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We investigate the effect of incoherent perturbations on atomic photoionization due to a femtosecond
midinfrared laser pulse by solving the time-dependent stochastic Schrödinger equation. For a weak laser pulse
which causes almost no ionization, an addition of a Gaussian white noise to the pulse leads to a significantly
enhanced ionization probability. Tuning the noise level, a stochastic resonancelike curve is observed showing
the existence of an optimum noise for a given laser pulse. Besides studying the sensitivity of the obtained
enhancement curve on the pulse parameters, such as the pulse duration and peak amplitude, we suggest that
experimentally realizable broadband chaotic light can also be used instead of the white noise to observe similar
features. The underlying enhancement mechanism is analyzed in the frequency domain by computing a
frequency-resolved atomic gain profile, as well as in the time domain by controlling the relative delay between
the action of the laser pulse and noise.
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I. INTRODUCTION

The role of noise on driven quantum systems is a subject
of considerable interest and importance. Several studies exist
in the literature on this broad topic. For instance, the noise-
induced effects in the nanoscale quantum devices such as
Josephson junctions �1,2�, the macroscopic phase transitions
due to quantum fluctuations �3�, driven multilevel quantum
systems under incoherent environment �4�, and stochastic
ionization of Rydberg atoms by microwave noise �5�, to
mention just a few. In these examples, the action of noise on
a system can be broadly classified as being of two types:
either of destructive nature, i.e., noise must be avoided; or of
constructive nature necessitating its presence.

It is this nontrivial latter aspect of noise-induced effects
that has been the subject of intense investigation �1,2,6,7�. In
particular, the stochastic resonance phenomenon �SR� pro-
vides a paradigm for the constructive role of noise in nonlin-
ear classical as well as quantum systems �7�. The essence of
quantum SR is the existence of an optimum amount of noise
in a nonlinear system that enhances its response to a weak
coherent input forcing �8–11�. Despite the diversity of non-
linear dynamics exploiting classical SR, most of the quantum
mechanical studies of the effect have focused on the so-
called spin-Boson model, which provides an analog of a
classical double-well potential �1,2,12,13�. However, many
other physical systems exist, particularly atoms or molecules
exposed to strong laser pulses, where the quantum dynamics
can be nonlinear and therefore added noise could play an
important role.

The presence of noise is also worth studying from the
point of view of steering quantum dynamics of atomic or
molecular systems �14–16�. Traditionally this is achieved
with strong, tailored laser pulses by exploiting their nonper-
turbative and nonlinear interaction with the atomic systems.
In this context, it has been shown that weak noise of various
origin in multilevel ladder systems plays a crucial role �14�.
Many scenarios have been discussed, such as the need to
either cooperate or fight with decoherence in the closed-loop
control �17�, and to engineer the environment to achieve the

steering of quantum systems toward a desired state �18�. In
the same spirit, white shot noise has been used to dissociate
diatomic molecules �19�. This has implications for the field
of quantum control. Motivated by the concept of exploiting
noise in nonlinear systems, one can ask the question if noise
can serve as an extra tool for quantum control. Indeed, the
concept of the quantum SR effect has not been exploited for
additional insight in controlling the quantum phenomenon.

In this paper, we provide a detailed study of the influence
of noise in a generic quantum situation, namely, the photo-
ionization of a single-electron atom interacting with an ul-
trashort laser pulse. We will demonstrate the conditions un-
der which a resonancelike behavior emerges in the stochastic
photoionization process. This noise-induced phenomenon is
studied for a variety of laser pulses, from a few optical cycles
duration to very long ones, and of varying intensities. Fur-
thermore, we suggest the experimental observability of the
effect by employing a broadband chaotic light instead of
white Gaussian noise. Last, we characterize the underlying
gain mechanism in the frequency domain in order to identify
the crucial frequency bands in the broad noise spectrum.

The paper is organized as follows. Section II introduces
our model of the simplest atom interacting with a femtosec-
ond laser pulse and white noise, and describes our method to
solve its stochastic Schrödinger equation. In Sec. III, we
show the results of the ionization probability �IP� for various
combinations of the laser pulse and noise. The existence of a
stochastic resonancelike behavior is quantified using an en-
hancement factor, which is computed from IP. The sensitivity
of this noise-induced effect is tested with laser pulses of
varying duration and strength, and other types of noise such
as a realizable broadband chaotic light. To characterize the
enhancement mechanism, we compute the frequency-
resolved gain profile of the driven atom, and study the role of
relative time delay between noise and the laser pulse. Finally,
Sec. IV provides a summary of results with our conclusions.

II. DESCRIPTION OF THE MODEL

A. Hydrogen atom interacting with a laser pulse and noise

We consider as an example the simplest single-electron
atom, i.e., the hydrogen atom. Due to the application of an
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intense linearly polarized laser field F�t�, the electron dy-
namics is effectively confined in one dimension along the
laser polarization axis �20�. The Hamiltonian for such a sim-
plified description of the hydrogen atom, which is here also
perturbed by a stochastic force ��t� �21�, reads as �atomic
units �=m=e=1 are used unless stated otherwise�

H�x,t� =
p̂2

2
+ V�x� + x�F�t� + ��t�� , �1�

where x is the position of the electron and p̂=−i� /�x is the
momentum operator. The external perturbations F�t� and ��t�
are dipole coupled to the atom. The potential is approximated
by a nonsingular Coulomb-type form,

V�x� = −
1

�x2 + a2
. �2�

Such a soft-core potential with parameter a has been rou-
tinely employed to study atomic dynamics in strong laser
fields �22�. It successfully describes many experimental fea-
tures of multiphoton or tunnel ionization �20�, and the obser-
vation of the plateau in higher harmonic generation spectra
�22�.

The laser field is a nonresonant midinfrared �MIR� fem-
tosecond pulse described as

F�t� = f�t�F0 sin��t + �� . �3�

Here F0 defines the peak amplitude of the pulse, � denotes
the angular frequency, and � is the carrier-envelope phase.
We choose a smooth pulse envelope f�t� of the form

f�t� = �sin2��t/�2��� , t � �

1, � � t � Tp − �

cos2���t + � − Tp�/�2��� , Tp − � � t � Tp,
	

where Tp is the pulse duration and � is the time for turning
the field on and off.

The noise term ��t� is a zero-mean Gaussian white noise
having the following properties:


��t�� = 0, �4�


��t���t��� = 2D��t − t�� , �5�

and noise intensity D �23�.

B. Stochastic quantum dynamics

The presence of the stochastic forcing term in the Hamil-
tonian as described above makes the quantum evolution non-
deterministic. Thus an averaging over a large number of re-
alizations of the stochastic force is required in order to
produce a statistically meaningful solution of the following
time-dependent stochastic Schrödinger equation:

i
�	�x,t�

�t
= H�x,t�	�x,t� . �6�

For a given realization, the numerical solution of the
Schrödinger equation amounts to propagating the initial

wave function �	0� using the infinitesimal short-time sto-
chastic propagator,

U��
t� = exp
− i�
t

t+
t

H�x,t�dt� . �7�

One can compute U��
t� using the split-operator fast Fourier
algorithm �24�. Details of the method employed are de-
scribed in the Appendix. Successive applications of the sto-
chastic propagator U��
t� advance �	0� forward in time.

Note that the initial state �	0� is always chosen to be the
ground state of the system having an energy of Ib=
−0.5 a.u. This is obtained by the imaginary-time relaxation
method for a2=2 �20�. To avoid parasitic reflections of the
wave function from the grid boundary, we employ an absorb-
ing boundary �24�.

The ionization flux leaking in the continuum on one side
is defined as �25�

JR�xR,t� = Re�	�p̂	�xR
, �8�

where xR is a distant point �typically 500 a.u.� near the ab-
sorbing boundary. The ionization rate is integrated over a
sufficiently long time interval to obtain the corresponding
total ionization probability,

P = �
0

�

JR�xR,t�dt . �9�

In the following section, we shall use both the ionization
flux and the photoionization yield to study the interplay be-
tween the laser pulse and noise. From the point of view of
stochastic resonancelike phenomena, we aim at establishing
the constructive role of noise in atomic photoionization due
to a femtosecond laser pulse.

III. RESULTS

A. Optimal stochastic enhancement of photoionization

1. Photoionization as a nonlinear effect

Let us first consider the response of the atom interacting
with a short but strong laser pulse only. Figure 1 shows the
ionization probability Pl versus the peak pulse amplitude F0
for a 20-cycle-long MIR laser pulse ��=0.057�. This figure
shows that with increasing values of F0 the ionization prob-
ability first increases nonlinearly, and then saturates to the
maximum value of unity, for F0�0.05. The behavior of
Pl�F0� is a characteristic signature for many atomic and mo-
lecular systems interacting with nonresonant intense laser
pulses �22�.

The laser pulse produces �nonlinear� ionization of the
atom, which is most easily understood, especially in the time
domain, with the picture of a periodically changing tunneling
barrier. Ionization flux is produced close to those times when
the effective potential U�x , t�=V�x�+xF�t� is maximally bent
down by the dipole-coupled laser field. This is illustrated in
the inset of Fig. 1 with the temporal evolution of the ioniza-
tion flux for laser pulses �shown in the top parts of the inset�
with two different peak amplitudes F0=0.05 and F0=0.02
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�see the arrows in Fig. 1�. Time-resolved ionization peaks
separated by the optical period �2� /�� are clearly visible for
both peak field amplitudes. In addition, JR�t� shows a com-
plex interference pattern �the inset of Fig. 1� due to the
modulated Coulomb barrier for F0=0.05. However, quite
strikingly, if F0 is reduced to 0.02 a.u., the ionization flux
collapses by around five orders of magnitude as shown in
Fig. 1. One can therefore conclude that the photoionization
dynamics is highly nonlinear, and in particular, it exhibits a
form of “threshold” dynamics where the threshold is created
by the condition for over-the-barrier ionization.

2. Ionization induced by noise alone

Here we look into the possibility of efficiently ionizing
the atom, when it is subjected to white Gaussian noise only.
The interaction time of the atom with the noise is kept iden-
tical to the laser pulse duration Tp �see the inset of Fig. 3�.
Figure 2 shows the evolution of the ionization flux 
JR�t��,
which is averaged over 50 different realizations of the noise.
One can see that for small noise amplitudes the ionization
flux exhibits a featureless curve, producing the ionization
flux around 10−9. As the noise level is increased, the feature-
less ionization curve rises monotonically as shown in Figs.
2�a�–2�c�. By integrating the stochastic ionization flux, one
can compute the corresponding ionization probability Pn,
which is simply equal to the area under the curve 
JR�t��. The
resulting noise-induced ionization probability Pn versus the
noise amplitude is shown in Fig. 3. As can be seen the sto-
chastic ionization probability rises monotonically with the
noise level. For ultraintense noise, such that its strength be-
comes comparable to the atomic binding field, obviously full
ionization can be achieved. We should mention that similar
effects have been observed in other systems, for example, the
purely noise-induced molecular dissociation �19�, and the

ionization induced by weak noise of the highly excited Ryd-
berg atoms �5�. However, in our case we consider the atom to
be initially in its ground state.

Although the application of noise alone, or the laser pulse
alone, can lead to the atomic ionization, we aim to study
whether a combination of both the laser pulse and noise
makes the ionization process more efficient as compared to
the individual cases.

3. Simultaneous application of the laser pulse and noise

We have seen that the atomic photoionization due to an
intense femtosecond laser pulse is a highly nonlinear quan-
tum phenomenon, and in particular, the ionization response
collapses for a “weak” laser pulse �see the inset of Fig. 1�.
Motivated by the quantum SR effect, we wish to explore if
the noise can recover the strong periodic ionization flux for
the weak laser pulse. To answer this question, in Fig. 2�a� we
show the average ionization flux when a small noise of am-
plitude, �D=0.000 24, is added to the previously weak laser
pulse �F0=0.02�. Note that the atomic excitation time by the
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FIG. 1. �Color online� The ionization probability Pl as a func-
tion of the laser peak amplitude F0. The insets show the ionization
flux versus time for two different pulses �top parts of the curves� of
amplitudes, F0=0.05 and F0=0.02, marked by arrows on the IP
curve. Here �=0.057, �=0.0, Tp=20� /�, and �=2� /�.
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FIG. 2. �Color online� Ionization flux for a weak laser pulse
F0=0.02, with three values of noise amplitude: �a� �D=0.000 24,
�b� 0.0015, and �c� 0.018. Background featureless curves �red� show
the corresponding purely noise-driven �F0=0� flux. The flux is av-
eraged over 50 realizations.

FEMTOSECOND PHOTOIONIZATION OF ATOMS UNDER NOISE PHYSICAL REVIEW A 76, 063403 �2007�

063403-3



laser and the noise here are identical. One can see that for
such a feeble noise amplitude, the periodic structure in
atomic ionization gets enhanced by more than one order of
magnitude, as compared to the case of the noise alone, which
is shown as the background featureless curve. Hence, the
observed net enhancement can be attributed to a nonlinear
quantum interaction between the coherent pulse and noise.

As the noise level is further increased, we observe an
enhancement of the periodic ionization profile by around
three orders of magnitude as shown in Fig. 2�b�. However,
the increase in noise level also causes the background struc-
tureless stochastic ionization curve to rise monotonically. For
strong noise �Fig. 2�c��, these periodic structures tend to
wash out and the process is effectively controlled by the
noise. Hence one expects the existence of an intermediate
noise level where the nonlinear ionization is optimally en-
hanced.

The net enhancement of the atomic ionization due to in-
terplay between the laser pulse and the noise can be charac-
terized by the enhancement factor �21�,


 =
Pl+n − P0

P0
, �10�

with P0= Pl+ Pn. Although this is different compared to the
quantifiers commonly used �1,2�, 
 is more suitable for our
case. One can verify that a zero value of 
 corresponds to the
case when either the laser pulse �Pl�Pn� or the noise
�Pl�Pn� dominates. In Fig. 4, we have plotted the enhance-
ment factor 
 versus the noise amplitude �D. It exhibits a
sharp rise, followed by a maximum at a certain value of the
noise �point B�, and then a gradual falloff. It is worth men-
tioning that only a modest noise-to-laser ratio ��Dopt /F0

=0.075� is required to reach the optimum enhancement �here

max=36�.

Before investigating other properties of the enhancement
effect, it is worth making three remarks. First, although the

enhancement curve bears a striking resemblance to the typi-
cal SR curve, it is not the SR effect where the matching of
the time scales between coherent and incoherent driving ex-
ists. The underlying gain mechanism here is completely dif-
ferent, as we shall see later. One can perhaps call this as a
generalized quantum SR for such atomic systems, in the
sense of the existence of an optimum noise level. Second, the
location of the optimum enhancement is governed by an em-
pirical condition, when the strengths of the laser pulse and
noise are comparable, in terms of the ionization flux pro-
duced by their individual action Pl� Pn. This can be verified
in Fig. 3 for the enhancement curve shown in Fig. 4. Third,
due to the presence of the random noise term in the Hamil-
tonian, the optimal solution is only statistically unique. We
have computed the standard deviation of the enhancement
factor 
 using 1000 realizations, �=�

2�− 

�2. The corre-
sponding � values are shown by error bars on the 
 curve in
Fig. 4.

4. Enhancement curves for a variety of laser pulses

In this section, we study the sensitivity of the stochastic
enhancement curves on the laser pulse. In particular, we
study the role of two parameters: �i� the pulse duration Tp,
and �ii� the peak pulse amplitude F0. In Fig. 5, we have
plotted enhancement curves versus the noise amplitude for
pulses of fixed amplitude �F0=0.02� but of varying durations
from 5 to 30 optical cycles. One can clearly see that the
enhancement features �particularly the location and strength
of the optima� are robust for pulses ranging from ultrashort
few cycles duration to quite long ones.

Although we do not show, we have also verified that
variation in the carrier envelope phase � of the laser pulse
F�t� �see Eq. �3�� does not modify the enhancement effect.
This can be expected due to the presence of the noise term,
by which any effect of � is averaged out. Furthermore, we
have also observed similar enhancement curves for other
forms of the pulse envelope, such as f�t�=sin2��t /Tp�.

To investigate the dependence of 
 on the laser pulse
amplitude F0, we choose some moderate noise amplitude
value, for example, �D=0.0015. For this fixed �D, we now
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increase the peak pulse amplitude F0 of the 20 cycles pulse
from zero to a large value, and calculate the IP for each value
of F0. The obtained probabilities for different cases are plot-
ted in Fig. 6�a�, which are then used to compute the enhance-
ment factor 
 in Fig. 6�b�. Here, 
 also exhibits a nonmono-
tonic feature versus the laser peak amplitude, thus suggesting
a range of F0, where the addition of noise can be useful. This
dependency is intuitively explained. Since for weak laser
pulse the process is dominated by the noise and the 
 col-
lapses. On the other hand, if the laser peak amplitude is too
strong �comparable to over-the-barrier ionization threshold�,
the pulse can ionize the atom by itself, and the noise has no
role to play. Thus, it is for the intermediate values of the
noise and laser pulse amplitudes where this nonlinear en-
hancement mechanism can be significant. From Figs. 4 and
6, one can conclude that in order to maximize the net ion-

ization yield, a particular pair of F0 and �D is required.

B. Employing chaotic light instead of the white noise

1. Generation and characterization of chaotic light

To experimentally observe this effect, the most challeng-
ing task is the generation of intense white noise. For in-
stance, if one considers the thermal radiation from a black-
body �such as the sun� as a possible source of the white
noise, its noise intensity falls short by many orders of mag-
nitude �26�, compared to the one required for the optimum of
Fig. 4. We thus look into alternatives for generating a noise-
like wave form. One possibility is to employ modern pulse
shaping techniques, whereby one can design wave forms of
almost arbitrary shapes �27,28�. To realize such a chaotic
light, we choose a large number of frequency modes N in a
finite but broad bandwidth 
�. These modes can be, for
example, different Fourier components of an ultrashort laser
pulse. The total electric field Z�t� is a sum of these N indi-
vidual modes as �29�

Z�t� =� 2

N
�
n=1

N

Frms sin��nt + �n� , �11�

where �n,�n denote the angular frequency and phase of the
nth mode, respectively, and Frms is the root-mean-square am-
plitude of Z�t�. Note that here we consider these frequency
modes to oscillate independently with their phases �n assum-
ing random values relative to each other. In this particular
case of phase-randomized coherent modes, the total field Z�t�
at any point will be noiselike, fluctuating in intensity due to
the interference between modes. The inset in Fig. 7 shows an
example of such a chaotic light spectrum for N=1024 in a
chosen bandwidth �BW� of 0.75 �corresponding to a 32 at-
tosecond pulse� �30�. Such a construct tends to the white
noise, in the limit of 
� ,N→�. In the following section, we
consider a simultaneous application of the weak laser pulse
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and chaotic light �instead of the white noise� and see if the
enhancement effect can be preserved.

2. Photoionization by the chaotic light

When we replace white noise by the chaotic light �BW
=0.75 and N=1024�, one can see in Fig. 7 that most of the
features of the enhancement phenomenon remain intact. In
particular, the intensity and location of the optimum is very
close to the one obtained for the white noise case in Fig. 4.
We also recover other features of the enhancement mecha-
nism with the chaotic light such as its dependence on the
pulse duration Tp and pulse amplitude F0.

This observation not only suggests the possibility of ob-
serving the effect using a finite but broadband chaotic light,
but also raises the question concerning the relevant fre-
quency components in the chaotic light spectrum, to be dis-
cussed next.

C. Spectral and temporal analysis of the gain mechanism

1. Frequency-resolved gain profile

In this section, we will analyze the mechanism of stochas-
tic enhancement in both the frequency domain and the time
domain. In particular, we aim to identify frequency compo-
nents in the broad spectrum of noise �or chaotic light�, which
are the crucial ones to provide the gain. For this purpose, we
compute a frequency-resolved atomic gain �FRAG� profile
using a pump-probe type of setting as described below.

It is well known that when an atom interacts linearly with
a weak external field, the energy absorption takes place at its
resonant frequencies. However, due to its interaction with a
strong laser pulse, the unperturbed atomic states are signifi-
cantly modified leading to a completely different frequency
response of the driven atom. Indeed, such a modified spectral
response is the relevant quantity when the atom is also sub-
jected to noise. So, how can one measure precisely the
frequency-resolved gain G��� offered by the atom? One pos-
sible way to observe FRAG is to consider the previously
employed laser pulse ��=0.057, F0=0.02� as a pump pulse
and replace noise by a tunable monochromatic probe pulse,
Fp�t�= f�t�Fp sin��pt�. The probe amplitude Fp is much
weaker than the driving laser pulse �Fp /F0=0.01�, such that
it does not significantly alter the quasienergy levels, but can
drive transitions between them. For an atom prepared in its
ground state, a FRAG profile is obtained by measuring either
the depletion of the ground state population or the net energy
absorption, as a function of the probe frequency �p.

Such a gain profile G��p� is shown in Fig. 8 for the atom
driven by a ten-cycle-long laser pulse of amplitude F0
=0.02. Although the FRAG shows lots of structure, the
dominant peaks appear around the first atomic transition fre-
quency. A closer inspection of Fig. 8 reveals that there is a
dip at the unperturbed resonance frequency �01=0.267. The
main peak is indeed shifted beyond the linear Stark shift for
our model. These shifts and broadening of the atomic reso-
nances are caused by the strong laser pulse, since the field
can drive the electron significantly away from the nucleus
leading to strong nonlinear perturbation to its bound states.

Such a FRAG curve provides a fingerprint of the atomic gain
under the strong laser pulse. The frequency bands that cor-
respond to the peaks in the obtained gain curve are indeed
the most useful ones to obtain the enhancement. In the fol-
lowing, we will test the validity of this statement by design-
ing a chaotic light where significant resonance frequencies
are filtered from its spectrum.

2. Chaotic light with missing resonant frequencies

To show that the useful frequencies are not simply the
resonant frequencies of the atom, we have designed a chaotic
light spectrum perforated by digging holes in its spectral
density around the first few atomic transition frequencies. As
can be seen from Fig. 9, almost no enhancement is lost if the
hole width w is below 0.013 a.u., which already includes the
linear ac Stark shift of the atomic states. However, by in-
creasing the hole width such that no frequency component
exists in the noise spectrum where the FRAG has dominant
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FIG. 8. �Color online� Frequency-resolved gain G��p� of the
atom, which is driven by a ten cycle laser pulse of F0=0.02 at �
=0.057. The atomic gain is probed by a simultaneous application of
a weak probe beam Fp=0.0002 of tunable frequency �p. Both the
depletion of the ground state population �thick red line� and the net
absorption of energy �black� due to the probe are plotted. The gain
of the driven atom is also compared with the bare atomic gain �thin
gray line�.
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FIG. 9. �Color online� Enhancement curves due to chaotic light
spectrum perforated by holes at the first three resonance frequen-
cies. Difference curves correspond to the increasing hole widths of
w=0.0, 0.013, 0.03, 0.1, and 0.15.
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peaks leads to a collapse of the enhancement mechanism, as
shown in Fig. 9. This observation validates the importance of
a FRAG structure in identifying the useful spectral bands in
noise. It suggests that for the simultaneous presence of the
laser pulse and noise, nonresonant frequency components are
the dominant ones.

It is worth making a few remarks here. First, the FRAG is
a property of the atom interacting with a particular strong
laser pulse. Thus, the detailed features of the gain curve de-
pend on both the atomic system and on the laser pulse pa-
rameters. But this does not affect the general conclusion
drawn from such a curve. Second, it is also possible to obtain
the enhancement using a monochromatic beam instead of the
chaotic broadband light, if its frequency is properly tuned to
the new “resonances.” But, the advantage of using a broad-
band source is that the enhancement becomes independent of
both, the particular atom and the FRAG structure for differ-
ent pulse parameters.

3. Role of relative delay between signal and noise

Up to now we have considered the case of a perfect syn-
chronization, i.e., a simultaneous application of the laser
pulse and noise to observe the enhancement. We now wish to
relax this synchronization constraint between the laser pulse
and noise to test if the enhancement still exists. Such a sce-
nario would not only help the experimental search of similar
effects, but also provides an alternative aspect of the en-
hancement mechanism as compared to the one mentioned
above.

There are two possible ways to expose the atom to a laser
pulse and noise sequentially: �i� the atom first interacts with
noise only and then we apply the laser pulse, or conversely,
�ii� the laser pulse is applied first and then the noise is ap-
plied. Note that for both cases there is no direct interplay
between laser and noise. The enhancement factor 
, which is
defined as before, is shown in Fig. 10 for both cases. One can
clearly see that for the case �i� the 
 curve looks very similar
to the one for simultaneous action of laser and noise. But for
case �ii�, the enhancement curve collapses.

Although we obtain almost identical enhancement curves
for cases of first noise then laser pulse, and simultaneous
action of noise with laser pulse, the frequency components
providing the gain are fundamentally different in each case.
The gain curves for both cases are given in Fig. 8. For the
sequential application of noise and laser, the atomic gain is
basically at the resonant frequencies of the unperturbed
atom. Thus the resonant frequencies �particularly the first
few� are the most fertile ones in the noise spectrum. In this
case, a two-step picture of the enhancement mechanism ap-
plies, where the atom first absorbs energy from the noise
leading to an exponential population distribution, and the
laser causes ionization from a “noise-heated” atom in a sec-
ond step.

IV. SUMMARY AND CONCLUSION

We have investigated photoionization of a hydrogen atom
which is subjected to both a MIR femtosecond laser pulse
and white Gaussian noise. Due to the inherent nonlinearity of
the ionization process, a form of quantum stochastic reso-
nanolike behavior has been observed. This quantum SR leads
to a dramatic enhancement �by several orders of magnitude�
in the nonlinear ionization when a specific but small amount
of white noise is added to the weak few cycle laser pulse. We
have further shown the signatures of the enhancement effect
for different types of the laser pulses from a few cycles to a
few tens of cycles duration. Moreover, if the noise amplitude
is kept fixed to some level, and the peak pulse amplitude is
varied, again a curve with a specific maximum is obtained
for the enhancement parameter. These results suggest the ex-
istence of an optimum combination of the laser pulse and
noise, if one is interested in optimizing the relative ionization
enhancement. The same effect is also achieved if one uses
realizable broadband chaotic light instead of white noise. We
emphasize that the effect is robust with respect to a range of
experimentally accessible parameters such as the pulse
duration.

The enhancement mechanism is analyzed in the frequency
domain by measuring the frequency-resolved gain profile of
the atom under a strong laser pulse, employing a pump-probe
type of setting. The frequencies providing the gain are sig-
nificantly modified from the unperturbed atomic resonances,
suggesting the nonresonant nature of the noise absorption.
However, if we introduce a relative time delay between the
laser pulse and noise the enhancement is still present, pro-
vided the noise acts first on the atom. In this case, the useful
frequencies in the noise spectrum are at the atomic reso-
nances.

Finally, analogous effects are also expected in other sys-
tems provided the following three conditions are fulfilled: �i�
The system has a single-well finite binding potential with
multiple energy levels, �ii� it can be subjected to a �nonreso-
nant� coherent optical driving, and �iii� it can be subjected to
an incoherent perturbation. Since these conditions are suffi-
ciently general, other systems �superconduction quantum in-
terference devices �SQUIDs�, molecules, etc.� might also dis-
play similar features �31,32�.
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FIG. 10. �Color online� Enhancement factor 
 versus the noise
amplitude �D for various cases, application of noise first and then
the laser pulse �empty squares�, application of laser pulse first and
then noise �filled squares�, simultaneous application of laser and
noise �circles�. The insets depict the schematically temporal signal
applied to the atom for corresponding cases.
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APPENDIX

In this appendix we briefly present an algorithm for the
numerical simulation of the time-dependent stochastic
Schrödinger equation �Eq. �6� in the text�, where the Hamil-
tonian is given by Eq. �1�. The properties of the white Gauss-
ian noise ��t� are defined in Eqs. �4� and �5�. Our basic
approach is to use the split-operator fast-Fourier transform
�SOFFT� method due to Feit and Fleck �which is well known
for the deterministic case� �25�, and adapt it to the case when
the Hamiltonian contains an additional stochastic term ��t�.

Recalling briefly that if there were no random term, the
solution of Eq. �6� can be obtained by defining the standard
propagator U�t0 , t�, which when applied on initial state wave
function �	0� propagates it forward in time. The usual ap-
proach to compute the solution of the Schrödinger equation
is to discretize the total propagation time into N small steps
of equal intervals 
t. The resulting exact short-time propa-
gator can be written as

U��
t� = exp
− i�
t

t+
t

�Hdet�x,t� + x��t��dt� . �A1�

Here, Hdet�x , t�= p̂2 /2+V�x�+xF�t�, is the deterministic
atomic Hamiltonian including the laser-atom interaction
term. In order to incorporate the white noise term within the
framework of the SOFFT method, one can rewrite the propa-
gator as

U��
t� = U�
t�exp
− i�
t

t+
t

x��t�dt� , �A2�

where U�
t�=exp�−iHdet�x , t�
t� denotes the deterministic
part of the propagator. The stochastic integral in the expo-
nential can be interpreted in the Stratonovitch sense �23� us-

ing the properties of the white Gaussian noise as follows:

�
t

t+
t

��t�dt = �2D
tXt, �A3�

where Xt is a random number having Gaussian distribution
and of unit variance. This makes the propagator a stochastic
operator. Note that even in the presence of the noise term the
operator is unitary, i.e., it preserves the norm of the wave
function.

One can approximate the exact propagator given by Eq.
�A2� following a three-step splitting leading to the following
expression:

U��
t� = exp
− i
p2

2

t�

�exp�− iV��x,t�
t�exp
− i
p2

2

t� , �A4�

with V��x , t�=V�x�+xF�t�+�2D /
tXt. Note that the effect of
noise is simulated by inserting at every time step a random
number Xt whose statistical properties are described above.
The right-hand side of Eq. �A4� is thus equivalent to the free
propagation over a half time increment 
t /2, a random phase
change from the action of potential V��x , t� over the whole
time 
t, and an additional free particle propagation over

t /2.

This operator splitting is correct up to second order in the
time step 
t for the noise-free part, but due to the stochastic
integration it is accurate up to only first order for the stochas-
tic part. In the actual calculation 
t is chosen sufficiently
small, such that a further reduction in its value does not alter
the accuracy of the physical results. For a given realization
of the random number sequence entering in the propagator
via Xt, one generates a quantum “trajectory” for the wave
function. To extract the physical observable, an ensemble
average of the desired quantity over a large number of noise
realizations is needed. Other simulation parameters such as
the grid size and the grid resolutions should be taken as
described in the literature �24�.
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