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Inelastic semiclassical Coulomb scattering
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D-01187 Dresden, Germany

Received 13 January 2000

Abstract. We present a semiclassicalS-matrix study of inelastic collinear electron–hydrogen
scattering. A simple way to extract all the necessary information from the deflection function
alone without having to compute the stability matrix is described. This includes the determination
of the relevant Maslov indices. Results of singlet and triplet cross sections for excitation and
ionization are reported. The different levels of approximation—classical, semiclassical and uniform
semiclassical—are compared among each other and with the full quantum result.

1. Introduction

Semiclassical scattering theory was formulated almost 40 years ago for potential scattering
in terms of WKB phaseshifts [1]. Ten years later, a multidimensional formulation appeared,
derived from the Feynman path integral [2]. Based on a similar derivation, Miller developed
at about the same time his ‘classicalS-matrix’ which extended Pechukas’ multidimensional
semiclassicalS-matrix for potential scattering to inelastic scattering [3–5]. These semiclassical
concepts have mostly been applied to molecular problems, and in a parallel development by
Balian and Bloch [6] to condensed matter problems, i.e. to short-range interactions.

Only recently, scattering involving long-range (Coulomb) forces has been studied using
semiclassicalS-matrix techniques, in particular potential scattering [7], ionization of atoms
near the threshold [8, 9] and chaotic scattering below the ionization threshold [10]. The latter
problem has also been studied purely classically [11] and semiclassically within a periodic
orbit approach [12].

While there is a substantial body of work on classical collisions with Coulomb forces
using the classical trajectory Monte Carlo method (CTMC [13]; see [14] for an early reference)
almost no semiclassical studies exist. This fact together with the remarkable success of CTMC
methods has motivated our semiclassical investigation of inelastic Coulomb scattering. To
carry out an explorative study in the full 12-dimensional phase space of three interacting
particles is prohibitively expensive. Instead, we restrict ourselves tocollinear scattering,
i.e. all three particles are located on a line with the nucleus in between the two electrons.
This collision configuration has been proved to contain the essential physics for ionization
near the threshold [8, 15, 16] and it fits well into the context of classical mechanics since the
collinear phase space is a consequence of a stable partial fixed point at the interelectronic angle
θ12 = 180◦ [16]. Moreover, it is exactly the setting of Miller’s approach for molecular reactive
scattering.
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For the theoretical development of scattering concepts another Hamiltonian of only two
degrees of freedom has been established in the literature, the s-wave model [17]. Formally,
this model Hamiltonian is obtained by averaging the angular degrees of freedom and retaining
only the zeroth order of the respective multipole expansions. The resulting electron–electron
interaction is limited to the liner1 = r2, whereri are the electron–nucleus distances, and
the potential is not differentiable along the liner1 = r2. This is not very important for the
quantum mechanical treatment; however, it affects the classical mechanics drastically. Indeed,
it has been found that the s-wave Hamiltonian leads to a threshold law for ionization which is
very different from the one resulting from the collinear and the full Hamiltonian (which both
lead to the same threshold law) [18]. Since it is desirable for a comparison of semiclassical
with quantum results that the underlying classical mechanics does not lead to qualitatively
different physics we have chosen to work with the collinear Hamiltonian. For this collisional
system we will obtain and compare the classical, the quantum and the primitive and uniformized
semiclassical result. For the semiclassical calculations the collinear Hamiltonian was amended
by the so-called Langer correction, introduced by Langer [19] to overcome inconsistencies with
the semiclassical quantization in spherical (or more generally non-Cartesian) coordinates.

As a by-product of this study we give a rule on how to obtain the correct Maslov indices for
a two-dimensional collision system directly from the deflection function without the stability
matrix. This not only makes the semiclassical calculation much more transparent, it also
considerably reduces the numerical effort since one can avoid computing the stability matrix
and nevertheless still obtain the full semiclassical result.

The plan of the paper is as follows. In section 2 we introduce the Hamiltonian and
the basic semiclassical formulation of theS-matrix in terms of classical trajectories. We
will discuss a typicalS-matrix S(E) at fixed total energyE and illustrate a simple way to
determine the relevant (relative) Maslov indices. In section 3 semiclassical excitation and
ionization probabilities are compared with quantum results for singlet and triplet symmetry.
The spin-averaged probabilities are also compared with the classical results. In section 4 we
go one step further and uniformize the semiclassicalS-matrix, the corresponding scattering
probabilities are presented. We conclude the paper with section 5 where we try to assess how
useful semiclassical scattering theory is for Coulomb potentials.

2. Collinear electron–atom scattering

2.1. The Hamiltonian and the scattering probability

The collinear two-electron Hamiltonian with a proton as a nucleus reads (atomic units are used
throughout the paper)

h = p2
1

2
+
p2

2

2
− 1

r1
− 1

r2
− 1

r1 + r2
. (1)

The Langer-corrected Hamiltonian is given by

H = h +
1

8r2
1

+
1

8r2
2

. (2)

For collinear collisions we have only one ‘observable’ after the collision, namely the state with
quantum numbern, to which the target electron was excited through the collision. If its initial
quantum number before the collision wasn′, we may write the probability at total energyE as

Pn,n′(E) = |〈n|S|n′〉|2 (3)
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with theS-matrix

S = lim
t→∞
t ′→−∞

eiHf te−iH(t−t ′)e−iHit ′ . (4)

Generally, we use the prime to distinguish initial from final state variables. The Hamiltonians
Hi andHf represent the scattering system before and after the interaction, respectively, and
do not need to be identical (e.g. in the case of a rearrangement collision). The initial energy
of the projectile electron is given by

ε′ = E − ε̃′ (5)

whereε̃′ is the energy of the bound electron andE the total energy of the system. In the same
way the final energy of the free electron is fixed. However, apart from excitation, ionization
can also occur forE > 0 in which case|n〉 is simply replaced by a free momentum state
|p〉. This is possible since the complicated asymptotics of three free charged particles in the
continuum is contained in theS-matrix.

2.2. The semiclassical expression for theS-matrix

Semiclassically, theS-matrix may be expressed as

Sn,n′(E) =
∑
j

√
P (j)n,n′(E) ei8j−i 1

2πνj (6)

where the sum is over all classical trajectoriesj which connect the initial staten′ and the final
‘state’n with a respective probability ofP (j)n,n′(E). The classical probabilityP (j)n,n′(E) is given
by

P (j)n,n′(E) = P (j)ε,ε′(E)
∂ε

∂n
= 1

N

∣∣∣∣∣∂ε(R′)∂R′j

∣∣∣∣∣
−1
∂ε

∂n
(7)

see [9] where an expression for the normalization constantN is also given. Note, that due to
the relation (5) derivatives ofε andε̃ with respect ton orR′ differ only by a sign. From now
on we denote the coordinates of the initially free electron by capital letters and those of the
initially bound electron by lowercase letters. If the projectile is bound after the collision we
will call this an ‘exchange process’, otherwise we speak of ‘excitation’ (the initially bound
electron remains bound) or ionization (both electrons have positive energies). The deflection
functionε(R′) has to be calculated numerically, as described in the next section. The phase
8j is the collisional action [20] given by

8j(P, n;P ′, n′) = −
∫

dt
(
qṅ +RṖ

)
(8)

with the angle variableq. The Maslov indexνj counts the number of caustics along each
trajectory. ‘State’ refers in the present context to integrable motion for asymptotic times
t →±∞, characterized by constant actions,J ′ = 2πh̄(n′+ 1

2). The (free) projectile represents
trivially integrable motion and can be characterized by its momentumP ′. In our case, each
particle has only one degree of freedom. Hence, instead of the actionJ ′ we may use the energy
ε̃′ for a unique determination of the initial bound state. In the next sections we describe how
we calculated the deflection function, the collisional action and the Maslov index.
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Figure 1. Scattering trajectories at a total energy ofE = 0.125 au with initial conditions marked
in figure 2. Labels (a)–(f ) refer to representative trajectories with initial valuesR′ shown in
figure 2. The left-hand column corresponds to classical exchangen′ = 1→ n = 1, the middle
column represents ionization events and the right-hand column shows elastic backscattering with
n′ = 1→ n = 1.

2.2.1. Scattering trajectories and the deflection function.The crucial object for the
determination of (semi)classical scattering probabilities is the deflection functionε(R′)where
ε is the final energy of the projectile electron as a function of its initial positionR0 +R′. Each
trajectory is started with the bound electron at an arbitrary but fixed phase space point on
the degenerate Kepler ellipse with energyε̃′ = −0.5 au. The initial position of the projectile
electron is changed according toR′, but always at asymptotic distances (we takeR0 = 1000 au),
and its momentum is fixed by energy conservation toP ′ = [2(E − ε̃′)]1/2. The trajectories
are propagated as a function of time with a symplectic integrator [21] andε = ε(t → ∞) is
in practice evaluated at a timet when

d ln |ε|/dt < δ (9)

whereδ determines the desired accuracy of the result. Typical trajectories are shown in figure 1,
their initial conditions are marked in the deflection function of figure 2.

In the present (and generic) case of a two-body potential that is bounded from below the
deflection function must have maxima and minima according to the largest and smallest energy
exchange possible limited by the minimum of the two-body potential. The deflection function
can only be monotonic if the two-body potential is unbounded from below as in the case of the
pure (homogeneous) Coulomb potential without a Langer correction (compare, for example,
figure 1 of [8]). This qualitative difference implies another important consequence: for higher
total energiesE the deflection function is pushed upwards. Although energetically allowed,
for E > 1 au the exchange branch vanishes as can be seen from figure 3. As we will see later
this has a significant effect on semiclassical excitation and ionization probabilities.
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Figure 2. The deflection function at an energy ofE = 0.125 au and for an initial state as described
in the text. The energy interval enclosed by broken lines marks ionizing initial conditions and
separates the exchange region (ε < 0) from the excitation region (ε > E), whereε is the energy
of the projectile after the collision.

   

Figure 3. The deflection function at an energy ofE = 2 au and for an initial state as described in
the text. The broken line separates ionizing initial conditions from excitation events.

2.2.2. The form of the collisional action.The collisional action8j along the trajectory
j in (6) has some special properties which result from the form of theS-matrix (4). The
asymptotically constant states are represented by a constant actionJ or quantum numbern
and a constant momentumP for bound and free degrees of freedom, respectively. Hence, in
the asymptotic integrable situation withṅ = Ṗ = 0 before and after the collision no action
8j is accumulated and the collisional action has a well defined value irrespective of the actual
propagation time in the asymptotic regions. This is evident from (8) which is, however, not
suitable for a numerical realization of the collision. The scattering process is much more
easily followed in coordinate space, and more specifically for our collinear case, in radial
coordinates. In the following, we will describe how to extract the action according to (8) from
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such a calculation in radial coordinates (positionr and momentump for the target electron,
R andP for the projectile electron). The discussion refers to excitation processes to keep the
notation simple but the result (13) also holds for the other cases. The collisional action8 can
be expressed through the action in coordinate space8̃ by [3]

8(P, n;P ′, n′) = 8̃(P, r;P ′, r ′) + F2(r
′, n′)− F2(r, n) (10)

where

8̃(P, r;P ′, r ′) = lim
t→∞
t ′→−∞

∫ t

t ′
dτ
[−RṖ + pṙ

]
(11)

is the action in coordinate space andF2 is the generator for the classical canonical
transformation from the phase space variables(r, p) to (q, n) given by

F2(r, n) = sgn(p)
∫ r

ri

(2m[ε(n)− v(x)])1/2 dx. (12)

Hereri denotes an inner turning point of an electron with energyε(n) in the potentialv(x).
Clearly,F2 will not contribute if the trajectory starts and ends at a turning point of the bound
electron. Partial integration of (11) transforms to momentum space and yields a simple
expression for the collisional action in terms of spatial coordinates:

8(P, n;P ′, n′) = lim
ti→∞
t ′i→−∞

−
∫ ti

t ′i

dτ
[
RṖ + rṗ

]
. (13)

Note, thatt ′i and ti refer to times where the bound electron is at an inner turning point and
the generatorF2 vanishes. Phases determined according to (13) may still differ for the same
path depending on its time of termination. However, the difference can only amount to integer
multiples of the (quantized!) action

J =
∮
p dr = 2π

(
n + 1

2

)
(14)

of the bound electron withε < 0. Multiples of 2π for each revolution do not change the
value of theS-matrix and the factor 2π/2 is compensated by the Maslov index. In the case of
an ionizing trajectory the action must be corrected for the logarithmic phase accumulated in
Coulomb potentials [20].

Summarizing this analysis, we fix the (in principle arbitrary) starting point of the trajectory
to be an inner turning point (r ′i |p′ = 0, ṗ′ > 0) which completes the initial condition for the
propagation of trajectories described in section 2.2.1. In order to obtain the correct collisional
action (8) in the form (13) we also terminate a trajectory at an inner turning pointri after the
collision such that8 is a continuous function of the initial positionR′. Although this is not
necessary for the primitive semiclassical scattering probability which is only sensitive to phase
differences up to multiples ofJ as mentioned above, the absolute phase difference is needed
for a uniformized semiclassical expression to be discussed later.

2.3. Maslov indices

2.3.1. Numerical procedure. In position space the determination of the Maslov index is
rather simple for an ordinary Hamiltonian with kinetic energy as in (2). According to Morse’s
theorem the Maslov index is equal to the number of conjugate points along the trajectory. A
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conjugate point in coordinate space is defined by (f degrees of freedom,(qi, pi) a pair of
conjugate variables)

det
(
Mqp

) = det

(
∂(q1, . . . , qf )

∂(p′1, . . . , p
′
f )

)
= 0. (15)

The matrixMqp is the upper right-hand part of the stability or monodromy matrix which is
defined by (

δEq(t)
δ Ep(t)

)
≡ M(t)

(
δEq(0)
δ Ep(0)

)
. (16)

In general, the Maslov indexνj in (6) must be computed in the same representation as the
action. In our case this is the momentum representation in (13). However, the Maslov index
in momentum space is not simply the number of conjugate points in momentum space where
det(Mpq) = 0. Morse’s theorem relies on the fact that in position space the mass tensor
Bij = ∂2H/∂pi∂pj is positive definite. This is not necessarily true forDij = ∂2H/∂qi∂qj
which is the equivalent of the mass tensor in momentum space. How to obtain the correct
Maslov index from the number of zeros of det(Mpq) = 0 is described in [22], a review about
the Maslov index and its geometrical interpretation is given in [23].

2.3.2. Phenomenological approach for two degrees of freedom.For two degrees of freedom,
one can extract the scattering probability directly from the deflection function without having
to compute the stability matrix and its determinant explicitly [8]. In view of this simplification
it would be desirable to also determine the Maslov indices directly from the deflection function,
avoiding the complicated procedure described in the previous section. This is indeed possible
since one needs only the correctdifferenceof Maslov indices for a semiclassical scattering
amplitude.

A little thought reveals that trajectories starting from branches in the deflection function
of figure 2 separated by an extremum differ by one conjugate point. This implies that their
respective Maslov indices differ by1ν = 1. For this reason it is convenient to divide the
deflection function into different branches, separated by an extremum. Trajectories of one
branch have the same Maslov index. Since there are two extrema we need only two Maslov
indices,ν1 = 1 andν2 = 2. The relevance of just two values of Maslov indices(1, 2) can be
traced to the fact that almost all conjugate points are trivial in the sense that they belong to
turning points of bound two-body motion.

We can assign the larger indexν2 = 2 to the trajectories which have passed one more
conjugate point than the others. As is almost evident from their topology, these are the
trajectories with dε/dR′ > 0 shown in the upper row of figure 1. (They also have a larger
collisional action8j .) The two non-trivial conjugate points for these trajectories compared to
the single conjugate point for orbits with initial conditions corresponding to dε/dR′ < 0 can
be understood by looking at the ionizing trajectories (b) and (e) of each branch in figure 1.
Trajectories from both branches have in common the turning point for the projectile electron
(P = 0). For trajectories of the lower row all other turning points belong to complete two-body
revolutions of a bound electron and may be regarded as trivial conjugate points. However, for
the trajectories from the upper row there is one additional turning point (see, e.g., figure 1(b))
which cannot be absorbed by a complete two-body revolution. It is the source for the additional
Maslov phase.

We finally remark that dε/dR′ > 0 is equivalent to dn/dq̄ < 0 of [27] leading to the same
result as our considerations illustrated above.
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3. Semiclassical scattering probabilities

Taking into account the Pauli principle for the indistinguishable electrons leads to different
excitation probabilities for the singlet and triplet,

P +
ε (E) =

∣∣ Sε,ε′(E) + SE−ε,ε′(E)
∣∣2

P−ε (E) =
∣∣ Sε,ε′(E)− SE−ε,ε′(E) ∣∣2 (17)

where the probabilities are symmetrizeda posteriori(see [26]). Here,Sε,ε′ denotes theS-matrix
for the excitation branch, calculated according to (6), whileSE−ε,ε′ represents the exchange
processes, at a fixed energyε < 0, respectively.

Ionization probabilities are obtained by integrating the differential probabilities over the
relevant energy range which is due to the symmetrization (17) reduced toE/2:

P±ion(E) =
∫ E/2

0
P±ε (E) dε. (18)

3.1. Ionization and excitation for singlet and triplet symmetry

We begin with the ionization probabilities since they illustrate most clearly the effect of the
vanishing exchange branch for higher energies as illustrated in figure 3. The semiclassical
result for the Langer Hamiltonian (2) shows the effect of the vanishing exchange branch in the
deflection function (figure 3) which leads to mergingP± probabilities at a finite energyE, in
clear discrepancy to the quantum result (see figure 4). Moreover, the extrema in the deflection
function lead to the sharp structures belowE = 1 au. The same is true for the excitation
probabilities where a discontinuity appears belowE = 1 au (figure 5). Note also that due to
the violated unitarity in the semiclassical approximation probabilities can become larger than
unity, as is the case for then = 1 channel.

Singlet and triplet excitation probabilities represent the most differential scattering
information for the present collisional system. Hence, the strongest deviations of the
semiclassical results from the quantum values can be expected. Most experiments do not

Figure 4. Ionization probabilities for the singlet and triplet according to (18) with the Hamiltonian
(2) (full curve) compared with quantum mechanical calculations (dotted curve).
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Figure 5. Semiclassical excitation probabilities (n = 1, 2, 3) according to (17) for singlet (a) and
triplet (b) in the LSA (full curve) compared with quantum mechanical calculations (dotted curve).

resolve the spin states and measure a spin-averaged signal. In our model this can be simulated
by averaging the singlet and triplet probabilities to

Pε(E) = 1
2(P

+
ε (E) + P−ε (E)). (19)

The averaged semiclassical probabilities may also be compared with the classical result which
is simply given by

PCL
ε (E) =

∑
j

(P (j)ε,ε′(E) + P (j)ε,E−ε′(E)) (20)

with P (j)ε,ε′(E) from (7).
Figure 6 shows averaged ionization probabilities. They are very similar to each other, and

indeed, the classical result is not much worse than the semiclassical result.
In figure 7 we present the averaged excitation probabilities. Again, one can see the

discontinuity resulting from the extrema in the deflection function. As for ionization, the
spin-averaged semiclassical probabilities (figure 7(b)) are rather similar to the classical ones
(figure 7(a)), in particular the discontinuity is of the same magnitude as in the classical case
and considerably more localized in energy than in the non-averaged quantities of figure 5.

Clearly, the discontinuities are an artefact of the semiclassical approximation. More
precisely, they are a result of the finite depth of the two-body potential in the Langer corrected
Hamiltonian (2). Around the extrema of the deflection function the condition of isolated
stationary points, necessary to apply the stationary phase approximation which leads to (6),
is not fulfilled. Rather, one has to formulate a uniform approximation which can handle the
coalescence of two stationary phase points.
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Figure 6. Spin-averaged quantum results for ionization (dotted curve) compared with averaged
semiclassical probabilities (full curve) from (19) and classical probabilities (broken curve) from
(20).

 

Figure 7. Spin-averaged quantum results (dotted curve) for excitation (n = 1, 2, 3) compared
with classical probabilities (full curve, (a)) from (20) and averaged semiclassical probabilities (full
curve, (b)) from (19).

4. Uniformized scattering probabilities

We follow an approach by Chesteret al [25]. The explicit expression for the uniformS-matrix
goes back to Connor and Marcus [24] who obtained for two coalescing trajectories 1 and 2

Sn,n′(E) = Bi+ (−z)
√
P (1)n,n′(E) ei81+iπ/4 + Bi− (−z)

√
P (2)n,n′(E) ei82−iπ/4 (21)
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Figure 8. Uniformized semiclassical excitation probabilities (n = 1, 2, 3) according to (21) (full
curve) for a singlet (a) and triplet (b) compared with quantum mechanical calculations (dotted
curve).

where

Bi± (−z) = √π [z1/4Ai (−z)∓ iz−1/4Ai ′ (−z)] e±i( 2
3z

3/2− 1
4π). (22)

The argumentz = [
3
4 (82 −81)

]2/3
of the Airy function Ai(z) contains the absolute phase

difference. We assume that82 > 81 which implies for the difference of the Maslov indices
thatν2 − ν1 = 1 (compare (6) with (21) and (23)). Since the absolute phase difference enters
(21) it is important to ensure that the action is a continuous function ofR′ avoiding jumps
of multiples of 2π , as already mentioned in section 2.2.2. For large phase differences (6) is
recovered since

lim
z→∞Bi± (−z) = 1. (23)

Our uniformizedS-matrix has been calculated by applying (21) to the two branches for
exchange and excitation separately and adding or subtracting the results according to a singlet
or triplet probability. In the corresponding probabilities of figure 8 the discontinuities of the
non-uniform results are indeed smoothed in comparison with figure 5. However, the overall
agreement with the quantum probabilities is worse than in the non-uniform approximation. A
possible explanation could lie in the construction of the uniform approximation. It works with
an integral representation of theS-matrix, where the oscillating phase (the action) is mapped
onto a cubic polynomial. As a result, the uniformization works best, if the deflection function
can be described as a quadratic function around the extremum. Looking at figure 2 one sees that
this is true only in a very small neighbourhood of the extrema because the deflection function
is strongly asymmetric around these points. We also applied a uniform approximation derived
by Miller [4] which gave almost identical results.

Finally, for the sake of completeness, the spin-averaged uniform probabilities are shown
in figure 9. As can be seen, the discontinuities have vanished almost completely. However,
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Figure 9. Spin-averaged uniformized excitation probabilities (n = 1, 2, 3, full curve) compared
with quantum results (dotted curve).

the general agreement with quantum mechanics is worse than for the standard semiclassical
calculations, similarly as for the symmetrized probabilities.

5. Conclusion

In this paper we have described inelastic Coulomb scattering with a semiclassicalS-matrix. To
handle the problem for this explorative study we have restricted the phase space to the collinear
arrangement of the two electrons, reducing the degrees of freedom to one radial coordinate
for each electron. In appreciation of the spherical geometry we have applied the so-called
Langer correction to obtain the correct angular momentum quantization. Thereby, a lower
bound to the two-body potential is introduced which generates a generic situation for bound
state dynamics since the (singular) Coulomb potential is replaced by a potential bounded from
below. The finite depth of the two-body potential leads to singularities in the semiclassical
scattering matrix (rainbow effect) which call for a uniformization.

Hence, we have carried out and compared among each other classical (where applicable),
semiclassical and uniformized semiclassical calculations for the singlet, triplet and spin-
averaged ionization and excitation probabilities. Two general trends may be summarized.
First, the simple semiclassical probabilities are in overall better agreement with the quantum
results for the singlet/triplet observables than the uniformized results. The latter are only
superior close to the singularities. Secondly, for the (experimentally most relevant) spin-
averaged probabilities the classical (non-symmetrizable) result is almost as good as the
semiclassical one compared with the exact quantum probability. This holds for excitation as
well as for ionization. Hence, we conclude from our explorative study that a full semiclassical
treatment for spin-averaged observables is probably not worthwhile since it does not produce
better results than the much simpler classical approach. Clearly, this conclusion has to be
taken with some caution since we have only explored a collinear, low-dimensional phase
space.
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