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Just as a coherent state may be considered as a quantum point, its restriction to a factor
space of the full Hilbert space can be interpreted as a quantum plane. The overlap of such
a factor coherent state with a full pure state is akin to a quantum section. It defines a
reduced pure state in the cofactor Hilbert space. Physically, this factorization
corresponds to the description of interacting components of a quantum system with
many degrees of freedom and the sections could be generated by conceivable partial
measurements.

The collection of all the Wigner functions corresponding to a full set of parallel
quantum sections defines the Husimi—-Wigner representation. It occupies an intermediate
ground between the drastic suppression of non-classical features, characteristic of
Husimi functions, and the daunting complexity of higher dimensional Wigner functions.
After analysing these features for simpler states, we exploit this new representation
as a probe of numerically computed eigenstates of a chaotic Hamiltonian. Though
less regular, the individual two-dimensional Wigner functions resemble those of
semiclassically quantized states.

Keywords: phase space representations; Wigner function; Husimi function;
semiclassical mechanics; chaotic eigenstates

1. Introduction

It is well known that phase space representations of quantum mechanics are
powerful tools for studying the correspondence between the density operator
and classical distributions in phase space. The several choices of representation
are partially distinguished by the different ways they highlight classical
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1504 F. Toscano et al.

structures against a background of quantum interferences. In the case of the
Wigner function (Wigner 1932), W(x), in terms of the phase space variables,
x=(xy,...,x;)=(P1,---, P, q1, ---, q1,), the oscillations due to interferences may
even have higher amplitudes than the classical region. By contrast, the Husimi
function (Husimi 1940; Takahashi 1986), which may be defined as a coarse
graining of the Wigner function,’

—(z—X)*

H(X) = (7h) _LJdm W(x) exp h ,

(1.1)

subtly disguises information on quantum coherences to the point that they may
be numerically undetectable, while clearly displaying most classical structures
(Toscano & Ozorio de Almeida 1999).

In the case of (2L)-dimensional phase spaces, with L>1, the approximate
classical support for a quantum state may take the form of a discrete set of
points. These correspond to either a coherent state, squeezed or not, or their
superposition, sometimes known as Schrdidinger cat states. Alternatively,
semiclassical Van Vieck states (Van Vleck 1928) correspond to L-dimensional
(Lagrangian) surfaces. Of even higher dimension is the support of ergodic states
satisfying Schnirelman’s theorem (Shnirelman 1974; Colin de Verdiere 1985;
Zelditch 1987): eigenstates of (classically) chaotic Hamiltonians, supported by
the full (2L—1)-dimensional energy shell. Of course, all these types of state can
be superposed in various ways, which, in their turn, produce new interferences.

Even though we cannot directly visualize such classical structures in a higher
dimensional phase space, they will show up in appropriate two-dimensional
sections of the corresponding Husimi function. Indeed, we may follow Kurchan
et al. (1989) and identify classical phase space structures relating to a quantum
state as those onto which the Husimi function condenses. Even so, it will be
virtually impossible to extricate the crucial quantum phase information in this
representation, unless all analytical properties concerning the state are known
(Leboeuf & Voros 1990, 1995). The situation for the Wigner function is just the
opposite: all phase information is immediately available in the oscillatory
interference pattern, but it becomes hard to sort out its embarrassing richness.
For example, a two-dimensional section may contain a (plain) periodic orbit.
States that are scarred by this periodic orbit (Heller 1984; Bogomolny 1988;
Berry 1989) are clearly distinguishable in the section of the Wigner function
through this plane (Toscano et al. 2001). Nonetheless, interferences also arise
which can only be generated by classical structures that are nowhere near this
two-dimensional plane. There is certainly a need for a more manageable
representation of the interference effects that decorate classical structures of
general pure states. Indeed, the Wigner function itself, in the simple case that
L=1, is a good example of a comprehensible interference pattern (Berry 1977a).

Needless to say, other representations have their merits, depending on the
intended application. However, the position representation represents only a scar
of the projection of a given periodic orbit onto the position plane, where it must
be unravelled from multiple intersections with other orbit projections, as well as

'Here and throughout, we make the convenient choice that the frequency of the harmonic
oscillator for the coherent states is w=m=1.
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Huwi representation of chaotic eigenstates 1505

being coloured by self-interference and focalization. Other useful representations,
such as the harmonic oscillator basis, are certainly much more opaque, as far as
distinguishing classical phase space features from quantum interferences.

Our purpose here is to develop a new tool for the analysis of the chaotic
eigenstates of higher dimensional systems. Even though there has been
continuing interest in their localization and statistical properties, starting with
Voros (1976) and Berry (1977b), subsequent work in this field has concentrated
on the description of chaotic eigenstates of quantum maps (Leboeuf & Voros
1990, 1995; Hannay 1998; for many further references in this field, see Schanz
(2005)). The reason for this is precisely to avoid the difficulties of coping with
higher dimensions. The detailed analysis of ergodic states for L>1 is still in its
preliminary stages. Their Husimi functions should be concentrated in a narrow
neighbourhood of the energy shell, but the often repeated statement that this
also holds for the Wigner function is false. Indeed, it has been shown by Ozorio
de Almeida et al. (2004) that all large-scale pure states must have
correspondingly small-scale oscillations in their Wigner functions. Such
sub-Planckian structures (Zurek 2001) do not contribute to the averages of
smooth observables (hence, the ergodicity over the energy shell). However,
future refinements of experimental techniques will inevitably lead to measurable
interference effects. Here, we introduce a conceptual tool with which to probe
into the details of these higher dimensional states.

The joint Husimi—Wigner representation of quantum mechanics, huwi
representation for short, avoids the extremes of near-classicality, or of excessive
quantum complexity, that characterize alternatively its parent representations.
Decomposing the phase space variables in the Wigner function, W(x), as
x=(xy, '), with ' = (x5, ..., z1), and specifying a two-dimensional plane by the
2(L—1) equations, €' = X’ = const., the huwi function is defined as

—(.’B/ _X/)Q ‘

- (1.2)

hwy (2,) = (wh) = E7Y Jd:n/ W(x,,x') exp

In §2, the general features of this complete representation of the density
operator in the phase space, (z;, X'), are discussed. However, our main focus will
be centred on the huwi function for a given choice of X’. Viewed classically, this
would be merely a slight thickening of a plane section of the Wigner function, but
it is a truly quantum section; that is, for each parameter, X', hwx/(z;) represents
a different pure state. All of these states belong to the same factor Hilbert space,
which corresponds to the phase plane, x;. Besides this geometric point of view,
quantum sections can also be interpreted as resulting from conceivable
experiments, effected on all degrees of freedom, except the one corresponding
to the phase plane, ;. The average of all such experimental probes defines
the partial trace, which is central to the study of bipartite entanglement
(e.g. Mintert et al. 2005).

In §3, we discuss the huwi representation in the simple case of coherent states
and their superposition. This already exemplifies the convenient way in which
the thickened section erases, not only the classical regions foreign to the section,
but also all their interference effects. This is also the clearest setting in which to
discuss rotations and other classical canonical transformations as tools to bring
desired features into view. Van Vleck states are then analysed in §4. It is shown
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1506 F. Toscano et al.

that, generically, their huwi representation can be approximated by Gaussians in
the @; phase plane, corresponding to (squeezed) coherent states, or generalized
Schrodinger cat states, centred on the discrete set of points where the constant
X'-plane intersects the classical surface.

The final aim is to understand the phase space structure of higher dimensional
eigenstates of quantized chaotic systems, which is still an open problem in physics
and mathematics. Ergodic states have so far evaded any compact analytical
characterization in any representation, but eigenstates of general Hamiltonians
with predominantly chaotic classical motion may be even harder to describe. As a
first example, we present a computational study in §5 of the eigenstates of such a
(quartic) Hamiltonian in a four-dimensional phase space. Given that the two-
dimensional section of a compact (2L — 1)-dimensional energy shell is a closed curve,
we investigate the family resemblance between hwy(x;) and the eigenstates of a
Hamiltonian in a two-dimensional phase space, defined so that its level curve
coincides with the section of the higher dimensional energy shell. The
computational huwi patterns discussed in §6 suggest that, though these new
kinds of pure states somewhat resemble familiar semiclassical states that satisfy
Bohr—Sommerfeld quantization, they exhibit amplitude fluctuations and phase
dislocations in their two-dimensional Wigner functions that resemble those
found in the wave trains of short pulses (Nye & Berry 1974).

2. Quantum sections

Coherent states, |X), defined in the position representation as

(g X) = (%)L/4exp <—21—h(q—62)2 +%P- (q—%)), (2.1)

form a basis for the Hilbert space that is overcomplete (Glauber 1963; Sudarshan
1963; Cohen Tannoudji et al. 1977; Klauder & Skagerstam 1985; Perelomov 1986;
Schleich 2001). The Husimi function can be defined directly in terms of coherent
states, alternatively to (1.1). Given the density operator for a pure state as

p=¥){¥|, then
Hy(X) = (X]p|X) = tr p| X )(X| = (X |y)[”. (2.2)

Considering the full Hilbert space as a tensor product of factor spaces,
H=H,®...H;®...H;, for each of the L degrees of freedom, the coherent state
basis also factors, i.e.

|1X) =1X1)®...|X;)®...| X1). (2.3)
Therefore, decomposing again X = (X, X') and taking the partial overlaps,
|1 X1) = (X'|X) = | X, )(Xo| Xo)...(Xp| X)) (2.4)

generates a basis for the factor space, Hj, such that each |y x/) = (X'|y) is a pure
state with its wave function,

(X' W) (q1) = jdq'<q'|X’>*<q1, 1), (2.5)

Proc. R. Soc. A (2008)



Huwi representation of chaotic eigenstates 1507

The partial overlap of both the bra and the ket of p = |y) (| with the same factor
coherent state, | X'), defines a reduced density operator,

px = (X' o] X"), (2.6)

in the factor Hilbert space H;. This is henceforth referred to as a quantum section.
If this state is represented by its Husimi function, then

Hx(z1) = H(zy, Xl)y (2.7)

i.e. the Husimi function for this quantum section is just the section of the full
Husimi function. This should not be confused with the quantum Poincaré surface
of section (Leboeuf & Saraceno 1990a,b), which is discussed in §5. Recalling
now that the Wigner function in the full phase space is defined as (Royer 1977;
Ozorio de Almeida 1998) .

W(x) = (wh) “tr pR,, (2.8)

where the operator for the reflection through the point x is

R, =2_LJdQ q—§><q—§

and that similar definitions hold for Wigner functions defined in subspaces, with
the appropriate adaptation of notation. Then, we find that the alternative
definition for the huwi function,

b (1) = () ~tr e Ry, = () "4 [ R, ® X)X, (2.10)

is equivalent to (1.2).
Clearly, the case of product states,

V) = ) ®ly), (2.11)

leads to products of the representations of the factor states. Thus, the huwi
representation is only of interest for states in which the component described in
the factor Hilbert space, H;, is entangled with the H' component.

In the case of interacting particles, or entangled modes of the electromagnetic field
(beams) in the optical analogy, the huwi function associated with the factor state in
H,, for a particle with a single degree of freedom (or a single optical mode), can be
measured by a conceivable experiment. For simplicity, let us consider two entangled
particles or entangled optical modes.? In the optical context, the celebrated thought
experiment of Arthurs & Kelly (1965) for the approximate simultaneous
measurement of the field quadratures p’ and ¢’ of one of the modes (corresponding
to the momentum p’ and position ¢’ of a particle) can be realized experimentally.
Leonhardt (1997) reviews the relevant literature and shows that these experiments
effectively measure the Husimi function. The same reference also discusses quantum
tomography as an experimental method for the measurement of Wigner functions.
Applying this method to the measurement of other entangled mode (or particle),
corresponding to the phase space, ;= (py, ¢1), the huwi function can, in principle,
be experimentally reconstructed with the existing technology in quantum optics.

In this light, the sections that generate lower dimensional phase space
representations acquire a physical, as well as a geometric, interpretation. The
pure states resulting from each section coincide with those revealed by a

e Q/h (2.9)

2The two entangled photon beams could be the result of a parametric down conversion (see Howell
et al. 2004).

Proc. R. Soc. A (2008)



1508 F. Toscano et al.

conceivable experimental probe acting on the complementary coupled system.
The average of all such measurements can be identified with the partial trace:
p; =tr'p. This is also a density operator, albeit not pure. The corresponding
Wigner function is known to be

Wi(er) = (wh) "tr pl Ry, ®1'] = Jd:r:’ W(wy, o), (2.12)

where I is the identity operator.

The definition of the huwi function is based on a wide, but rarely used,
freedom in the choice of representations of tensor products of Hilbert spaces.
These correspond classically to Cartesian products of phase planes and it is more
usual to exploit alternative generating functions for canonical transformations by
exchanging variables in classical mechanics (Arnold 1978; Goldstein 1980).
However, the corresponding matrix elements in quantum mechanics,

(g1, pa, - | Al Db, ...) = tr A[|p}) (a1 | ®[p5) (po] ® ..., (2.13)

also form a falthful representation of the operator A for all choices of either p;or
gj, and of p] or qj Furthermore, it is possible to 1nclude operators R in the same
class as the dyadic operators | p]> (gj] as a faithful basis for representlng operators.

Indeed, they may be interpreted as merely defining alternative planes in the
doubled phase space that corresponds to operators, just as the ordinary phase
space corresponds to the Hilbert space (e.g. Ozorio de Almeida 2006).

Alternatively, the Husimi basis, |X;)(X,[, can also be used for any of the
degrees of freedom. In the context of classmal generating functions, switches of
representation are usually motivated by the need to avoid smgularltles i.e.

caustics, in the implicit definition of the transformation. These are also a problem
for semiclassical approximations to quantum evolution. In the present context,
the huwi representation is singled out by the clarity with which it exhibits both
classical and quantum characteristics of a pure state.

A point of practical importance concerns normalization. Definition (2.6) should
be divided by N(X')=tr; px, so as to represent a normalized density operator.
Thus, the integral of hwx(x;) over all z; is N(X'). We have left this normalization
factor out of the definition, because the basic interest is in the description of the
full state in the higher dimensional phase space. Indeed, for bound states, there
will be whole ranges of the parameters X’ for which the overlap of the partial
coherent state with |) will be negligible, so that N(X’) becomes a small divisor. It
will be verified in the following sections that this occurs where the classical plane,
' = X', is not even close to intersecting the classical support of |y).

So far, we have not considered the possibility of squeezing the coherent states
| X"), which generate the huwi function. In the limit of infinite squeezing, these
will be replaced by the position states |Q’), so that equation (2.5) for the wave
function in the factor space becomes simply

(@Wa) = [40401QY (@ 4) = (a1, Q0 (214)
The corresponding Wigner function is just the limiting form of the huwi function
hug (@) = [ 4o/ ey, )old - Q). (2.15)

Proc. R. Soc. A (2008)
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Figure 1. The Wigner function for the Schrédinger cat state displays a pair of classical Gaussians,
one for each coherent state, and a third Gaussian modulated by interference fringes halfway
between the pair. If we identify ¢=¢; and p=p;, this will be also the huwi function of the
multidimensional Schrédinger cat state (1.2) corresponding to the quantum section X, = X, = X'.

Hence, this limit results from a combined momentum projection of the p’, with a
(thin) section of the positions, ¢'. In the case of a four-dimensional phase space,
only one variable ¢’ = Q' is fixed, so this has become a three-dimensional section.

3. Superposition of coherent states

It is well known that the coherent states (2.1) have Gaussian Wigner functions
(e.g. Ozorio de Almeida 1998; Schleich 2001), whereas a superposition of
coherent states, |X,)+|X;), sometimes known as a Schrédinger cat state, has
the Wigner function

We(z) = !

[27h(1 % exp (—(X, — X3)*/R)))*

X |exp (—(z—X,)*/h) + exp(—(z— X;)*/h)

+2 exp(—(z— (X, + X;)/2)%/h)cos %m x,-x)|. 6D

It consists of two classical Gaussians centred on X, and X, together with an
interference pattern with a Gaussian envelope centred on their midpoint, as
shown in figure 1. The spatial frequency of this oscillation increases with the
separation [(X,—X;)|. Increasing the number of coherent states merely
increases the number of classical Gaussians and adds new localized interference
patterns midway between each pair.

The overall picture does not depend on L, the number of degrees of freedom.
Suppose then that L is large and that we study classical two-dimensional sections,
' = X', of the Wigner function of a superposition of a pair of coherent states that

Proc. R. Soc. A (2008)
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are centred on arbitrary points X;. Clearly, W(x;, X') will only be appreciable if
the chosen X’-plane is close to one of the X ;—planes on which the coherent states
lie, or close to (X + X})/2, one of their midpoints, which houses the interference
pattern. There will be no doubt about the localization of a coherent state, which is
captured by a section close to X ;-, but a section passing near a midpoint will not
determine where the interference pattern is coming from. Indeed, the spatial
frequency of the oscillations within the section will depend only on the projection
(X;— X})1, leaving (X — X}) completely undetermined.

There is little change between a classical section near an isolated coherent state
and a quantum section, i.e. a huwi function. Indeed, integrating over the product of
Gaussians in (1.2) produces a new Gaussian in the x;-plane, centred on X,; or Xj;.
However, if X’ lies near (X, + X})/2, the interference term is dampened by a
factor exp [—(X’, — X})?/h], so that it is not visible unless both section planes, X/,
and X, lie close to each other. Of course, this cancellation of interference is a
familiar feature of Husimi functions and merely reflects the Husimi side of the
hybrid huwi representation. The Wigner side arises if X/, and X are nearly the
same. Then, there will be practically no cancellation of the interference pattern in
the x;-plane, i.e. the huwi function will resemble the classical section of the Wigner
function, with two classical maxima and a central interference pattern.

It might seem too severe a restriction only to observe interferences of structures
that lie on two-dimensional sections, but it is important to recall that the Wigner
function is symplectically invariant; that is, for any classical linear canonical
transformation, x+— z’, the effect of the corresponding unitary quantum
transformation is W(z)— W(z') (e.g. Voros 1977). Thus, it is always possible
to picture the interference pattern between a pair of coherent states by effecting a
symplectic transformation that includes them both in the same two-dimensional
plane. On the other hand, the overlapping interference pattern for the super-
position of a large number of coherent states will be vastly simplified in the huwi
representation, without reaching the extreme of the Husimi function itself.

In short, a superposition of coherent states is a simple system useful to
illustrate the huwi representation. Fortunately, many of the simple features here
can also be identified in the context of the more elaborate geometries treated in
the following sections. One can proceed to a more detailed investigation of
superposition of arbitrarily squeezed and rotated coherent states, but it all
reduces to performing Gaussian integrals and the qualitative result is unchanged.
The huwi representation for a Schrodinger cat state is displayed as a Gaussian
for any coherent state, which lies on the section plane, ' = X'; however, the
interference pattern persists, if and only if both coherent states lie on this
plane (figure 1).

4. Van Vleck states

Let us now consider wave functions (g|y), corresponding to the common
eigenstates of L commuting observables, I ;- These may be described in the
semiclassical limit as being supported by an L-dimensional Lagrangian
y-surface in the (2L)-dimensional phase space (Arnold 1978), obtained as the
intersection of the level surfaces for the functions, [;(x), corresponding to the
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observables. Locally, each branch of this surface is obtained by the action
) J

pig) =229,
dq

and the full wave function is then a superposition of the various branches,

() =3 doesp 150 (4.2)

J

(4.1)

In the case of a bound state, i.e. that these common eigenstates form a discrete
spectrum, the y-surface is an L-dimensional torus (Arnold 1978), characterized
by L independent irreducible circuits. All such closed curves on the y-surface
should satisfy Bohr—Sommerfeld quantization rules, i.e.

¢¢p-dq = (nl +%>2m. (4.3)

The amplitudes, defined as

| 9257|
Hq) = 4.4
except for a global normalization factor, are finite except at caustics

(generalized turning points), where the branches of the function $’(¢) are joined.

This generalization of simple Wentzel-Kramers—Brillouin (WKB) states to
higher dimensions and their evolution was originally derived by Van Vleck
(1928) and various further improvements are reviewed, for instance, in Maslov &
Fedoriuk (1981), Ozorio de Almeida (1988) or Gutzwiller (1990). One should
note that the geometric definition of each branch of the Lagrangian surface in
(4.1) is unaffected by the addition of a j-dependent constant, but this Maslov
correction will not concern us here. The semiclassical approximation to the wave
function breaks down at caustics, but these can be shifted by symplectic
transformations, as discussed in §3. The simplest example is the phase space
rotation by m/2, which amounts to exchanging the position for the momentum
wave function, known as the Maslov method (Maslov & Fedoriuk 1981).

The semiclassical form of the Wigner function for generalized WKB states was
derived by Berry (1977a), but, rather than obtaining the huwi function by its
integration with a Gaussian window, it is simpler to start from (2.5) and (4.2) to
calculate the reduced wave function

(X'[¥) (@)

) 1 / / ) / / ' J
~ZJ %exp —5 (0= Q) — 2P ~<q—%) s (Q17Q):|'

(4.5)

The Gaussian factor in the integrand allows us to expand the action around Q’
approximately as

det

a1, d) =8 (a1, Q) +p’ (¢ — Q) +%(Q'— Q)-87-(¢—Q), (4.6)

Proc. R. Soc. A (2008)



1512 F. Toscano et al.

where
v 457
P (@, Q") ZTq/((ha ¢ =Q" (4.7)
and
, 9297
Sj(le Q/) = W(QD q/ = Q/) (4.8)

is an (L—1)X(L—1) matrix.
Then, (4.5) reduces to the Fourier integral of a Gaussian, if the slow variation
of a’(q, q') is neglected, i.e.

(X' ()= (4mn) " e (g, Q") [det M)

Xexp {

1 y ) y
] — ply. Jo(p) — J /

(4.9)
where the (L—1)X(L—1) matrix,
M’ =[I1-i8"]"", (4.10)

and p’" are functions of both ¢; and the parameter Q'.

The generic situation is that a given section plane may intersect the
y-surface at isolated points, because the X’-plane is two-dimensional and the
y-surface is L-dimensional. Thus, for L=2, we have generic point intersections,
for regions of X’ that have a finite (Lebesgue) measure . For L>2, intersections
again occur generically at isolated points, but only for the section parameters in
the X'-projection of the y-surface.® The above wave function is localized in
the neighbourhood of the positions that correspond to the intersections of the
X -plane with the y-surface, i.e. the points ¢ = Qu defined by the equation
P ( 1,Q)=P. Consistent local expansions of the action, S7(¢;, Q’), around
each of these points then lead to the simplified expression

XKWa) =2 4K e |- 0= 0 4l - @), @)

2N
where .
N Y
AX') = (amn) Vel (Q1) Q)[detM]]l/ZeXp[ 2hP’-Q’+%Sj< {,Q’)]
(4.13)
and j } / ap] T ; ap]/ 825]
Q = (=) .m ' . 4.14
(a1, @) <3q1> a0 oqon (4.14)

3 The situation is quite analogous to the intersections of a given curve with a set of parallel lines in
three dimensions.

Proc. R. Soc. A (2008)
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Py

q

Figure 2. A single chord, &, is centred on «; if it is close to a convex quantized curve in the case of
one degree of freedom. The phase of the Wigner function is proportional to the area s(x;) between
the chord and the shell, while the amplitude, a(x,), depends on both phase space velocities at the
tips of £&. A caustic results from parallel tangents at the chord tips.

Py

a4

Figure 3. The Wigner function of an L=1 degree of freedom. system associated with a quantized
y1-curve (the continuous line). Inside the Wigner caustic (the dotted line), the interference pattern
comes from the presence of three chords for each phase space point @ =(py, ).

Thus, the reduced wave function obtained from a Van Vleck state by a quantum
section is approximately a superposition of generalized coherent states, albeit each
is squeezed and rotated in the way specified by the complex number Q.

Proc. R. Soc. A (2008)
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The huwi representation can then generically be approximated by a Schrédinger
cat state, with the generalized coherent states placed on the x;-projection of
the points of intersection of the y-surface with the section plane. This is similar to
the states considered in §3. The main difference is that, for L=2, variations of the
X'-section plane lead to similar patterns in the case of Van Vleck states, because
these also intersect the y-surface. By contrast, the huwi representation of cat states
changes drastically depending on whether the section plane comes close to any of
the localized states within the full phase space. Also, it will be unusual for a
higher dimensional cat to have more than one coherent state sampled by a given
X'-section, whereas the general huwi representation of a Van Vleck state, for L=2,
is a full cat with its interference patterns at all the midpoints.

Let us contrast this to the semiclassical Wigner function for L=1 (Berry 1977a),

sk
Zoz xq) cos (;1) (4.15)
corresponding to the generalized WKB state (4.2). The sum in (4.15) runs over all
chords on the y;-curve that are centred on #; and s* is the area between the chord
and the shell (plus a semiclassically small Maslov phase), as shown in figure 2. The
semiclassical approx1mat10n (4.15) breaks down along caustics, where the
amplitudes o« display spurious divergences. The caustics of ngner functions
are the loci of coalescing chords. It is remarkable that the above approximation for
the Wigner function of a bound state is only self-consistent if the y-curve is
quantized according to the Bohr—Sommerfeld rule (4.3), as shown by Berry
(1977a), the same condition that needs to be imposed on (4.2).

Figure 3 displays an example of the Wigner function for an eigenstate of the
Hamiltonian, H(z;)=p?/2+ (g —4)*/2+ 0.05¢}, computed numerically. The
semiclassical structure described above is clearly discernible. The quantized
Y1-curve is a uniform maximum with a constant phase, and within it there lie a
succession of constant phase rings. In this region, there is only one chord, &(x). It
is remarkable that the relation of the interference pattern, at any point x in the
interior of the curve, to the chord, £(x), is quite analogous to that between the
interference fringes of a Schrédinger cat and the vector that separates the pair of
coherent states; the analogy holds for the direction of the fringes and their spatial
frequency. Indeed, it is possible to fit the semiclassical state quite accurately by a
generalized cat state with a discrete set of coherent states along the quantized
curve (Kenfack et al. 2004; Carvalho et al. in preparation). Evidently, the phase
difference between the pair of coherent states at the chord tips must then agree
with s(;), the area between the chord and the quantized curve.

The states described by such Wigner functions also arise in higher
dimensions from the intersection of the X’-plane and the y-surface with a
product torus, corresponding to a product state, |¢)=|y;)®|y') (Ozorio de
Almeida & Hannay 1982). This intersection is ungeneric because it specifies a
continuous curve rather than isolated points. Even tori that are not products
will produce huwi functions in the standard form of (4.15) if this is generated by
the overlap with a position state |Q'), considered as the limit of the squeezed
state. Evidently, fixing ¢'= Q' in (4.2) generates the semiclassical wave function

(@) = 0, @) = o, Qexp [ 0, Q)], (0

J
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which is also of the WKB form. Moreover, because the torus is a Lagrangian
surface, all the different (2L —1)-dimensional sections, defined by each @', must
intersect the torus along quantized closed curves, i.e. satisfying (4.3). Therefore,
each of the corresponding Wigner functions, hwy (), has the usual form of (4.15).

In §5, we display computational evidence that the huwi function of chaotic
quantum states resembles, in some aspects, semiclassical Wigner functions of
bound states of systems with a single degree of freedom.

5. Numerical study of eigenstates of a chaotic system

In a fully classical chaotic system, the simplest invariant structures in the phase
space are the periodic orbits and the full energy shell, with a typical trajectory
sweeping all this (2/—1)-dimensional surface (i.e. ergodic motion). Indeed, more
complex fractal invariant subsets may be described in terms of their unstable
periodic orbits, together with the homoclinic and heteroclinic orbits on the
intersections of their stable and unstable manifolds. These invariant structures
should be the skeleton for the construction of a semiclassical theory for the
quantum energy eigenstates, which has been sought over the last 40 years. The
intersection of the two-dimensional X’-plane with a compact (2L —1)-dimensional
energy shell of a bound classical system produces a closed curve in the x;-plane, for
all L>1. Therefore, it is the interference of this classical structure within the
section that should determine the huwi representation for each parameter X’.

Viewed as a pure state for L=1, this is a type of Wigner function that has not
been previously studied. A resemblance to the simple semiclassical Wigner
function presented at the end of §4 may be anticipated; the chords, £(x), on the
section curve should lead to interference fringes parallel to the chord, just as in
the WKB case. The main freedom for variations lies in the way this phase is
shifted, as the centre @ is displaced.”

Nonetheless, our semiclassical intuition cannot be pushed too far. The huwi
function results from a thick quantum section, rather than a thin classical section,
so that a neighbourhood of the full Wigner function is involved. Furthermore, we
must deal with a continuum of X'-parametrized Wigner functions. The
corresponding classical sections cannot all be Bohr-quantized, so that the self-
consistency of the simple semiclassical theory for these states must be broken.

In the absence of a full semiclassical theory for chaotic eigenstates, we resort to
numerical calculations of the huwi function for a particular system. The classical
Nelson Hamiltonian is defined as (Baranger & Davies 1987)

2 2 2 9 2\ 2
+
H(xy,xy) = n B P2 + wl;h + Wy (%‘%) ) (5.1)

where w?=0.1 and w,=1, and its quantum counterpart results from the
replacement @, = (g, p1) = (41, p1) and z, = (g, p2) = (G2, P2) in (5.1). The
restriction of the classical Hamiltonian (5.1) to the two-dimensional X'-planes
1= Q" and p; = P’ defines harmonic oscillators in the xz, variables, ho(x,)=
H(X', z,). The classical trajectories of this harmonic oscillator coincide with the

*The amplitude that can be attributed to the tips of each chord lying on the classical section may
also vary. In the extreme case where this is concentrated in the neighbourhood of a discrete set of
points, the huwi function should again resemble the Wigner function of a Schrédinger cat state.

Proc. R. Soc. A (2008)



1516 F. Toscano et al.

[ I A Ll bl i I O A I [ A A
1] u ] = -
Py 0 = = = -
-+ - g
il q1|= O,()()I Py = ?OO [ q1|= 0'00| Py = IO.lS: a I: 0.00 ; Py = (|)30 ] q1|= O.OOI Py = ?‘45:
1] 1 o ] r
Py 0] ] ] ] =
-1 ] ] ] -
E q1|= O.OOI Py = 0.60 EE q1|= O.OOI Py = IO.75 EE q1I= 0.00 | Py = ?.90 :E q1I = O.OOI Py = ‘1.055
P N T T T W (G ril et i B ] BT I L1 I T 1 e Ty ]y S
1 ] ™, ] ] L
] AN ¢ = i
p, 0 H (o) e - -
1 o WS /) o ] B
-1 = ¢ B = o
Ja, 7015 " p, =0.00p1g, =030 | = 00001 =045 D =0.00[1¢, = 0.60I D =9.00:
1 1111 1111 11 1 L1 1 1 1111 1L | 111 L1l 11 | L1111 L1 11 L1
15 = = ==\ b -
] [ [ SN C
- ] ] | 5 i
Py 03 5 - @iyl | =
] ] ] J‘?__., ]
~1 # = "
:ql =0.75 Py = 0.00[-] q = 0.90 P = 0.00[-] q = 1.05 Py = 0.00] q = 1.20 Py = 0.00

-1 0 1 -1 0 1 -1 0 1 -1 0 1
[%5) 5} a) )

Figure 4. The huwi functions for the eigenstate |, —3;) of the Nelson Hamiltonian in different two-
dimensional planes ¢ = Q" and p; = P’. The black closed curve in each graph is the intersection of
the energy shell with the specified two-dimensional plane for the eigenenergy Es3;; =0.836. This is
the classical trajectory of the harmonic oscillator Hamiltonian obtained by restricting the original
Hamiltonian to that plane. We do not use a common scale for the intensities in all the graphs in
order to clearly display the structure of the huwi functions in each plane.

intersection of the energy shell of the full Hamiltonian with the planes ¢, = Q" and
p;=P’. The alternative classical sections zo=X' on (5.1) defines anharmonic
oscillators, h(x;) = H(x;, X'), whose closed trajectories are not ellipses.

The classical dynamics of this system has been studied in considerable depth.
Instead of merely relying on the Poincaré section for a few typical trajectories
(exhibited in Ribeiro et al. (2004)), Baranger & Davies (1987; see also Prado &
de Aguiar 1994 and references therein) made extensive studies of a large number
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Figure 5. The huwi functions for the energy eigenstate |, —994) (Fngs=0.813) of the Nelson
Hamiltonian. Note that the huwi function is null, in the symmetry plane z; = X' = (0,0), because
its definition involves the partial projection {X'|ys,) of an even coherent state | X’) with an odd
|¥a94) state in the @; degree of freedom. We do not use a common scale for the intensities in all the
graphs in order to clearly display the structure of the huwi functions in each plane.

of the periodic orbits with a relatively low period and their elaborate bifurcation
trees as a function of energy. It was possible to follow these families of periodic
orbits as they became unstable in an energy range above E=0.3, though a few
recovered stability at £=10. All quantum states depicted here were calculated in
an energy window of 0.81 < F<(.84, where it can be guaranteed that only orbits
of very high periods may be stable. Hence, the knowledge of the general pattern
for the dynamics from the skeleton of periodic orbits precludes any stability
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islands that are not very thin, so that the system is nearly ergodic. The choice of
= 0.05 allows us to compute the eigenstates in the energy range corresponding
to (quasi-)chaotic motion for this classical Hamiltonian. It will be observed in
figures 4-6 that this choice for the relative value of Planck’s constant is
sufficiently small for us to distinguish the qualitative features of the quantum
sections from those of quantized curves. However, these computations do not
reach an asymptotic semiclassical regime.

It would be natural to use a harmonic oscillator basis for calculating those of the
Nelson Hamiltonian, but it is more efficient to use a basis of distorted oscillators
(Toscano et al. 2001). In figures 4-6, we show the huwi function of three different
eigenstates for several constant x;-planes. It should be observed that, in spite of
varying degrees of irregularity in the internal fringe pattern among these
examples, the wavelength is larger for the smaller classical curves, which hence
have shorter chords. In all cases, the pattern decays outside the classical curve.

It is interesting to compare the huwi functions with thin sections of the full
Wigner function of the eigenstates, along the planes ¢ = Q' and p;=P’, as
shown in figure 7, which also compares them to the Husimi functions for the
corresponding quantum sections. These sections of the full Wigner function
display interference of contributions from different parts of the energy shell
outside of the plane section. Semiclassically, these oscillations can be ascribed
to chords, &(x), with centres, @, in the section, but with tips on the energy
shell far from this plane. This is particularly evident in the region g,>0 outside
the classical curve. The Gaussian smoothing of (1.2), which defines the huwi
function in the planes ¢; = Q" and p, = P’, washed out all these interference
contributions, isolating the contributions from chords with tips lying on the
classical curve or in its neighbourhood. Thus, the result is a huwi function with
an interference pattern inside the classical curve and exponentially small values
outside, which resembles the Wigner functions associated with a quantized curve
(figure 2). However, it is clear that the constant phase curves of the interference
fringes do not follow exactly the regular concentric pattern of a Wigner function
for a quantized curve.

The plane ¢; =p; =0 is special for the Nelson Hamiltonian. On the one hand, it
is the symmetry plane for the reflection symmetry ¢; — — ¢; of the system. Thus,
the huwi function in this plane discriminates the odd from the even states in the
x; degrees of freedom. For the odd states, the huwi function is zero on the plane,
because, according to (2.6), it comes from a partial projection on an even
coherent state |X’'=(0,0)). On the other hand, this is a classically invariant
plane that contains the vertical family of periodic orbits of the full Hamiltonian.
In agreement with our choice of energy range such that the motion is basically
chaotic, the vertical family of periodic orbits is unstable in this range. Therefore,
they give rise to scars as described by Heller (1984), Bogomolny (1988) and Berry
(1989), i.e. a collective enhancement of amplitude in a narrow energy range. All
the chords with tips on one periodic orbit define the so-called central surface,
which, in this case, is merely the region in the invariant plane inside the classical
vertical orbit (Toscano et al. 2001). When the classical orbit is Bohr (or ‘anti-
Bohr’) quantized, it was shown in Toscano et al. (2001) that the mixture of
eigenstates in a narrow energy window, i.e. the spectral Wigner function, presents
a scar in the central surface of the periodic orbit, which takes the form of a pattern
of concentric rings of constant phase, just like those of the semiclassical L=1
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Wigner function of (4.15). This pattern is also evident for an individual eigenstate,
as is the case for |y, —395), whose eigenenergy is very close to the Bohr energy
(figure 7). In this case, the huwi function in the invariant plane, as a thick section
of the Wigner function, simply isolates the scar contribution of the periodic orbit
(figure 6). The thickness of the scar is sampled by the huwi functions up to a linear
distance of the order v/% = 0.22 by sections parallel to the symmetry plane.

Even when the periodic orbit is far from being Bohr-quantized, the huwi
functions around the invariant plane isolates similar contributions from the
periodic orbit, as shown in figures 4 and 5. The similarity of these huwi functions
with the Wigner functions for harmonic oscillator eigenstates is remarkable,
especially if it is recalled that their energies are not Bohr-quantized.

The quantum sections, which are represented by the huwi function, should not
be confused with the quantum Poincaré surface of section (Leboeuf & Saraceno
1990a,b). The latter is a projection onto a two-dimensional plane of the Husimi
function evaluated along the three-dimensional energy shell. It is an invaluable
tool for the study of the classical features of the quantum state. For instance,
scarred states (Heller 1984; Bogomolny 1988; Berry 1989) exhibit maxima in the
neighbourhood of the points where a periodic orbit crosses the corresponding
classical section (e.g. Arranz et al. 2004). By contrast, the two-dimensional
quantum section corresponds to a classical section that intersects the energy shell
along a closed curve. The Husimi representation of this quantum section
coincides with the section of the Husimi function of (2.7) and, hence, it is entirely
concentrated along the classical curve. Thus, the structure within the classical
curve of the huwi function is built up of quantum interferences that are washed
out in the Husimi representation of the section, as shown in figure 7.

6. Discussion

The huwi representation displays the classical structure underlying a quantum
state that is cut by a given two-dimensional plane, together with the interference
pattern due to this two-dimensional structure. The interference effects due to all
other classical regions, not sampled by this plane, are deleted. By considering first
some simple examples, we have shown that the ensemble of the Wigner functions
for such sections constitutes a promising tool for the study of the eigenstates of
chaotic systems, whether these be ergodic or scarred to some extent. Moreover, in
the case that the full state describes a pair of entangled components, the quantum
section describes the state of a subsystem after a well-defined experiment is
conceivably realized on the complementary subsystem. The Wigner functions for
these resulting states have not been previously studied, to our knowledge.

The Nelson Hamiltonian, whose eigenstates were presented in §5, corresponds
to a mixed classical system. At low energies, the motion is a perturbation of the
two-dimensional harmonic oscillator, but becomes increasingly chaotic at higher
energies. Even though the limit of truly ergodic motion is unlikely ever to be
reached, it is expected that most orbits will eventually sweep over most of the
energy shell, within the wavelength of the quantum motion for the states that we
have considered. Therefore, we expect that most eigenstates will resemble
ergodic quantum states.
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Figure 6. The huwi functions for the eigenstate |/, —305). We do not use a common scale for the
intensities in all the graphs in order to clearly display the structure of the huwi functions in each
plane. Thus, it is not possible to appreciate the enhanced amplitude of the huwi functions around the
classically invariant plane ¢; = p; =0, which reflects the fact that the Wigner function of this state has
a scar of the periodic orbit in this plane (figure 7). The distance of the eigenenergy Fso;=0.828 from
the Bohr energy level for the periodic orbit is of the order of a single level spacing, i.c. O(h?).

Our computations clearly show that even a partial smoothing of the Wigner
function is not concentrated in the neighbourhood of the energy shell. Indeed, each
quantum section of the energy shell, sampled by each huwi function, marks the
boundary, beyond which the huwi function is vanishingly small. But inside each
section of the shell, a closed curve, the huwi function oscillates somewhat like a
typical Wigner function of a Bohr-quantized state in the case of a single degree of
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Figure 7. The top row displays the plane sections of the Husimi function for three eigenstates |y,,)
of the Hamiltonian of (5.1). The energy shell in each plane ¢ = Q' and p; = P’ is drawn in black
(i.e. the classical curve). A comprehensible quantum interference pattern, associated with the
classical curve and its surroundings, starts to show up in the corresponding huwi functions
displayed in the middle row. However, the corresponding plane sections of the Wigner function in
the bottom row have interference contributions of different parts of the energy shell far from these
plane sections (particularly evident in the region ¢o>0 outside the classical curve).

freedom. Usually, these are considered as simple examples of eigenstates of
integrable systems, though it should not be forgotten that they are also trivially
ergodic, a trajectory visits uniformly the entire (one-dimensional) energy shell.
Therefore, the huwi representation has brought to light a natural, but unsuspected,
family resemblance between ergodic states of all dimensions.

The first difference between quantum sections for chaotic eigenstates and
simple Bohr-quantized states is clearly exhibited, not only by the huwi function
but also by the Husimi function of the section, i.e. the section of the full Husimi
function. In both the cases, this is only appreciable in the neighbourhood of the
classical curve, but the intensity of the chaotic Husimi function can exhibit
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marked modulations along the curve that vary from section to section, in marked
contrast to the regular quantized state.

The second difference, displayed only by the huwi function, concerns the
regularity of the wave pattern inside the classical curve. With the exception of
huwi functions obtained from very symmetric sections of the energy shell, it was
found in §5 that the regular pattern of concentric wavefronts for the Bohr-
quantized state in figure 2 may be broken up in many places, even though the
direction of the phase curves and their spacing is approximately maintained.

This scenario is curiously reminiscent of a snap shot of dislocations in wave
trains, analysed by Nye & Berry (1974). For travelling wave trains, the
approximately constant wavelength is a consequence of the approximately
constant temporal frequency of an initial pulse. However, the returning signal
results from several scattered components with different phases. The outcome is
an imperfect wave pulse with dislocations, where constant phase curves are
interrupted, just as for an imperfect crystal lattice. Similar structures arise for
travelling waves through the spatial and temporal disorder (La Porta & Surko
1996). In the present case, it is the single geometric chord, centred on a given
interior point of the classical curve, that specifies the dominant spatial frequency
near the centre, as well as the direction of the wavefronts, which must be parallel
to the chord. So far, this is the same as holds for the Bohr-quantized curve, but
the neighbouring oscillations of the chaotic huwi functions are closer to scattered
wave trains than to regular concentric waves. This same general picture can be
conjectured for two-dimensional quantum sections of even higher dimensional
chaotic energy shells.

Perhaps this is only a very qualitative analogy, though it indicates a direction
to be pursued for the systematic characterization of huwi functions obtained
from chaotic eigenstates. It is emphasized in Nye & Berry (1974) that the finite
size of the pulse is a precondition for the presence of dislocations. In this respect,
it should be recalled that diverse types of quantum states can be successfully
fitted by localized coherent states placed along the relevant classical manifold,
such that the oscillations midway between each pair of phase space Gaussians
have the same spatial frequency as that of the fitted state (Kenfack et al. 2004;
Carvalho et al. in preparation). One can then conjecture that the dislocations on
the crests of the huwi pattern may be ascribed to the superposition of
neighbouring coherent states on the classical curve with arbitrary phases.
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