole operator, andc
is the speed of light. The wave-functionC0 in Eq. ~2.1!
denotes the helium ground state.

In the present paper, the radiusr 0 of the R-matrix sphere
is chosen to be 200 a.u. A total of 1080 closed-type~i.e., zero
at the radiusr 0! and 20 open-type~i.e., nonzero at the radiu
r 0! one-electron wave functions with orbital angular mome
tum up to nine are included. 9610 closed-type two-elect
configurations are included in the calculation for the fin
state wave function. For each channel in which one elect
can escape from the reaction region, two open-type orbi
for the outer electron are included in addition to the clos
type basis set. For a given photon energy, besides all o
channels, relevant closed channels are also included in
calculations~cf. @22#!.

B. Typical cross sections

Our calculated total photo cross section below theN
53,7, and 9 threshold are shown in Fig. 1 together w
experimental data by Kaindl and his group@4,29#. Since no

FIG. 1. Calculated total photoionization cross section in co
parison with experimental results of Refs.@4,29# below the thresh-
olds ~a! N53, ~b! N57, and~c! N59. The theoretical data~thick
lines! have been shifted upwards to allow for an easier compari
with the experiment~thin lines!. Moreover, the numerical data hav
been convoluted with a Gaussian of 5 meV width forN53, 7, and
2 meV forN59. In ~a! and~b! the positions of the resonance stat
of the two strongest Rydberg series are indicated@6#; for an expla-
nation of the quantum numbers, see Sec. III.
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FIG. 2. Calculated~absolute! total and partial
cross sections are compared to experimental d
~circles! of Menzelet al. @15# in the region of the
N55 resonances. Calculation in velocity gaug
solid lines; calculation in acceleration gaug
dashed lines; experiment, open circles. The n
merical results have been convoluted with
Gaussian of 5 meV width. The acceleration gau
result for N851 ~and consequently for the tota
cross section! is shifted by2100 kb.
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absolute photoionization yields are measured in these ex
ments we have scaled the experimental data to our result
can be clearly seen the calculated cross section is in exce
agreement with the experimental one.

Figure 2 shows the total and partial cross sections be
the N55 threshold of He1. Note that below a given thresh
old N we are dealing withN21 partial cross section
sN,N8 (N851, . . . ,N21), where N8(,N) denotes the
principal quantum number of the residual helium ion. Hen
in the case of theN55 threshold we are concerned with fo
partial cross sections, namely,s5,1 . . . s5,4. The agreemen
with existing experimental data@15# on an absolute scale is
in general, good. Interestingly, the cross section in accel
tion gauge~dashed! is higher than in velocity gauge~solid!
and higher than the experiment for the partial cross sec
N851. For all other partial cross sections the velocity gau
result is too high and the acceleration gauge matches
experiment better. The total cross section behaves as
N851 partial cross section by which it is dominated. Th
observation of numerical accuracy points to a fundame
difference of theN851 cross section compared to all oth
partial cross sections which is also confirmed by the fact
N851 takes about 90% of the yield while the yield for th
higher partial cross sections decreases with increasingN8 but
only slightly.

Since we focus on the general patterns of the partial c
sections which agree in both gauges very well with exp
ment the minor discrepancies in the absolute value are o
concern.

1. Partial cross sections of resonances converging to the NÄ9
threshold ofHe¿

The ninth threshold is only about 0.67 eV below t
double ionization threshold. Partial cross sections for theN
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59 manifold have neither been measured nor been ca
lated so far. Based on the good agreement of the total c
section with the experiment~see Fig. 1! we believe that our
calculation in this energy range is still reliable. As can
seen in Fig. 3 the regular sequences of Rydberg series
served for lower manifolds appear to be lost. However, e
if a regular Rydberg progression exists it is very difficult
identify it at a finite energy resolution since the peaks ac
mulate towards threshold. For this reason we will use
alternative way to represent the cross section data.

2. Unfolding cross sections

To make all peaks of a Rydberg progression in a cr
section clearly visible which is particularly important fo
analyzing similarities in the patterns of cross sections
re-parametrize the energy according to the effective quan
number@30#. An ideal unperturbed Rydberg series conve
ing to a thresholdN of the He1 ion would have equidistan
peaks as a function of the effective quantum number

nN~E!5A R
I N2E

, ~2.2!

whereR is the Rydberg constant, andI N54R/N2 denotes
the Nth ionization potential (I `50 a.u.) of He1. In Fig. 4
we show partial cross sections below theN54 threshold
where we have scaled the energy axis according to Eq.~2.2!.
The constant spacing of the resonances indicates unpertu
Rydberg series. Note also that the two partial cross sect
He1(N851) and He1(N853) in Fig. 4 behave quite simi-
larly while He1(N852) mirrors their pattern. This mirroring
and mimicking behavior of partial photo cross section is
universalintramanifold feature@19#.
5-3



th
on

rig
ai
ic
e

the

tum
hich
ave

ble
o-
a-
a

f
ec-
le

en-

an-
um-
er-
he
eries

-

rs.
the
lso

lo

a
-
q

e

es.
igen-
tran-
ded
the

TOBIAS SCHNEIDER, JAN-MICHAEL ROST, AND CHIEN-NAN LIU PHYSICAL REVIEW A65 042715
So far, we have presented illustrative examples for
cross sections to highlight the accuracy of our calculati
We will systematically present theintermanifold similarities
between certain partial cross sections and discuss their o
in the next two sections. The relations between certain ch
of partial cross sections as well as the interpretation wh
resonances contribute to them is based on the existenc

FIG. 3. Calculated partial photoionization cross sections be
theN59 threshold~using velocity gauge!. The data are convoluted
with a Gaussian of 1 meV width.

FIG. 4. Partial cross sections as a function of the effective qu
tum numbern4(E) below theN54 threshold. Due to an energy
independent quantum defect the resonance spacings are e
Theory ~velocity gauge!, solid lines; experiment@15#, open circles.
The numerical data are convoluted with a Gaussian of width 5 m
04271
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approximate quantum numbers and propensity rules for
resonances which we will discuss first.

III. APPROXIMATE QUANTUM NUMBERS
AND PROPENSITY RULES

Over the last 20 years a scheme of approximate quan
numbers for doubly excited states has been developed w
reflects the correlated two-electron dynamics. They h
been expressed asN(K,T)A by Herrick and coworkers@31#
and assigned to hyperspherical potential curves by Lin@32#.
Feagin and Briggs@33# gave a justification for the quantum
numbers in terms of constants of motion for a separa
Hamiltonian which arose from the introduction of the s
called molecular adiabatic approximation. This approxim
tion is similar to the Born-Oppenheimer approximation for
diatomic molecule, namely, H2

1 , but with reversed roles o
electrons and nuclei. In two-electron atoms it is the interel
tronic axisR which is taken as adiabatic, i.e., slow variab
in analogy to the internuclear axis in H2

1 . In this picture the
doubly excited states naturally appear as vibrational eig
states in the adiabatic potential curves~cf. Fig. 5!.

Probably the most simple way of understanding the qu
tum numbers is to interpret them as the Stark quantum n
bers of the inner electron whose Coulomb motion is p
turbed by the electric field of the outer electron. T
quantum numbers remain the same along a Rydberg s
when the outer electron’s quantum numbern increases to
infinity ~single ionization limit! and the inner electron re
mains in theNth excited state of the ion, whereN5N1
1N21m11 is the sum of the Stark quantum numbe
Note, that the classification will be relevant to understand
pattern in partial ionization cross sections since it is a
applicable to singly ionized two electron states~i.e., con-
tinuum states!. The Stark quantum numbers~often called

w

n-

ual.

V.

FIG. 5. Schematic representation of adiabatic potential curv
In the adiabatic picture the resonances appear as vibrational e
states. The mechanism of autoionization relies on nonadiabatic
sitions in this description. The dashed lines indicate the avoi
crossings of the potential curves which play an important role in
derivation of the propensity rules~see Ref.@6#!.
5-4
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INTERMANIFOLD SIMILARITIES IN PARTIA L . . . PHYSICAL REVIEW A 65 042715
parabolic quantum numbers! are related to Herrick’s schem
by T5m andK5N22N1. The labelA denotes the symmetr
with respect to the liner 15r 2 in the wave function where
the r i are the electron-nucleus distances. The complete
nature of a two-electron resonance is then@N1N2m#n

A or

N(K,T)n
A . For the classification of resonance states in heli

photoionization from the ground state one very often use
simplified Herrick’s notation, namely,N,Kn , where the other
quantum numbers are redundant due to the dipole selec
rules~see Fig. 1!. For a more complete comparison betwe
the different quantum numbers see@6,18#.

The approximate constants of motion for correlated tw
electron dynamics expressed through the approximate q
tum numbers imply a nodal structure for the respective re
nance states@34#. In turn, this nodal structure leads t
preferences for autoionization@16# and ~radiative! dipole
transitions@35#.

A. Propensity rules for radiative transitions

Propensity rules for radiative transitions can be derived
analyzing the dipole matrix elements according to the no
structure of the resonance wave functions, which is a sim
analytical task on the potential saddle for 2rW[rW11rW250.
This region in configuration space is most relevant for sy
metrically excited electrons withN'n. It corresponds to the
equilibrium geometry of a linearABA molecule@36#. Not
surprisingly, the relevant quantum number

v252N11m ~3.1!

for radiative propensities quantizes the twofold degene
bending motion of triatomic molecules and can be derived
normal mode analysis about the saddle point@35,37#. Dipole
matrix elements within the saddle approximation follow t
selection rule

Dv250,61 ~3.2!

that survives for the full dynamics as a propensity rule. He
we are interested in photoabsorption into doubly exci
states from the ground state of helium. The finalA511
states with the admixture of lower channels for the relativ
best overlap with the ground state can only bem511 states
due to the1Po symmetry. Therefore, we expect a preferen
for

Dv251 ~3.3!

transitions~i.e., Dm51!. In each manifoldN there is only
one series@0(N22)1#1 fulfilling this condition. This series
is commonly referred to as theprincipal seriesin the litera-
ture. Other series~with A511! are also populated withou
the preference ofDN150. However, they carry much les
oscillator strength.

B. Propensity rules for nonradiative transitions

The mechanism of autoionization relies on nonadiab
transitions in the~molecular! adiabatic picture. The rules fo
04271
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autoionization can be stated by establishing a preference
nodal changes in the wave function.

Most easily,N2 can be changed which is the preferre
decay mode. This is achieved in the molecular descript
~as well as in the hyperspherical one! by so-called radial
coupling matrix elements which are large between sta
which differ only in N2. Rotational coupling is only slightly
less effective and changes the quantum numberm. Finally,
there is no mechanism to changeN1. Hence, a resonanc
decays only through changingN1 if no other possibility ex-
ists.

In parallel, the symmetryA plays an important role. In
general, states withA511 decay more easily than state
with A521 which can be seen from the narrower avoid
crossings forA511 leading to larger radial couplings com
pared toA521 states. We may summarize the propens
rules for autoionization@16# according to the relative effi-
ciency of the underlying decay mechanism:

~A! reduction of N2 , ~3.4a!

~B! change ofm, ~3.4b!

~C! reduction of N1 . ~3.4c!

These propensity rules group the1Po resonant states o
helium into three classes I–III with typical widths separat
by at least two orders of magnitude,G I :G II :G III
'104:102:1. Since the propensities depend on the no
structure@N1N2m# of the inner electron, they hold for entir
Rydberg series~different n) characterized by a single
@N1N2m# configuration. States of class III for1Po reso-
nances are restricted to the@(N21)00#2 configurations,
which enforce decay through aDN1Þ0 transition~C!.

C. Propensities for partial photoionization cross sections

We proceed now to formulate the conditions for the sim
larity in patterns of partial photo cross sections based on
existing propensity rules. The propensity rule~A! character-
izes by far the most important mechanism for autoionizat
and it is this decay mechanism which also determines
similarity patterns.

1. Configurations, manifolds, and chains

So far we have already used the terms configuration
manifold. Aconfigurationis a set of two-electron states cha
acterized by the quantum numbers@N1N2m#A which refer to
the state of the inner electron in the correlated two-elect
state. Amanifold Nof two-electron states contains all con
figurations whose quantum numbers add up toN5N11N2
1m11. Physically, one can think ofN being the principal
quantum number of the electron in the He1 ion which would
remain if the outer electron would be taken away. In t
adiabatic picture a configuration is represented by a poten
curve~see Fig. 5!. This illustrates that the actual state of th
outer electron is not specified for a configuration. It can b
bound state with quantum numbern in the potential curve
corresponding to a resonance for the two-electron syst
5-5
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These types of states we call in the present contextinterme-
diate configuration. The outer electron can also be in th
continuum characterized by the potential of the configurat
of the inner electron. These types of states we callfinal con-
figuration. It is important to realize that all the propensi
rules refer to the nodal character induced by the configu
tions only, i.e., to a first approximation, the state of the s
ond electron being a Rydberg electronn or in the continuum
is irrelevant for these propensities. However, this does
mean that we deal with independent electron states. Ra
the Stark quantum numbers of a configuration for the in
electron characterize a whole set of correlated two-elec
states.

Photoionization proceeds from the initial state~here the
ground state of helium! either directly or via a resonance o
the intermediate configuration to the final configuration. P
ticularly the partial cross sectionssN,1 have a strong direc
channel~simply the photoionization of one of the electron!.
This is seen in the large smooth background cross sec
~e.g., Fig. 2! for the N851 partial cross sections.

To form a partial cross sectionsN,N8 one has to take into
account all accessible intermediate and final configuratio
The propensity rules can be used to structure the contr
tions of different configurations and they determine which
these configurations contribute dominantly to the cross s
tion.

2. Chain of similar partial cross sections with dominant
configurations only

Suppose we excite from the ground state only the c
figurations@0(N22)1#1, N52,3, . . . ,i.e., all the principal
series. This yields partial cross sectionss̃N,N8 which already
show the main features of the physical cross sections,
consequently, their similarity patterns. The most efficie
autoionization mechanism is governed by propensity r
~A!, i.e., by reducing the quantum numberN2. Hence, the
dipole excited intermediate configuration@0(N22)1#1 will
lead to a dominant final configuration@0(N822)1#1 for the
partial cross sections̃N,N8 with the change inN2 beingDN
5N2N8. The idea is now that partial cross sections in d
ferent manifolds look similar if their final configuration
have an identical differenceDN5N2N8 in the quantum
numberN2 with respect to the respective intermediate co
figurations. Figure 6 shows the partial cross sections ac
the manifoldsN with DN51. Apart from the first cross sec
tion s2,1 all patterns look fairly similar as predicted. The
are local perturbations marked as ‘‘PT’’ and one also no
that the similarities become weaker for the highest cross
tion shown, namely,s9,8. Both of these anomalies we wi
discuss later, after we have explained whys2,1 looks so dif-
ferent. This is easy to understand because the principal in
mediate configuration@001#1 in the N52 manifold cannot
decay throughDN2 to the N51 manifold sinceN250 to
begin with. Rather,@001#1 decays by changingA andm to
@000#2 which is not the preferred decay route.

Therefore, a chain of similar cross sections has a lo
end defined by the (N1 ,m) quantum numbers of the contrib
04271
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uting chain of configurations and its differenceDN25N
2N8 in N2:

Nmin5N11m1DN211. ~3.5!

In our example withN150 andm5DN251 we haveNmin
53, therefore,s2,1 does not belong to the chain.

3. Partial cross-section chain including all configurations
populated

A closer look on Fig. 6 reveals that there is still a sm
change in the characteristic pattern froms3,2 to s5,4. The
reason is that in addition to the dominant intermediate c
figuration @0(N22)1#1 other configurations are populate
as well, each of them having its own chain of similar patte
across the manifolds. The actual experimental pattern is
sum of all these patterns. However, each chain has its i
vidual lower end according to Eq.~3.5!. For instance the
chain fed by the intermediate configuration@1(N23)1#1

starts in the manifoldNmin54 and does not contribute t
s3,2. In fact excited from the ground state in helium@0(N
22)1#1 and@1(N23)1#1 are the two strongest intermed
ate configurations and we expect their chains to be suffic
to understand the evolution of the regularity of the patte
in the partial cross sections which will be discussed in
next section. For simplicity we introduce a short notation

C N1 ,m
A ~DN2! ~3.6!

FIG. 6. Partial cross sections withDN5N2N851. The energy
axis of each panel is scaled according to Eq.~2.2!. Additionally,
each of the individual cross sections is horizontally shifted by
constant quantum defect in order to approximately align the re
nances of the principal series. The numbers on the left stand
N,N8. The cross sectionsN,N8 with N>6 are convoluted with a
Gaussian of width 1 meV. A few perturbers are indicated by ‘‘PT
5-6
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to describe the chains whereN1 ,m,A characterize the inter
mediate configuration and determine the lower end of
chain Nmin according to Eq.~3.5! while DN2 characterizes
the type of similar cross sections withDN5DN2 emerging
from the chains. So far we have focused onDN251 ~shown
in Fig. 6! with the two dominant chainsC 0,1

1 (1) andC 1,1
1 (1).

IV. SYSTEMATICS IN PARTIAL CROSS SECTIONS
ACROSS MANIFOLDS FROM NÄ2 TO NÄ9

We will now test the systematics for the patterns d
scribed and illustrated in the last section forDN251 with
cross sections ofDN2.1. Thereby, we will also discuss th
phenomenon of perturbers and the slow disappearance o
patterns for very high partial cross sections, as mentione
the last section.

A. Partial cross sections withDNÄ2

We first discuss theDN52 partial cross sections show
in Fig. 7. The general pattern looks quite different compa
to DN51 shown in Fig. 6. However, among each other,
partial cross sections behave similarly as in Fig. 6: The lo
est curves3,1 does not match at all the other curves, the n
one, s4,2, is still slightly different from the higher one
which are quite similar. Fors8,6 and higher the patterns be
gin to fade out. We first note that the lowest possible par
cross section forDN52 is s3,1. As for s2,1 in Fig. 6 the
dominant intermediate configuration@011#1 cannot decay
according to the preferred propensity ruleDN252 but must
decrease the quantum numberm and therefore change th
quantum numberA from 11 to 21 in addition. Hence,s3,1
does not belong to the chain of similar cross sections. To
next higher one,s4,2 contributes only the chain built on th

FIG. 7. Same as Fig. 6 but for theDN52 partial cross sections
For comparison a clipping ofsN55,N853 ~dashed line! is shown in
the 4,2 and 6,4 panel.
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principal intermediate configuration@021#1 with Nmin54.
For s5,3 both dominant chainsC 0,1

1 (2) andC 1,1
1 (2) can con-

tribute. Consequently,s5,3 is the partial cross section with
the lowestN exhibiting the fully developed pattern ofDN
52 which one sees comparing the clipping ofs5,3 to s4,2
ands6,4 ~see dashed lines in Fig. 7!.

B. Partial cross sections withDNÄ3

These cross sections, shown in Fig. 8, have a charact
tic pattern, which is different from the respective grou
characterized byDN51 and DN52. Yet, the systematics
within the group is again the same as for the other t
groups and can be translated by simply increasingN by one:
The first cross sections4,1 looks extremely different since i
does not belong to a chain. To the next one only the ch
from the principal intermediate configuration contribute
s6,3 contains for the first time the characteristic pattern
DN53. However, since we are already close toN58 where
the patterns start to fade out due to a beginning break d
of the propensity rules to which we ascribe their existen
we see only two relatively similar cross sections,s6,3 and
s7,4.

We summarize the systematics of the chains in Fig
where all intermediate configurations are shown which c
decay according to propensity rule~A! @Eq. ~3.4a!#. From
Fig. 9 the lower end characterized byN,N8 of any chain can
easily be determined. For example,C 0,0

2 (DN) evokes a pat-
tern with intermediate configurations@0N0#2 already start-
ing at N851 with sN,N851 cross sections. However, as r
peatedly pointed out, they are too weak to be seen in
cross sections.

1. Role of isolated perturbers

Before the pattern actually breaks down~see, e.g., Fig. 8!
it can already be locally distorted by so called perturb
states. As is well known from quantum defect theory@38#, a

FIG. 8. Same as Fig. 6 but for theDN53 partial cross sections
5-7
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perturber acts in a twofold way on the resonance state
which it couples. First, it shifts their positions~‘‘bunching
effect’’! which is expressed by a jump in the quantum defe
Second, it modulates their linewidth in a Fano-profile-li
way. Both effects locally perturb the cross section pattern

The bunching of the resonances is visible in the cro
sections sN55,N8 and sN56,N8 with the perturbersN,Kn
56,46, and 7,57, respectively. The distorting influence on th
pattern can be compensated by incorporating the quan
defect dN,Kn

(E) of the perturbed series. Plotting the cro

section against the effective quantum numbern6(E)
1d6,4n

(E), restores the characteristic pattern of the cr
section as can be seen in Fig. 10~b!. The effective quantum
defect compensates the bunching of resonances on the
ergy axis. Therefore, this kind of disentanglement wo
well, as long as the effect of the perturber on the width of
resonances is small as it is the case for the cross-sec
sN55,N8 andsN56,N8 . The perturber 8,68, however, causes
drastic narrowing of the width of the state 7,510. This per-
turbation of the pattern cannot be compensated by expres
the energy in terms of the effective quantum defect. Ho
ever, the perturbation remains small and local leaving
general pattern still identifiable as one can see in the cr
sectionss7,N8 of Figs. 6, 7, and 8.

2. Fading out of patterns

Going to higher manifolds the patterns start to fade o
This is certainly due to an increasing number of perturbe
However, in more general terms, this observation indica
the beginning breakdown of approximate quantum numb
and consequently of the propensity rules which govern
patterns. This refers to a situation discussed here with

FIG. 9. Compilation of all two-electron configurations~labeled
by parabolic quantum numbers!, which can decay according to pro
pensity rule~A! @Eq. ~3.4a!#. The 1 and the2 signs stand forA
561 and the principal configurations are underlined.
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principal quantum numbern of the outer electron only mod
erately larger than the principal quantum numberN of the
inner electron. Clearly, forn@N the regime of a~regular!
effective one-electron Rydberg series is always approach

V. CONCLUSIONS

We have presented numerical total and partial cross
tions for single photoionization from the helium ground sta
up to theN59 threshold of He1. Our calculations were done
by using the eigenchannelR-matrix method. We found very
good agreement with available experimental data for b
the total cross section up to theN59 manifold and the par-
tial cross sections up to theN55 manifold.

A comparison of the partial cross sectionssN,N8 ~N8 de-
noting the state of the residual helium ion! across the mani-
folds reveals common patterns in the cross sections with
sameDN5N2N8. The patterns of the principal series dom
nate with a seizable contribution from strongest second
series due to the large oscillator strength of these series.
manifestation of the patterns can be attributed to chains
configurations which connect the intermediate configurati
of resonance states seen in the cross sections to final con
rations in the different continua according to the domina
propensity rule for autoionization.

Starting with theN55 manifold perturbers emerge whic
locally destroy the general patterns. However, in cases wh
the perturber mainly leads to a bunching of resonances
the energy axis, a regularization based on energy-depen
quantum defects has been shown to disentangle the sp
and restore the similarity of the patterns. Going to manifo
N58 and higher the patterns start to fade out which fina
indicates the breakdown of the propensity rules. This in t
signals the approaching limits of the adiabatic picture and
approximate quantum numbers derived from it.
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FIG. 10. Partial cross section of theN854 satellite below the
N56 threshold~a! as a function of the effective quantum numb
n6(E) @Eq. ~2.2!# and ~b! as a function ofn6(E)1d6,4n

(E), where
d6,4n

(E) denotes the quantum defect of the series 6,4n[@041#n
1 . In

~a! the position and the linewidth of the perturberN,Kn57,57 are
indicated @6#. In ~b! the bunching of the resonances due to t
perturber is disentangled restoring the similarity pattern.
5-8
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