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Intermanifold similarities in partial photoionization cross sections of helium
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Using the eigenchann& matrix method we calculate partial photoionization cross sections from the ground
state of the helium atom for incident photon energies up td\tse&® manifold. The wide energy range covered
by our calculations permits a thorough investigation of general patterns in the cross sections which were first
discussed by Menzel and coworkéPhys. Rev. 464, 2080(1996]. The existence of these patterns can easily
be understood in terms of propensity rules for autoionization. As the photon energy is increased the regular
patterns are locally interrupted by perturber states until they fade out indicating the progressive breakdown of
the propensity rules and the underlying approximate quantum numbers. We demonstrate that the destructive
influence of isolated perturbers can be compensated with an energy-dependent quantum defect.
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I. INTRODUCTION coupling. Moreover, in some experimenit$3,14] partial
photoionization cross sections following photoabsorption
Consisting of only three particles, two electrons, and anto doubly excited states have been measured, most recently
nucleus, the helium atom nevertheless possesses rich dynaap to energies of thdl=5 excitation threshold of He[15].
ics with complex features. Hence, helium has always been m the latter work similarities between partial cross sections
focus of research and it has incessantly been used as a testinglonging to different manifolds have been observed and re-
ground of fundamental concepts. In every energy regime thtated to the propensity rules for doubly excited stdtHs—
correlated dynamics of the two electrons can be probed b$8]. This type of similarity has to be distinguished fram
photon impact. This has been the most precise method dfamanifold similarities of partial photo cross sections such
investigation in terms of energy resolution although someas mirroring and mimicking, as first noted by Liu and Starace
limitations exist since only those excited states can be ad-19].
cessed whose population is allowed via dipole selection rules In the present paper, we explore the originirtermani-
from the initial state(usually the ground stateThe domain fold similarities of partial photoionization cross sections in
of high double excitation can be scrutinized in greater detailletail. As a function of increasing excitation energy we will
with the advance of the experimental and theoretical toolslescribe and explain how these similarities emerge and begin
available. A leading theme in these studies is the exploratioto disappear again for very high excitation. To this end, we
of regularities in the observables of this classically chaotichave calculated the partial ionization cross sections up to the
three-body Coulomb system. Moreover, one would like toninth threshold of H&. The corresponding energies are
know how chaotic features emerge when the doublemuch higher than those which were reached previously, ex-
ionization threshold is approached by increasing the energyerimentally as well as numerically. This allows us to work
Most experiments have concentrated on total photoabeut the similarities of the cross-section pattern across eight
sorption cross sectiorfd—4]. This is also true for calcula- manifolds and to illustrate in detail how the propensity rules
tions using the method of complex rotation which havelead to those similarities. Our results confirm Menzel's con-
reached the highest excitation energy so far. The reason &usions for the energy regime he considered. At higher ex-
simply that complex rotation allows for the most effective citation energies, perturber states seem to destroy the simi-
computation of resonances in terms of their complex enerarity pattern. However, as we will show, a regularization
gies(where the real part is the energy position and the imagibased on an energy-dependent quantum defect can be intro-
nary part half the resonance wiglttHowever, these widths duced which restores the similarities even in the presence of
are total widths and only nondifferential observables such aisolated perturbers. The paper is organized as follows: In
the total photoabsorption cross section can be constructeSec. Il, we present the partial cross sections and briefly de-
without losing the effectivity of the approa¢b—8g|. scribe computational details. In Sec. Ill, we briefly summa-
Yet, as has been demonstrated recently, interesting addiize the propensity rules for dipole excitation and for auto-
tional features such as radiative and relativistic effectdonization of two-electron resonances, as well as their
emerge by, e.g., measuring the photon emission followinglassification schemes. We also recall adiabatic two-electron
the photo excitatiof9—-12]. It turns out that this signal re- potential curves which facilitate the understanding of the
veals the splitting of the He threshold due to spin-orbit classification and propensity rules, before we formulate the
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general scheme of the intermanifold patterns with the help of ‘& '(a) 31 15 i T
the propensity rules. In Sec. IV, we interpret the patterns of g M
the partial cross sections across the manifolds with this 4 N NN
scheme. The paper ends with a summary in Sec. V. s L . . s s
~ 69 i 70 71 i 72 i 73
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II. PARTIAL PHOTOIONIZATION CROSS SECTIONS < /\/n_//\/\/\/,/\w
OF HELIUM UP TO N=9 LEVEL OF He* S /—/”“W
— L N it ) N Y9 |
A. Numerical procedure ‘tl:'; _T15 776 77.7 778
In the present paper, the eigenchanRehatrix method .S (©) ‘/\A_/\/\/\/’W
[20,21] combined with a close-coupling schef2?] is em- .g W\/\MW
ployed in order to calculate the partial cross sections for &

single photoionization of the helium atom. 78.15 78.19 78.23 78.27
The eigenchannd®-matrix method has been successfully Photon Energy (eV)

applied to S|.ngle phot0|on|zat|o[r23] gnd photodetachment FIG. 1. Calculated total photoionization cross section in com-

[24] of atomic systems with two active electrons. The most

. . . . parison with experimental results of Refd,29] below the thresh-
|mpqrtant 'concept of'thR—matrlx theory is to partition the olds (@) N=3, (b) N=7, and(c) N=9. The theoretical datéhick
configuration space into two regions, namely, ' j

the reaCtlorI]ines) have been shifted upwards to allow for an easier comparison

region, where the short-range interactions between one pag the experimentthin lines. Moreover, the numerical data have
ticle and a compact target are complicated, and the externgben convoluted with a Gaussian of 5 meV width for3, 7, and

region, where the system can be reduced to a two-body proB-mev forN=9. In (a) and(b) the positions of the resonance states

lem involving long-range interactions. For the current paperof the two strongest Rydberg series are indic4gidfor an expla-
the reaction region is that part of six-dimensional configuranation of the quantum numbers, see Sec. Ill.

tion space for which both electrons lie within a sphere of

radiusry. The reaction surfac& is the set of points for tance. To describe an experimentally observed channel, one

which maxf 1,r,) =ro, wherer, andr, are the electron dis- has to form a linear combination of these multichannel basis

tances from the nucleus. The method has been described Wave functions according to the incoming-wave boundary

detail in the literatur¢21,22,29. Therefore, we present here condition[22].

only a brief overview and some numerical details. By matching the linear combinations of the multichannel
Within the reaction region, using a set of Slater determi-basis functions for the two regions, one can determine the

nants composed of properly chosen one-electron orbitals, thexact final state wave-function®;™) which describe the

electron-electron interaction is fully taken into account byexperimentally observed channélsThe partial cross sec-

applying bound-state configuration interaction techniques. Ations can be calculated according to the standard formula

a given energy the eigenchanrieimatrix method aims to [28]:

determine varationally a basis set of wave functions, the so-

called R-matrix eigenchannel wave functions, which are or- A% 0

thogonal and complete over the reaction surfacenclosing o=

the reaction region, and their negative logarithmic deriva-

tives I_aeing constant ovex. The helium wave functions of ‘wherew is the photon energy) is the dipole operator, and
experimentally observed channels can be represented by lifs e speed of light. The wave-functioli, in Eq. (2.1)
ear combinations of the eigenchannel wave functions thugenotes the helium ground state.

constructed within the reaction region. o In the present paper, the radiug of the R-matrix sphere

In the externgl region, since only single lonization pro-is chosen to be 200 a.u. A total of 1080 closed-tgipe, zero
cesses are considered, it is assumed that there is only a singley,o radius ;) and 20 open-typéi.e., nonzero at the radius
electron while the other electron is bound. Instead of apply—ro) one-electron wave functions with orbital angular momen-

ing the conventional multichannel guantum dgfect theory, | m up to nine are included. 9610 closed-type two-electron
[21], Panet al. [22] developed an approach using a close-¢qndaurations are included in the calculation for the final

coupling scheme to obtain a basis set of multichannel wavgiaie wave function. For each channel in which one electron
functions which describe the outgoing electron and the reg escape from the reaction region, two open-type orbitals
sidualion. In addition to the Coulomb potential, all multipole ¢, 16 oyter electron are included in addition to the closed-

interactions in the external region are included numericallytype basis set. For a given photon energy, besides all open
to account for the polarl_zanon of_the residual ion. Note that’channels, relevant closed channels are also included in the
although the asymptotic behavior of a one-electron CONgalculations(cf. [22)).

tinuum wave function in a Coulomb field is well knoya6],

this description of a singly ionized state in a two-electron
atom is exact only at an infinite distance from the nucleus.
Since one can only integrate the close-coupling equation Our calculated total photo cross section below fiie
starting from a finite distance, we use WKB representations=3,7, and 9 threshold are shown in Fig. 1 together with
[27] for the wave function instead at a suitably large dis-experimental data by Kaindl and his grol#29]. Since no

(& ID[wg)? 2.

B. Typical cross sections
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FIG. 2. Calculatedabsoluté total and partial
cross sections are compared to experimental data
(circles of Menzelet al.[15] in the region of the
N=5 resonances. Calculation in velocity gauge,
solid lines; calculation in acceleration gauge,
dashed lines; experiment, open circles. The nu-
merical results have been convoluted with a
Gaussian of 5 meV width. The acceleration gauge
result forN’=1 (and consequently for the total
cross sectionis shifted by—100 kb.

Photoionization Cross Section (kb)

76.3 76.4 76.5 76.6 76.7 76.8

Photon Energy (eV)

absolute photoionization yields are measured in these experi=9 manifold have neither been measured nor been calcu-
ments we have scaled the experimental data to our results. Asted so far. Based on the good agreement of the total cross
can be clearly seen the calculated cross section is in excellegéction with the experimerisee Fig. 1 we believe that our
agreement with the experimental one. calculation in this energy range is still reliable. As can be
Figure 2 shows the total and partial cross sections bE|OV§een in F|g 3 the regu|ar sequences of Rydberg series ob-
theN=5 threshold of He. Note that below a given thresh- served for lower manifolds appear to be lost. However, even
old N we are dealing withN—1 partial cross sections if 5 regular Rydberg progression exists it is very difficult to
onn (N'=1,...N—1), where N'(<N) denotes the jgentify it at a finite energy resolution since the peaks accu-

principal quantum number of the residual helium ion. Hence yjate towards threshold. For this reason we will use an
in the case of th& =5 threshold we are concerned with four alternative way to represent the cross section data.

partial cross sections, namelys ;. . . 05 4. The agreement

with existing experimental dafd 5] on an absolute scale is, 2. Unfolding cross sections
in general, good. Interestingly, the cross section in accelera- o
tion gauge(dashedl is higher than in velocity gaugesolid) To make all peaks of a Rydberg progression in a cross

and higher than the experiment for the partial cross sectiofiection clearly visible which is particularly important for
N’ =1. For all other partial cross sections the velocity gaugenalyzing similarities in the patterns of cross sections we
result is too high and the acceleration gauge matches tH&-parametrize the energy according to the effective quantum
experiment better. The total cross section behaves as ti@imber[30]. An ideal unperturbed Rydberg series converg-
N’=1 partial cross section by which it is dominated. Thising to a thresholcN of the He" ion would have equidistant
observation of numerical accuracy points to a fundamentaPeaks as a function of the effective quantum number
difference of theN’ =1 cross section compared to all other

partial cross sections which is also confirmed by the fact that R
N’=1 takes about 90% of the yield while the yield for the wWE=Vi—g 2.2
higher partial cross sections decreases with incredsingut
only slightly. _ where R is the Rydberg constant, arg=4R/N? denotes
Since we focus on the general patterns of the partial crosge Nth ionization potential I,=0 a.u.) of H&. In Fig. 4
ment the minor discrepancies in the absolute value are of ngnhere we have scaled the energy axis according tqEd).
concern. The constant spacing of the resonances indicates unperturbed
_ _ _ Rydberg series. Note also that the two partial cross sections
1. Partial cross sections of resonances converging to the 8l He"(N’'=1) and He (N’ =3) in Fig. 4 behave quite simi-
. .
threshold ofHe larly while He* (N’ = 2) mirrors their pattern. This mirroring
The ninth threshold is only about 0.67 eV below theand mimicking behavior of partial photo cross section is a
double ionization threshold. Partial cross sections forNhe universalintramanifold featurg19].
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r N'=7 - FIG. 5. Schematic representation of adiabatic potential curves.

r W\’\/\/\/\/\/\‘/y\/\/\/"\/\’\ 1 In the adiabatic picture the resonances appear as vibrational eigen-
x . . states. The mechanism of autoionization relies on nonadiabatic tran-
] \/\\/\/\/\\/\/\_/\/\/\/\/\/’if\s ] sitions in this description. The dashed lines indicate the avoided

, crossings of the potential curves which play an important role in the
78.15 78.2 78. 783 78.35 derivation of the propensity ruldsee Ref[6]).
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. o ) approximate quantum numbers and propensity rules for the
FIG. 3. Calculated partial photoionization cross sections belowasgnances which we will discuss first.

theN=9 thresholdusing velocity gauge The data are convoluted

with a Gaussian of 1 meV width.
1. APPROXIMATE QUANTUM NUMBERS

. . AND PROPENSITY RULES
So far, we have presented illustrative examples for the

cross sections to highlight the accuracy of our calculation. Over the last 20 years a scheme of approximate quantum
We will systematically present thatermanifold similarities  numbers for doubly excited states has been developed which
between certain partial cross sections and discuss their origieflects the correlated two-electron dynamics. They have
in the next two sections. The relations between certain chainseen expressed agK,T)* by Herrick and coworker§31]

of partial cross sections as well as the interpretation whictand assigned to hyperspherical potential curves by| 8#j.
resonances contribute to them is based on the existence Beagin and Brigg$33] gave a justification for the quantum
numbers in terms of constants of motion for a separable
Hamiltonian which arose from the introduction of the so-
called molecular adiabatic approximation. This approxima-
tion is similar to the Born-Oppenheimer approximation for a
diatomic molecule, namely, FH, but with reversed roles of
electrons and nuclei. In two-electron atoms it is the interelec-
tronic axisR which is taken as adiabatic, i.e., slow variable
in analogy to the internuclear axis in,H In this picture the
doubly excited states naturally appear as vibrational eigen-
states in the adiabatic potential curveg Fig. 5.

Probably the most simple way of understanding the quan-
tum numbers is to interpret them as the Stark quantum num-
bers of the inner electron whose Coulomb motion is per-
turbed by the electric field of the outer electron. The
quantum numbers remain the same along a Rydberg series
when the outer electron’s quantum numireincreases to

4 .5 6 7 8 9 10 infinity (single ionization limii and the inner electron re-
Effective Quantum Number v(E) mains in theNth excited state of the ion, whefd=N;

FIG. 4. Partial cross sections as a function of the effective quan-™ N2t m+1 is the sum of the Stark quantum numbers.
tum numbery,(E) below theN=4 threshold. Due to an energy- Note, that the classification will be relevant to understand the
independent quantum defect the resonance spacings are equﬁﬁttern in partial ionization cross sections since it is also
Theory (velocity gaugg solid lines; experimenitl5], open circles.  applicable to singly ionized two electron statés., con-

The numerical data are convoluted with a Gaussian of width 5 meMinuum states The Stark quantum numbersften called

860 | total |
810 | 00

760 t . . . . . . . 1

Cross Section (kb)
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parabolic quantum numbeérare related to Herrick's scheme autoionization can be stated by establishing a preference for
by T=m andK=N,—N;. The labelA denotes the symmetry nodal changes in the wave function.

with respect to the ling,=r, in the wave function where Most easily,N, can be changed which is the preferred
ther; are the electron-nucleus distances. The complete sigdecay mode. This is achieved in the molecular description
nature of a two-electron resonance is tr[emlsz]ﬁ or (as well as in the hyperspherical gnky so-called radial
n(K,T)A . For the classification of resonance states in heliunfoupling matrix elements which are large between states
photoionization from the ground state one very often uses #hich differ only inN,. Rotational coupling is only slightly
simplified Herrick’s notation, namelyy, K,,, where the other less effective and changes the quantum nunmheFinally,
guantum numbers are redundant due to the dipole selectidhere is no mechanism to chandl. Hence, a resonance
rules(see Fig. 1 For a more complete comparison betweendecays only through changird, if no other possibility ex-
the different quantum numbers sg&18]. ISts.

The approximate constants of motion for correlated two- In parallel, the symmetrA plays an important role. In
electron dynamics expressed through the approximate quageneral, states witih=+1 decay more easily than states
tum numbers imply a nodal structure for the respective resowith A=—1 which can be seen from the narrower avoided
nance state§34]. In turn, this nodal structure leads to crossings folA=+1 leading to larger radial couplings com-
preferences for autoionizatiofl6] and (radiative dipole pared toA=—1 states. We may summarize the propensity
transitions[35]. rules for autoionizatio16] according to the relative effi-

ciency of the underlying decay mechanism:

A. Propensity rules for radiative transitions

. _ . . (A) reduction of N,, (3.4a
Propensity rules for radiative transitions can be derived by

analyzing the dipole matrix elements accordln_g to the r_10da| (B) change ofm, (3.4
structure of the resonance wave functions, which is a simple

analytical task on the potential saddle for=2r,+r,=0. (C) reduction of Ny . (3.40

This region in configuration space is most relevant for sym-
metrically excited electrons witN~n. It corresponds to the These propensity rules group tH&®° resonant states of

equilibrium geometry of a lineaABA molecule[36]. Not  hejium into three classes I-IIl with typical widths separated
surprisingly, the relevant quantum number by at least two orders of magnitudel,:T T
~10*10%:1. Since the propensities depend on the nodal
v2=2N;+m (3.1) structurel N;N,m] of the inner electron, they hold for entire

Rydberg series(different n) characterized by a single
N;N,m] configuration. States of class Il fotP° reso-

ances are restricted to tHdN—1)00] configurations,

which enforce decay throughZN; # 0 transition(C).

for radiative propensities quantizes the twofold degenerat
bending motion of triatomic molecules and can be derived b
normal mode analysis about the saddle pp&&,37]. Dipole
matrix elements within the saddle approximation follow the
selection rule
C. Propensities for partial photoionization cross sections
Av,=0,x1 (3.2 We proceed now to formulate the conditions for the simi-

_ ) ) larity in patterns of partial photo cross sections based on the
that survives for the_full dynamics as a pr_opensny rule. H_ereexisting propensity rules. The propensity r@f) character-
we are interested in photoabsorption into doubly exciteqzes py far the most important mechanism for autoionization

states from the ground state of helium. The fidak +1  and it is this decay mechanism which also determines the
states with the admixture of lower channels for the relativelysimilarity patterns.

best overlap with the ground state can onlynbe + 1 states
due to thelP° symmetry. Therefore, we expect a preference 1. Configurations, manifolds, and chains

for So far we have already used the terms configuration and

manifold. Aconfigurationis a set of two-electron states char-
acterized by the quantum numbéhé;N,m]* which refer to
the state of the inner electron in the correlated two-electron
state. Amanifold Nof two-electron states contains all con-
figurations whose quantum numbers add upNte N; + N,
+m+1. Physically, one can think dfl being the principal
guantum number of the electron in the Hion which would
remain if the outer electron would be taken away. In the
adiabatic picture a configuration is represented by a potential
curve(see Fig. 5. This illustrates that the actual state of the
outer electron is not specified for a configuration. It can be a
The mechanism of autoionization relies on nonadiabatibound state with quantum numberin the potential curve
transitions in the€moleculaj adiabatic picture. The rules for corresponding to a resonance for the two-electron system.

Av,=1 (3.3

transitions(i.e., Am=1). In each manifoldN there is only
one serieg0(N—2)1]" fulfilling this condition. This series
is commonly referred to as thaincipal seriesin the litera-
ture. Other seriegwith A= +1) are also populated without
the preference oAN;=0. However, they carry much less
oscillator strength.

B. Propensity rules for nonradiative transitions

042715-5
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These types of states we call in the present coritégtme- 21
diate configuration The outer electron can also be in the l l '

continuum characterized by the potential of the configuration

Cross Section Patterns

ond electron being a Rydberg electnor in the continuum ” \/\NW
states.
(e.g., Fig. 2 for the N’ =1 partial cross sections. ; ¥ 5 :
Energy
these configurations contribute dominantly to the cross secach of the individual cross sections is horizontally shifted by a

of the inner electron. These types of states we faadll con- 3’2W
figuration It is important to realize that all the propensity
is irrelevant for these propensities. However, this does not
mean that we deal with independent electron states. Rather
the Stark quantum numbers of a configuration for the inner 6,5 M\T\/\N
L R 7,6 PT

Photoionization proceeds from the initial stdtesre the W/\/\
ground state of heliuneither directly or via a resonance of
the intermediate configuration to the final configuration. Par- 87
ticularly the partial cross sectionsy ; have a strong direct W\/\/

. . . 2

To form a partial cross sectiamy - one has to take into Scaled
account all accessible intermediate and final configurations.
The propensity rules can be used to structure the contribu- FIG. 6. Partial cross sections withN=N—N’=1. The energy
tion. constant quantum defect in order to approximately align the reso-

nances of the principal series. The numbers on the left stand for

N,N’. The cross sectiowory . with N=6 are convoluted with a

rules refer to the nodal character induced by the configura- 43

tions only, i.e., to a first approximation, the state of the sec- WN\

electron characterize a whole set of correlated two-electron

channel(simply the photoionization of one of the electjon 98

This is seen in the large smooth background cross section \/\\/\/\/\,\/\

tions of different configurations and they determine which ofaxis of each panel is scaled according to E212). Additionally,
Gaussian of width 1 meV. A few perturbers are indicated by “PT.”

2. Chain of similar partial cross sections with dominant
configurations only

Suppose we excite from the ground state only the conuting chain of configurations and its differenceN,=N
figurations O(N—2)1]", N=2,3,... ,i.e., all the principal —N’"in Ny:
series. This yields partial cross secticﬁw n Which already
show the main features of the physical cross sections, and Nmin=Ny+m+AN;+1. 3.9
cons_quen_tly, their sm_ularl'gy patterns. The most e_ff|C|ent|n our example withN; =0 andm=AN,=1 we haveN,
autoionization mechanism is governed by propensity rule:3 therefore does not belond to the chain
(A), i.e., by reducing the quantum numbidp. Hence, the ' P21 9 '
dipole excited intermediate configuratip@(N—2)1]" will
lead to a dominant final configurati¢p@(N’—2)1]" for the

partial cross sectioory v, with the change irN, being AN
=N-—N'. The idea is now that partial cross sections in dif-

ferent manifolds look similar if their final configurations reason is that in addition to the dominant intermediate con-

have an identical differencAN=N—-N’ in the quantum _ . + . :
numberN, with respect to the respective intermediate Con_ﬁguranon[O(N 2)1]" other configurations are populated

figurations. Figure 6 shows the partial cross sections acrosgszr\gil’ tﬁzcrzgrf']i:‘g?crig h??l/:enggiglngcgzlrgg:lglmlL\atrté)r?]ttiir?r?e
the manifoldsN with AN=1. Apart from the first cross sec- j P P

tion o, all patterns look fairly similar as predicted. There sum of all these patterns. However, each chain has its indi-

are local perturbations marked as “PT” and one also noteé"du.al lower end ‘?‘Ccord'”g 0 Ec{3:5). qu Instance t+he
hain fed by the intermediate configuratiph(N—3)1]

that the similarities become weaker for the highest cross sec- . : :
tion shown, namelyg 4. Both of these anomalies we will starts in the ma_n|fold\lmin=4 and does no'g cont_nbute 0
discuss later, after we have explained why; looks so dif- ‘1322' 1|]rl f:r(]:(tj Fi‘c,'\}e_d;r;’]r? Eahri ?hrgutc\/% ztt?(t)?] IZST?::ltler?rEWl\é di-
ferent. This is easy to understand because the principal inter- ) . : ( ) . 9 -
mediate configuratioh001]* in the N=2 manifold cannot ate configurations and we expect their chains to be sufficient

decay throughAN, to the N=1 manifold sinceN,=0 to to understand the evolution of the regularity of the patterns

begin with. Rather] 001]* decays by changing. andm to in the pa'rtlal cross sections whlch will be discussed in the
B next section. For simplicity we introduce a short notation
[000]™ which is not the preferred decay route.

Therefore, a chain of similar cross sections has a lower
end defined by theN,,m) quantum numbers of the contrib-

3. Partial cross-section chain including all configurations
populated

A closer look on Fig. 6 reveals that there is still a small
change in the characteristic pattern framg, to o54. The

CN, m(ANy) (3.6
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3w N

S PT
42 5,/VM/W/\/
P PT
5,3W s WW

W VY YV VY VvV aVatanVal

TAVAVE S AVAVAYA

W 1 3 3 4 5 6
9,7 ‘ Scaled Energy

2 3 4 5 3
Scaled Energy FIG. 8. Same as Fig. 6 but for theN =3 partial cross sections.

Cross Section Patterns

Cross Section Patterns

FIG. 7. Same as Fig. 6 but for tieN=2 partial cross sections. s : ; . . o o
For comparison a clipping ofy_sn:_s (dashed lingis shown in principal intermediate configuratior021]" with N,,=4.

the 4.2 and 6,4 panel. For o5 3 both dominant chain€ y,(2) andC; ,(2) can con-
tribute. Consequentlyys ; is the partial cross section with

to describe the chains whehg,m,A characterize the inter- the lowestN exhibiting the fully developed pattern &N
mediate configuration and determine the lower end of the=2 which one sees comparing the clipping @f 5 t0 a4,
chain N,,;, according to Eq(3.5 while AN, characterizes @ndoe4 (see dashed lines in Fig).7

the type of similar cross sections withN=AN, emerging

from the chains. So far we have focused®N,=1 (shown B. Partial cross sections withAN=3
. . . . - + +
in Fig. 6) with the two dominant chain§, (1) andCy 4(1). These cross sections, shown in Fig. 8, have a characteris-
tic pattern, which is different from the respective groups
IV. SYSTEMATICS IN PARTIAL CROSS SECTIONS characterized byAN=1 and AN=2. Yet, the systematics
ACROSS MANIFOLDS FROM N=2 TO N=9 within the group is again the same as for the other two

. _ groups and can be translated by simply increa$iriyy one:
We will now test the systematics for the patterns de—tpg first cross section ; looks extremely different since it
scribed and illustrated in the last section ®N,=1 with 4565 not belong to a chain. To the next one only the chain
cross sections 0AN,>1. Thereby, we will also discuss the oy the principal intermediate configuration contributes,

phenomenon of perturbers and the slow disappearance of the _ contains for the first time the characteristic pattern for
patterns for very high partial cross sections, as mentioned iR \'= 3 However. since we are already closé\te: 8 where

the last section. the patterns start to fade out due to a beginning break down
of the propensity rules to which we ascribe their existence,
A. Partial cross sections withAN=2 we see only two relatively similar cross sectiolag, 3 and

We first discuss the\N=2 partial cross sections shown 974 ) ) o )
in Fig. 7. The general pattern looks quite different compared W& summarize the systematics of the chains in Fig. 9
to AN=1 shown in Fig. 6. However, among each other, thewhere all mte_rmedlate conflgurat|ons are shown which can
partial cross sections behave similarly as in Fig. 6: The lowd&c@y according to propensity ru@) [Fq- (3.43]. From
est curveor;; does not match at all the other curves, the next19. 9 the lower end characterized ByN” of any chain can
one, o4 ,, is still slightly different from the higher ones €asily be determined. For exampi&, (AN) evokes a pat-
which are quite similar. Foog g and higher the patterns be- t€rn with intermediate configuratioi®NO]~ already start-
gin to fade out. We first note that the lowest possible partial"d at N'= 1. with oy n/=1 Cross sections. However, as re-
cross section fodN=2 is o3;. As for o5, in Fig. 6 the peatedly pomted out, they are too weak to be seen in the
dominant intermediate configuratiq©11]™ cannot decay Cross sections.
according to the preferred propensity rdié&l,=2 but must
decrease the quantum numbarand therefore change the
quantum numbeA from +1 to — 1 in addition. Henceg ; Before the pattern actually breaks doysee, e.g., Fig.)8
does not belong to the chain of similar cross sections. To th#& can already be locally distorted by so called perturber
next higher oneg, , contributes only the chain built on the states. As is well known from quantum defect the[88], a

1. Role of isolated perturbers

042715-7



TOBIAS SCHNEIDER, JAN-MICHAEL ROST, AND CHIEN-NAN LIU PHYSICAL REVIEW A65 042715

N=2 N=3 N=4 N=5 N=6

- . ‘ , .
2
=1 & (@)
_ | o101 [020] [030] [040] [050] @ L . . . .
@ , : : , ,
e
+| lou) 021 031 041] )
<
=2 & . ‘ ‘ . . (b)
_ | m2011110] 1030101201 || [0401,(130] [0501,[140] 5 6 7 8 9 10
. . . .
4| to211,111] [0311,[121] (e FIG. 10. Partial cross set_:tlon of the' =4 _satelllte below the
N'=3 N=6 threshold(a) as a function of the effective quantum number
~ | [0301,[1201,[210] | [0401,(1301,1220] |[0501,{1401,[230] ve(E) [EQ. (2.2] and (b) as a function ofvg(E) + 66'4n(E)' where

56’4n(E) denotes the quantum defect of the serieg8[@41]7 . In
) (a) the position and the linewidth of the perturlérK,=7,5; are
_ 4011301 ol | N indicated[6]. In (b) the bunching of the resonances due to the
12201,310] [2301,(320] perturber is disentangled restoring the similarity pattern.

[0411,[131]
[221],[311]

1031101211, 211) | [041],(131],1221]

N's5 principal quantum number of the outer electron only mod-
- {‘3’;3}3‘:3}‘23"] ) erately larger than the principal quantum numbenof the

- : inner electron. Clearly, fon>N the regime of alregulay
effective one-electron Rydberg series is always approached.

FIG. 9. Compilation of all two-electron configuratiofisbeled
by parabolic quantum numbersvhich can decay according to pro-
pensity rule(A) [Eq. (3.43]. The + and the— signs stand foA V. CONCLUSIONS

+1 and the principal configurations are underlined. We have presented numerical total and partial cross sec-

) tions for single photoionization from the helium ground state
perturber acts in a twofold way on the resonance states tgy, o theN =9 threshold of Hé. Our calculations were done
which it cquplgs. First, it shifts Fhe|r posmor(ébunchlng by using the eigenchann&matrix method. We found very
effect”) which is expressed by a jump in the quantum defectgs04 agreement with available experimental data for both

Second, it modulates their linewidth in a Fano-profile-like he total cross section up to the=9 manifold and the par-
way. Both effects locally perturb the cross section pattern. i) cross sections up to tHé=5 manifold.

The bunching of the resonances is visible in the cross- A comparison of the partial cross sectiomg , (N’ de-
sectionson=sn: and on—gn:_ With the perturbersN,K,  poting the state of the residual helium jaacross the mani-
=6,4, and 7,5, respectively. The distorting influence on the f5|4s reveals common patterns in the cross sections with the
pattern can be compensated by mcprporatmg the quantu@y meAN=N-=N’. The patterns of the principal series domi-
defect &y k (E) of the perturbed series. Plotting the crosspate with a seizable contribution from strongest secondary
section against the effective quantum numbeg(E)  series due to the large oscillator strength of these series. The
+ 86,4 (E), restores the characteristic pattern of the crossnanifestation of the patterns can be attributed to chains of
section as can be seen in Fig.(A0 The effective quantum configurations which connect the intermediate configurations
defect compensates the bunching of resonances on the epf-resonance states seen in the cross sections to final configu-
ergy axis. Therefore, this kind of disentanglement worksrations in the different continua according to the dominant
well, as long as the effect of the perturber on the width of thepropensity rule for autoionization.
resonances is small as it is the case for the cross-sections Starting with theN=5 manifold perturbers emerge which
on=sn' andoy—gn - The perturber 86 however, causes a locally destroy the general patterns. However, in cases where
drastic narrowing of the width of the state 7,5 This per-  the perturber mainly leads to a bunching of resonances on
turbation of the pattern cannot be compensated by expressirige energy axis, a regularization based on energy-dependent
the energy in terms of the effective quantum defect. How-quantum defects has been shown to disentangle the spectra
ever, the perturbation remains small and local leaving th&nd restore the similarity of the patterns. Going to manifolds
general pattern still identifiable as one can see in the crosd®d=8 and higher the patterns start to fade out which finally

sectionso; y of Figs. 6, 7, and 8. indicates the breakdown of the propensity rules. This in turn
' signals the approaching limits of the adiabatic picture and the
2. Fading out of patterns approximate quantum numbers derived from it.

Going to higher manifolds the patterns start to fade out.
This is certainly due to an increasing number of perturbers.
However, in more general terms, this observation indicates We would like to thank A. Menzel and R. Bner for
the beginning breakdown of approximate quantum numberproviding us with their experimental data. Financial support
and consequently of the propensity rules which govern thdy the DFG through the Gerhard Hess-program is gratefully
patterns. This refers to a situation discussed here with thacknowledged.

ACKNOWLEDGMENTS

042715-8



INTERMANIFOLD SIMILARITIES IN PARTIAL . .. PHYSICAL REVIEW A 65042715

[1] R. P. Madden and K. Codling, Phys. Rev. Léh, 516(1963. [18] G. Tanner, K. Richter, and J. M. Rost, Rev. Mod. P#%.497

[2] H. D. Morgan and D. L. Ederer, Phys. Rev28, 1901(1984). (2000. _
[3] H. Kossmann, B. Kissig, and V. Schmidt, J. Phys. &, 1489  [19] C.-N. Liu and A. F. Starace, Phys. Rev.58, R1731(1999;
(1988. Phys. Essay43, 215(2000.

[4] M. Domke, C. Xue, A. Puschmann, T. Mandel, E. Hudson, D.[gg] g ';arg'\ing C. M. be% Pnysé Rev. Le&;)ﬂr.], 157;’(1%73-250
A. Shirley, G. Kaindl, C. H. Greene, H. R. Sadeghpour, and H.[ 1P. F ) ahony an | Uoreene, Thys. Rev. A
Petersen, Phys. Rev. LeB6, 1306 (1991: M. Domke, G (1985; C. H. Greene and L. Kimipid. 38, 5953(1988; C. H.

TS S . e Greene, iffundamental Processes of Atomic Dynameéxdited
Remmers, and G. Kaindbid. 69, 1171(1992; M. Domke, K. by J. S. Briggs, H. Kleinpoppen, and H. O. LuBlenum, New

Schulz, G. Remmers, A. Gutiez, G. Kaindl, and D. Wintgen, York, 1988, pp. 105-127.
Phys. Rev. A51, R4309(1995; M. Domke, K. Schulz, G.  [22] C. Pan, A. F. Starace, and C. H. Greene, Phys. Ré&B,/840
Remmers, G. Kaindl, and D. Wintgeitid. 53, 1424 (1996; (1996.
K. Schulz, G. Kaindl, M. Domke, J. D. Bozek, P. A. Heimann, [23] M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Phys.
A. S. Schlachter, and J. M. Rost, Phys. Rev. L&, 3086 68, 1015(1996.
(1996. [24] See, for example, C. N. Liu and A. F. Starace, Phys. R&0A
[5] D. Wintgen and D. Delande, J. Phys.2B, L399 (1993. 4647 (1999.
[6] J. M. Rost, K. Schulz, M. Domke, and G. Kaindl, J. Phys. B [25] H. Le Rouzo and G. Ra§eev, Phys. Re\QSA 12_14(1984)'
30, 4663(1997). [26] K. Smith, The Calculation of Atomic Collision Processes

. (Wiley, New York, 1973.
(7] B. Gremaud and D. Delande, J. Phys.38, 1671(1998. [27] A. Burgess, Proc. Phys. Soc. Lond8fh, 442 (1963.

[8] A. Burgers, D. Wintgen, and J. M. Rost, J. Phys28 3163 [>g) o' F. Starace, irHandbuch der Physik, Vol. 31: Corpuscles

(1995. . and Radiation in Matter edited by W. Mehlhorn(Springer,
[9] J.-E. Rubensson, C. &, S. Cramm, B. Kessler, S. Stranges, Berlin, 1982.

R. Richter, M. Alagia, and M. Coreno, Phys. Rev. L88,947  [29] R. Pittner, M. Domke, B. Gremaud, M. Martins, A. S.

(1999; T. W. Gorczyca, J.-E. Rubensson, Cit8a M. Stran, Schlachter, and G. Kaindl, J. Electron Spectrosc. Relat. Phe-

M. Agéker, D. Ding, S. Stranges, R. Richter, and M. Alagia, nom. 101-103 27 (1999.

ibid. 85, 1202(2000. [30] Y. Yan and M. J. Seaton, J. Phys. 2, 6409 (1987; J. A.
[10] M K. Odling-Smee, E. Sokell, P. Hammond, and M. A. Mac- Fernley, K. T. Taylor, and M. J. Seatoibjd. 20, 6457(1987.

Donald, Phys. Rev. LetB4, 2598(2000. [31] D. E. Herrick, Adv. Chem. Phy$2, 1 (1983; D. R. Herrick
[11] F. Penent, P. Lablanquie, R. I. Hall, Mita@ik, K. Bucar, S. and A. O. Sinanoglu, Phys. Rev.4, 97(1975; D. R. Herrick

Stranges, R. Richter, M. Alagia, P. Hammond, and J. G. Lam- and M. E. Kellmanjbid. 21, 418(1980; D. R. Herrick, M. E.

bourne, Phys. Rev. Let86, 2758(2001. Kellman, and R. D. Poliakibid. 22, 1517(1980; M. E. Kell-
[12] C.-N. Liu, M.-K. Chen, and C. D. Lin, Phys. Rev. B4, man and D. R. Herrickibid. 22, 1536(1980.

010501R) (2001). [32] C. D. Lin, Phys. Rev. Lett51, 1348(1983; Adv. At. Mol.
[13] P. R. Woodruff and J. A. R. Samson, Phys. Rev2% 848 Phys.22, 77 (1986.

(1982. [33] J. M. Feagin and J. S. Briggs, Phys. Rev. LBft. 984 (1986;
[14] M. Zubek, G. C. King, P. M. Rutter, and F. H. Read, J. Phys. B Phys. Rev. A37, 4599(1988.

22, 3411(1989. [34] J. M. Rost, J. S. Briggs, and J. M. Feagin, Phys. Rev. 6éit.
[15] A. Menzel, S. P. Frigo, S. B. Whitfield, C. D. Caldwell, M. O. 1642 (1991); J. M. Rost, R. Gersbacher, K. Richter, J. S.

Krause, J-Z. Tang, and |. Shimamura, Phys. Rev. L&. Briggs, and D. Wintgen, J. Phys. B4, 2455(1991).

1479 (1995; A. Menzel, S. P. Frigo, S. B. Whitfield, C. D. [35] A. Vollweiter, J. M. Rost, and J. S. Briggs, J. Phys2®& L155

Caldwell, and M. O. Krause, Phys. Rev.54, 2080(1996. (1991).
[16] J. M. Rost and J. S. Briggs, J. Phys2B, L339 (1990. [36] J. E. Hunterlll and R. S. Berry, Phys. Rev.3&, 3042(1987.
[17] H. R. Sadeghpour and C. H. Greene, Phys. Rev. B&t313  [37] J. M. Rost and J. S. Briggs, J. Phys2B, 4293(1991).

(1990. [38] D. Wintgen and H. Friedrich, Phys. Rev.35, 1628(1987).

042715-9



