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Semiclassical description of multiphoton processes
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We analyze strong field atomic dynamics semiclassically, based on a full time-dependent description with
the Hermann-Kluk propagator. From the properties of the exact classical trajectories, in particular the accu-
mulation of action in time, the prominent features of above-threshold ionization and higher-harmonic genera-
tion are proven to be interference phenomena. They are reproduced quantitatively in the semiclassical approxi-
mation. Moreover, the behavior of the action of the classical trajectories supports the so called strong field
approximation which has been devised and postulated for strong field dynamics.

PACS number~s!: 32.80.Fb, 03.65.Sq, 42.65.Ky
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I. INTRODUCTION

In the last two decades multiphoton processes have b
studied intensively, experimentally as well as theoretica
The inherently time-dependent nature of an atomic or m
lecular excitation process induced by a short laser pulse
ders a theoretical description problematic in two respe
First, a full quantum calculation in three dimensions requi
a large computational effort. For this reason, quantum ca
lations have been restricted to one active electron in m
cases@1,2#. Secondly, an intuitive understanding of an e
plicitly time-dependent process seems to be notoriously
ficult, exemplified by pertinent discussions about stabili
tion in intense laser fields@3–5#. Many studies have bee
carried out to gain an intuitive understanding of the two m
prominent strong field phenomena, namely, high-harmo
generation~HHG! and above-threshold ionization~ATI !. In
the well established early analytical formulation by Keldys
Faisal, and Reiss the atomic potential is treated as a pe
bation of the motion of the electron in a strong laser field@6#.

This picture is still used in more recent models, where
classical dynamics of the electron in the laser field is exp
itly considered, e.g., in Corkum’s rescattering model, wh
can explain the cutoff observed in HHG for linearly pola
ized laser light in one spatial dimension@7#. The correspond-
ing Hamiltonian reads@8#

H5H01E0f ~ t !x sin~v0t1d!, ~1!

whereH05 1
2 p21V(x) is the atomic Hamiltonian,f (t) is the

time profile of the laser pulse with maximum amplitudeE0,
andv0 is the laser frequency. The interaction of the electr
with the atom is specified by the potentialV.

Lewensteinet al. extended Corkum’s rescattering idea
a quasiclassical model that contains one~relevant! bound
state not influenced by the laser field on the one hand
electrons that experience only the laser field on the o
hand @9#. This simple model, sometimes also called t
‘‘simple man’s model’’ @10#, well explains qualitatively the
features of HHG. The same is also true for an alterna
model, where the electron is bound by a zero-range pote
@11#. However, the basic question if and to what extent th
multiphoton processes can be understood semiclassic
1050-2947/2000/62~5!/053403~10!/$15.00 62 0534
en
.
-
n-
s.
s
u-
st

f-
-

t
ic

,
ur-

e
-

h

n

d
er

e
ial
e

lly,

i.e., by interference of classical trajectories alone, rema
unanswered. It is astonishing that no direct semiclassica
vestigation of the Hamiltonian Eq.~1! has been performed
while a number of classical as well as quantum calculati
for Eq. ~1! have been published. However, only recently h
a semiclassical propagation method been formulated that
be implemented with reasonable numerical effort. This
very important for the seemingly simple Hamiltonian Eq.~1!
whose classical dynamics is mixed and in some phase s
regions highly chaotic, which requires efficient computati
to achieve convergence. Equipped with these semiclass
tools we have studied multiphoton phenomena semicla
cally in the framework of Eq.~1!. In comparison to the exac
quantum solution, we will work out those features of t
intense field dynamics that can be understood in terms
interference of classical trajectories.

The plan of the paper is as follows. In Sec. II we provi
the tools for the calculation of a semiclassical, tim
dependent wave function. In Sec. III we discuss abo
threshold ionization and work out the classical quantities t
structure the relevant observables semiclassically. In Sec
we use this knowledge for the description of highe
harmonic generation. Section V concludes the paper wit
comparison of HHG and ATI from a semiclassical persp
tive, and a short summary.

II. CALCULATION OF THE SEMICLASSICAL WAVE
FUNCTION

A ~multidimensional! wave functionCb(x,t) can be ex-
pressed as

C~x,t !5E
0

t

dx8K~x,x8,t !C~x8!. ~2!

Here, C(x8) is the initial wave function att50 and
K(x,x8,t) denotes the propagator. We will not use the we
known semiclassical Van Vleck–Gutzwiller~VVG! propaga-
tor, which is inconvenient for several reasons. First, one
to deal with caustics, i.e., singularities of the propagator, a
secondly, it was originally formulated as a boundary va
problem. For numerical applications the so called Herm
Kluk ~HK! propagator is much better suited~and for analyti-
©2000 The American Physical Society03-1
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GERD van de SAND AND JAN M. ROST PHYSICAL REVIEW A62 053403
cal considerations not worse!; this is a uniformized propaga
tor in initial value representation@12,13#, which reads in a
2n-dimensional phase space

KHK~x,x8,t !5
1

~2p\!nE E dpdqCqp~ t !eiSqp(t)/\

3gg~x;q~ t !,p~ t !!gg* ~x8;q,p! ~3!

with

gg~x;q,p!5S g

p D n/4

expS 2
g

2
~x2q!21

i

\
p~x2q! D ~4!

and

Cqp~ t !5U12 S Qq1Pp2 i\gQp2
1

i\g
PqD U1/2

. ~5!

Each phase space point (q,p) in the integrand of Eq.~3! is
the starting point of a classical trajectory with actionSqp(t).
The termsXy in the weight factorCqp(t) are the four ele-
ments of the monodromy matrix,Xy5]xt /]y. The square
root in Eq. ~5! has to be calculated in such a manner t
Cqp(t) is a continuous function oft. The integrand in Eq.~3!
is—depending on the system—highly oscillatory. Althou
the formulation presented is in the full dimensional spa
and there are no major obstacles to carrying out the calc
tion, we have restricted ourselves for this explorative stu
to one spatial dimension@see Eq.~1!# since the numerica
effort is considerable~for the one-dimensional case the num
ber of trajectories necessary for numerical convergence
already reach 107!. We note in passing that an integration b
the stationary phase approximation over momentum and
ordinate variables reduces the HK propagator to the V
propagator@14#.

In all calculations presented here we have used a Ga
ian wave packet as initial wave function,

Cb~x8!5S b

p D 1/4

expS b

2
~x82qb!2D . ~6!

With this choice, the overlap

f gb~q,p![E gg* ~x8;q,p!Cb~x8!dx8 ~7!

can be calculated analytically and Eq.~2! reads, together
with Eq. ~3!,

Cb
HK~x,t !5S 4gb

a2 D 1/4
1

2p\E E dpdqeiSqp(t)/\Cqp~ t !

3gg„x;q~ t !,p~ t !…f gb~q,p! ~8!

with a5g1b. For all results presented here we have tak
g5b.

For comparison with our semiclassical calculations
determined the quantum-mechanical wave function us
standard fast-Fourier-transform split-operator methods@15#.
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III. ABOVE-THRESHOLD IONIZATION

We start from Eq.~1! with d50 and use a rectangula
pulse shapef (t) which lasts for 4.25 optical cycles. Thi
setting is very similar to the one used in@16#.

The energy spectrum of the electrons can be expresse
the Fourier transform of the autocorrelation function after
pulse, i.e., for timest.t f ,

s~v!5ReE
t f

`

eivt^C~ t !uC f&dt, ~9!

whereC f5C(t f) is the wave function after the pulse an
correspondingly

uC~ t !&5eiH 0(t2t f )/\uC f& ~10!

is calculated by propagatingC f for some time with the
atomic Hamiltonian H0 only after the laser has bee
switched off.

A. Quantum-mechanical and semiclassical spectra for ATI

We will present results for two types of potential to el
cidate the dependence of the semiclassical approximatio
the form of the potential.

1. Soft-core potential

First we apply the widely used softcore potential@16,17#

V~x!52
1

Ax21a
~11!

with a51 and with an ionization potentialI p50.670 a.u. We
have checked that the correlation function differs little if ca
culated with the exact ground state or with the ground s
wave function approximated by the Gaussian of Eq.~6!
whereb50.431 a.u. andqb50. However, the semiclassica
calculation is considerably simplified with a Gaussian as
tial state as can be seen from Eqs.~6!–~8!. Therefore we use
this initial state and obtain the propagated semiclass
wave function in the closed form, Eq.~8!. In Fig. 1 the quan-
tum and semiclassical results at a frequencyv050.148 a.u.

FIG. 1. Quantum-mechanical~dotted line! and semiclassica
~solid line! ATI spectra for the Hamiltonian of Eq.~1! with E0

50.15 a.u.,v050.148 a.u., and the soft-core potential Eq.~11!.
3-2
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SEMICLASSICAL DESCRIPTION OF MULTIPHOTON . . . PHYSICAL REVIEW A62 053403
and a field strengthE050.15 a.u. are compared. Th
quantum-mechanical calculation~dotted line! shows a typi-
cal ATI spectrum. Intensity maxima with a separation in e
ergy of \v0 are clearly visible. The first maximum has th
highest intensity while the second maximum is suppress

The semiclassical result~solid line! is ambiguous: On the
one hand there are clear ATI maxima with a separation
\v0. All peaks but the first one have roughly the corre
magnitude. Again the second maximum is missing. On
other hand we see a constant shift~about 0.02 a.u.! of the
spectrum toward higher energies. Therefore, a quantita
semiclassical description is impossible, at least with
present parameters and the soft-core potential. As it
turned out, in the time interval before ionization the bou
electron wave packet evolves quite differently in the so
core potential under quantum and semiclassical propaga
We will demonstrate that indeed the bound state dynamic
primarily responsible for the shift in the spectrum. This w
be done by considering a different potential, which beha
almost harmonically for the lower bound states, implying
similar evolution of the wave packet under quantum a
semiclassical propagation and thus eliminating this sourc
error.

2. Gaussian potential

A potential suitable for our purpose has been used
model the ‘‘single bound state’’ situation mentioned in t
Introduction@18#. It is of Gaussian form,

V~x!52V0 exp~2sx2!. ~12!

With our choice of parametersV050.6 a.u. ands50.025
a.u., the potential contains six bound states and can be
proximated, at least in the lower-energy part, by a harmo
potential for which semiclassical calculations are exa
Hence, the semiclassical ATI spectrum with this poten
should be more accurateif the discrepancies in Fig. 1 are du
to the potential and not to the laser interaction. The grou
state wave function itself is again well approximated by
Gaussian Eq.~6! with b50.154 a.u. andqb50. The laser
has a frequencyv050.09 a.u., a field strengthE050.049
a.u., and a pulse duration of 4.25 cycles. The Keldysh
rameter has the value 1.87.

We obtain a quantum-mechanical ATI spectrum~dotted
line in Fig. 2! with six distinct maxima. The semiclassic
spectrum ~solid line! is not shifted; the locations of th
maxima agree with quantum mechanics. Hence one can
clude that the soft-core potential is responsible for the sh
The height of the third maximum is clearly underestima
and the details of the spectrum are exaggerated by the s
classical calculation. Apart from these deviations the agr
ment is good enough to use this type of calculation as a b
for a semiclassical understanding of ATI.

B. Semiclassical interpretation of the ATI spectrum

1. Classification and coherence of trajectories

With the chosen parameters most of the trajectories ion
during the pulse (;92%). We consider a trajectory as ion
ized if the energy of the atom
05340
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«~ t !5p~ t !2/21V„q~ t !… ~13!

becomes positive at some timetn and remains positive, i.e.
«(t).0 for t.tn . Typically, the trajectories ionize aroun
an extremum of the laser field. Tunneling cannot be v
important, otherwise the agreement between quantum
chanics and semiclassics would be much worse.

An obvious criterion for the classification of the traject
ries is the time interval of the laser cycle into which the
individual ionization timetn falls ~see Fig. 3!. Typically ion-
ization of trajectory happens aroundtn5(2n21)T/4 when
the force induced by the laser reaches a maximum. He
the ionized trajectories can be attached to time intervalsI n
5@(n21)T/2,nT/2#. In Fig. 3 we have plotted four trajecto
ries from the intervalsI 1 to I 4 that end up with an energy
E50.36 a.u. After ionization each trajectory shows a quiv
motion around a mean momentumpf @19#. One can distin-
guish two groups of intervals, namely, those with trajector
ionized with positive momentumpf ~the intervalsI 2k21) and
those with trajectories with negativepf ~the intervalsI 2k).
These two groups contribute separately and incoherentl
the energy spectrum, as one might expect since the elect
are easily distinguishable. One can see this directly from

FIG. 2. Quantum-mechanical~dotted line! and semiclassica
~solid line! ATI spectra for the Hamiltonian of Eq.~1! with E0

50.049 a.u.,v050.09 a.u., and the Gaussian potential Eq.~12!.

FIG. 3. Energy«(t) from Eq. ~13! for some representative tra
jectories ionized in the intervalsI 1 ~solid line!, I 2 ~dashed line!, I 3

~dash-dotted line!, and I 4 ~dotted line!, respectively. For compari-
son, the laser field is plotted in arbitrary units~thick dashed line!.
3-3
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GERD van de SAND AND JAN M. ROST PHYSICAL REVIEW A62 053403
definition Eq.~9! of the electron energy spectrum. For rel
tive high energies\v the ~short-range! potential may be ne-
glected in the HamiltonianH0 and we get

s~v!5ReE
t f

`

eivt^C f ue2 iH 0(t2t f )uC f&dt

' ReE
0

`

eivt^C f ue2 ip2t/2\uC f&dt

5E
2`

`

d~v2p2/2\!uC f~p!u2dp

5@ uC f~2A2\v!u21uC f~A2\v!u2#~\/2v!1/2

[s2~v!1s1~v!. ~14!

Hence, to this approximation, the ATI spectrum is inde
given by the incoherent sum of two terms belonging to d
ferent signs of the momenta of electrons ionized in differ
time intervals as described above.

Figure 4~a! shows that Eq.~14! is a good approximation
Only for smallv do the spectra not agree, where the kine
energy is comparable with the~neglected! potential energy.

Quantum-mechanically, all contributions from trajectori
that lead to the same momentumpf of the electron are indis
tinguishable and must be summed coherently. To dou
check that the interference from different intervalsI n is re-
sponsible for the ATI peaks, we can artificially create a sp
trum by anincoherentsuperpositions̃15s21s41s61s8
of contributions from trajectories ionized in the intervalsI 2 j .

FIG. 4. ~a! Semiclassical spectrum as an incoherent s
s1(v)1s2(v) ~dash-dotted line! compared with the full semi-
classical spectrum~solid line!. ~b! Semiclassical spectrums1(v)
constructed with trajectories from the intervalsI 2 , I 4 , I 6, and I 8

~dotted! compared to the incoherent sums̃1 of spectra that belong
to the intervalsI 2 to I 8 ~solid line!.
05340
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This artificially incoherent sum@Fig. 4~b!# shows similarity
neither withs1(v) nor with any kind of ATI spectrum.

2. Classical signature of bound and continuum motion
in the laser field

The great advantage of anab initio semiclassical descrip
tion lies in the possibility of making dynamical behavio
transparent based on classical trajectories, particularly in
case of explicitly time-dependent problems where our in
ition is not as well trained as in the case of conservat
Hamiltonian systems. The classical quantities enter semic
sically mostly through the phase factor

exp$ i @Sqp~ t !2p~ t !q~ t !#/\%[exp@ iF/\# ~15!

that each trajectory contributes to the wave function Eq.~8!.
Although the prefactorCqp(t) in Eq. ~8! may be complex
itself, the major contribution to the time dependence of
phase comes from the effective actionF in the exponent of
Eq. ~15!. Figure 5 shows the energy« of the atom and the
accumulated phaseF. One can recognize a clear distinctio
between a quasifree oscillation in the laser field after
ionization and the quasibound motion in the potential. T
latter is characterized by an almost constant averaged bo
energy^«(t)& @Fig. 5~a!# of the individual trajectory, giving
rise to an averaged linear increase of the phase@Fig. 5~b!#.
After ionization the phase decreases linearly with an osci
tory modulation superimposed by the laser field. The alm
linear increase ofF without strong modulation of the lase
field during the bound motion of the electron is remarkab
particularly considering the laser induced modulations of
bound energy seen in Fig. 5~a!. The averaged slope of th
phase~positive for bound motion, negative for continuu
motion! corresponds viadF/dt52E to an averaged energy
The behavior can be understood by a closer inspection of
action

FIG. 5. ~a! The atomic energy«5p2/21V(q) as a function of
time for three trajectories from the intervalsI 2 ~dashed line!, I 4

~dotted line!, and I 6 ~dash-dotted line!. ~b! The corresponding
phasesF(t).
3-4
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SEMICLASSICAL DESCRIPTION OF MULTIPHOTON . . . PHYSICAL REVIEW A62 053403
F~ t ![Sqp~ t !2p~ t !q~ t !

5E
0

t

@2T2H2 ṗ~t!q~t!2q̇~t!p~t!#dt2qp.

~16!

Here, T5p2(t)/2 refers to the kinetic energy andH to the
entire Hamiltonian of Eq.~1!, the overdot indicates a deriva
tive with respect to time, andq[q(t50). With the help of
Hamilton’s equations and a little algebra,F from Eq. ~16!
can be simplified to

F~ t !52E
0

tS «~t!2q~t!
dV

dqDdt ~17!

where« is the atomic energy Eq.~13!. With Eq. ~17! we can
quantitatively explain the slope ofF in Fig. 5~b!. For the
low energies considered the potential Eq.~12! can be ap-
proximated harmonically,

V~q!'2V01V0sq2. ~18!

AveragingF over some time then yieldsF(t)'V0t for any
bound energy of a classical trajectory, since for an oscilla
averaged kinetic and potential energy are equal. Indeed
numerical value for the positive slope in Fig. 5~b! is 0.6 a.u.
in agreement with the value forV0.

For the ionized part of the trajectories we may assu
that the potential vanishes. The corresponding solutions
electron momentump(t) follow directly from Hamilton’s
equationṗ52E0 sinv0t,

p~ t !5
E0

v0
cos~v0t !1p, ~19!

wherep is the mean momentum. Without potential the pha
from Eq.~17! reduces toF(t)52*p2(t)/2dt and we obtain
with Eq. ~19!

Fc~ t !52
Up

2v0
sin~2v0t !2

E0p

v0
2

sinv0t2~Up1p2/2!t

~20!

with the ponderomotive potentialUp5E0
2/4v0

2. We note in
passing that Eq.~20! is identical to the time-dependent pha
in the Volkov state~see the Appendix!.

3. Semiclassical model for ATI

The clear distinction between classical bound and c
tinuum motion in the laser field as demonstrated by Fig
and illuminated in the last section allows one to derive ea
the peak positions of the ATI spectrum. Moreover, this d
tinction also supports the so called strong field approxim
tion ~e.g.,@9,20#! where electron dynamics in the laser fie
is modeled by one bound state and the continuum. While
is postulated in@9# as an approximation and justifieda pos-
teriori by the results, the corresponding approximation
suggested in the present context of a semiclassical ana
05340
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by the full classical dynamics, i.e., the behavior of the t
jectories, as shown in Fig. 5. There, we saw that each c
sical bound motion leads to the characteristic linear incre
of the phase. If the entire phase space corresponding to
initial ~ground state! wave function is probed with many tra
jectories of different energy, the dominant contribution w
appear at the bound state energy, which implies

Fb~ t !'I pt, ~21!

where I p is the ionization potential. The time for which
trajectory does not fall into one of the two classes, bound
continuum, is very short~Fig. 5!. Hence, we can approxi
mately compose the true phaseF5Fb1Fc . However, we
do not know for an electron with mean momentump when it
was ionized. Hence, we have to sum over all trajectories w
different ionization timest but equal final momentump
5pf , which leads to the propagated wave function

C f~ t,p!;E
t0

t

dtexp$ i /\@Fb~t!1Fc~ t !2Fc~t!#%

;(
n,m

JnS E0p

v0
2 D JmS Up

2v0
D E

t0

t

dtei tDmn /\, ~22!

where the phaseD is given by

Dmn5I p1Up1p2/22~n12m!\v0 . ~23!

From Eq.~23! and Eq.~22! it follows that ATI peaks appea
at integer multiplesn\v0 of the laser frequency, when

p2

2
5n\v02I p2Up . ~24!

One can also see from Eq.~22! that the ATI maxima become
sharper with each optical cycle that supplies ionizing traj
tories. Of course, this effect is weakened by the spreadin
the wave packet hidden in the prefactor of each traject
contribution@see Eq.~8!# and not considered here.

Trajectories that are ionized during different laser cyc
T accumulate a specific mean phase difference. The ph
difference depends on the numberk of laser cycles passe
between the two ionization processes:

DF~p!5kTS I p1
p2

2
1UpD . ~25!

The trajectories interfere constructively if

DF~p!52p l⇒p2

2
5

l

k
\v02I p2Up . ~26!

If an energy spectrum is calculated exclusively with traje
tories from two intervals separated byk cycles there should
be additional maxima in the ATI spectrum with a separat
\v0 /k.

As a test for this semiclassical interpretation of the A
mechanism we have calculated three spectra with trajecto
where the mean time delay between ionizing events is gi
3-5
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GERD van de SAND AND JAN M. ROST PHYSICAL REVIEW A62 053403
by Dt5T, Dt52T, andDt53T. For the spectrum Fig. 6~a!
we have used exclusively trajectories from the intervalsI 2
and I 4 (Dt5T). One can see broad maxima separated
\v0 in energy. Trajectories from the intervalsI 2 andI 6 @see
Fig. 6~b!# form a spectrum where the maxima are separa
by \v0/2—as predicted forDt52T. In analogy, the separa
tion for the ATI maxima in a spectrum with trajectories fro
the intervalsI 2 and I 8 is given by \v0/3 @Fig. 6~c!#. The
interference of trajectories ionized in many subsequ
cycles suppresses the noninteger maxima and ultimately
well-known ATI results emerge. This can be understo
from the way the number of realizations of a certain ratiol /k
grows when the numberk of cycles grows. Since the intege
l is unlimited a certain integeri is realized by more combi
nations of l /n, n<k, than some rational fraction 1/j . This
discrepancy grows with increasingk and, as a consequenc
fractional ATI peaks are suppressed with respect to inte
peaks for a large number of laser cycles. On the other h
if the field strength is high enough the atom is complet
ionized during the first cycle. The opportunity for interfe
ence gets lost and we end up with an unstructured en
spectrum.

In an extreme semiclassical approximation we wo
have evaluated the integral in Eq.~22! by stationary phase
The condition

~d/dt!@Fb~t!2Fc~t!#[I p1p2~t!/250 ~27!

leads to complex ionization timestn whose real part is peri
odic and allows for two ionizing events per laser cycle, clo
to the extrema of the laser amplitude. The derivation
simple but technical; therefore we do not carry it out expl
itly here. However, it explains the observation that ionizat
occurs close to the extrema of the laser field and it a

FIG. 6. Semiclassical spectra calculated with trajectories fr
the intervalsI 2 and I 4 ~a!, I 2 and I 6 ~b!, andI 2 and I 8 ~c!.
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makes contact with the tunneling process often referred t
the literature, since the complex time can be interpreted
tunneling at a complex ‘‘transition’’ energy.

Clearly, our semiclassical analysis as described here
ports the picture that has been sketched in@21# interpreting a
quantum calculation. The authors assume that wave pac
are emitted every time the laser reaches an extremum.
interference of the different wave packets gives rise to
ATI peaks.

In the following we will discuss the process of highe
harmonic generation, which is closely related to ATI. In fa
the separation into a bound and continuum part of the e
tron description is constitutive for HHG as well; the prom
nent features, such as cutoff and peak locations, can be
rived from the same phase properties Eq.~22! as for ATI.
However, there is a characteristic difference:how these
phases enter.

IV. HIGH-HARMONIC GENERATION

First, we briefly recapitulate the findings of@22#, where
we calculated the harmonic spectrum with the soft-core
tential Eq.~11!. With our choice ofa52 the ionization po-
tential is given byI p50.5 a.u. The laser field has a streng
E050.1 a.u., a frequencyv050.0378 a.u., and a phased
5p/2. The initial wave packet with a width ofb50.05 a.u.
is located atqb5E0 /v0

2570 a.u. Note that the cutoff energ
EC in such a symmetric laser scattering experiment is giv
by

EC5I p12Up . ~28!

From the dipole acceleration~see Fig. 7!

d~ t !52 K C~ t !U dV~x!

dx UC~ t !L , ~29!

follows by Fourier transform

FIG. 7. Quantum~a! and semiclassical~b! dipole acceleration of
higher harmonics according to Eq.~29!.
3-6
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s~v!5E d~ t !exp~ ivt !dt ~30!

the harmonic power spectrum~see Fig. 8!.
Clearly, our semiclassical approach represents a good

proximation. The dipole acceleration shows the character
feature that fast oscillations~which are responsible for th
high harmonics in Fourier space! show up only after some
time, here aftert5T. This is the first time that trajectorie
are trapped. Trapping can occur only if~i! tn5nT/2, ~ii ! the
trajectories reach a turning point@i.e., p(tn)50#, and~iii ! at
this time the electron is close to the nucleus@q(tn)'0#. The
trapped trajectories constitute a partially bound state wh
can interfere with the main part of the wave packet~trajec-
tories! still bouncing back and forward over the nucle
driven by the laser. The group of briefly bound~i.e., trapped
or stranded! trajectories can be clearly identified, either b
their small excursion in space@Fig. 9~a!# or by the positive
slope of their action@Fig. 9~b!#, as was the case for AT
~compare with Fig. 5!. By artificially discarding the initial
conditions in the semiclassical propagator that lead
trapped trajectories, one can convincingly demonstrate
the plateau in HHG generation is a simple interference ef
@22#. Here, we are interested first in linking ATI to HHG b
using the same separation in bound and continuum part
the dynamics already worked out for ATI. Secondly, w
want to go one step further and construct a wave func
based on this principle.

Semiclassically, we have to look first at the phases of
observable. Therefore, we define a linear combination for
wave function from the respective phase factors for bou
and continuum motion. Considering only terms in the exp
nent the harmonic spectrum Eq.~30! reads simply

s~v!;E dtexp~ ivt !uexp@ iFc~ t !/\#1cexp@ iFb~ t !/\#u2,

~31!

FIG. 8. Quantum~a! and semiclassical~b! spectrum of higher
harmonics according to Eq.~30!.
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wherec5” 0 is a ~so far! arbitrary constant. In principle,c
5c(t); however, its change in time is much slower than th
of the optical oscillations of the phasesF(t), hence we may
approximatec by a constant. The bound and continuu
phasesFb and Fc are defined in Eq.~21! and Eq. ~20!,
respectively. ForFc we havep50, since this is the domi-
nant contribution from the center of the wave packet that w
initially at rest. The result is shown in Fig. 10. Indeed, t
plateau with the harmonics is generated; however, the in
exponential decrease is missing since we have neglecte
prefactors of the semiclassical wave function that desc
the dispersion of the wave packet.

Consequently, one can evaluate Eq.~31! in stationary
phase approximation. The integrand of Eq.~31! becomes sta-
tionary if

d

dt
$\vt6@Fb~ t !2Fc~ t !#%50, ~32!

which happens at

\v52Up sin2~vt !1I p . ~33!

From Eq.~33! we derive the cutoff law

FIG. 9. Examples for direct~solid line!, trapped~dotted line!,
and stranded~dashed line! trajectories; see text.

FIG. 10. Harmonic spectrum according to Eq.~31!.
3-7
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vmax52Up1I p , ~34!

as expected for laser assisted electron ion scattering@22#.
Using the same expansion into Bessel functions as in
~22! we obtain for the spectrum Eq.~31!

E dtexpF i

\ S ~\v2Up2I p!t1
Up

2v0
sin~2v0t ! D G

5 (
k52`

` E dteit (\v2Up2I p12k\v0)/\JkS Up

2\v0
D .

~35!

Therefore, we see maxima in the harmonic spectrum for

\vk5Up1I p22kv0 . ~36!

We can go one step further and construct a full tim
dependent wave function from this semiclassical approxim
tion, namely,

C~x,t !5Cb
sc~x,t !1cC0~x!exp~ i t I p /\!. ~37!

Here, C0(x)exp(iI pt/\) is the time-dependent ground sta
wave function~without the laser field! and Cb

sc(x,t) is a
~semiclassical! wave packetin the laser field but without po
tential. Calculating the dipole acceleration and the result
harmonic spectrum with this wave function leads to a
markably good approximation of the true quantum spectr
~compare Fig. 8 with Fig. 11!. The dispersion of the wave
packet leads to a lower plateau compared to Fig. 10.

V. CONCLUSIONS

A. Semiclassical comparison between ATI and HHG

Clearly, the main structures, such as the plateau and
off ~HHG!, and the occurrence of peaks and their separa
in energy~ATI and HHG!, are properties of the difference o
the classical time-dependent actionsFb(t)2Fc(t) alone.
However, the HHG power spectrum Eq.~30! is an integral
over all the time for which the electron wave packet is e
posed to the laser field. In contrast, the ATI spectrum
obtained in the long-time limitt→` after the laser has bee
switched off. This difference may explain why the HHG r
sults tend to be better than the ATI results semiclassica
Any semiclassical approximation~which is not exact! be-
come worse for large times.

FIG. 11. Harmonic spectrum generated from the wave func
Eq. ~37! with c50.025 andb50.05 a.u.
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A second point refers to the fact that the characteris
phase differenceFb(t)2Fc(t) already appears in the wav
function Eq.~22! for ATI, while for HHG it occurs only in
the expectation value Eq.~29!. However, this difference is
artificial, since the expectation value, or, better, its Four
transform the power spectrum, is not the observable
higher-harmonic radiation. The correct expression is
dipole-dipole correlation functionR, which can be approxi-
mated asR}us(v)u2 under single atom conditions or in th
case of an ensemble of independent atoms that rad
@11,23#. Hence, in both ATI and HHG the peak structu
already appears on the level of the quantum amplitude~or
wave function! and is amplified in the true observable.

B. Summary

We have given a time-dependent fully semiclassical
scription of multiphoton processes. The prominent ATI a
HHG features emerge naturally from properties of the cl
sical trajectories whose contributions to the semiclass
wave function interfere semiclassically. Any effect of th
semiclassical interference can be double checked by d
garding the phases. This leads~with the same trajectories! to
a classical observable. As we have seen, to a good app
mation the classical action for an individual trajectory can
composed of one partFb for the time the electron is boun
~disregarding the laser field! and another partFc for the time
the electron is in the continuum~disregarding the atomic
potential!. The relevant phase differenceFb2Fc leads in
both ATI and HHG to prominent harmonic structures
terms of the laser energy\v0. Finally, we have been able t
construct a simple wave function for higher harmonics g
erated in laser assisted scattering. Its key element is an
plicitly time-dependent wave packet of the electron under
influence of the laser field. Starting from an initial Gaussi
distribution localized in space the wave packet disperse
time, providing the correct decrease of the intensity of
lower harmonics and in turn the correct height of the plate
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APPENDIX

We want to calculate the semiclassical wave function o
free particle in a laser field according to Eq.~8!. A particle in
a laser fieldVL(x,t)5E0 sin(vt) moves with

p~ t !5p1
E0

v
cos~vt ![p1 p̃~ t !, ~A1!

q~ t !5q1pt1
E0

v2
sin~vt ![q1pt1q̃~ t !. ~A2!

The weight factorCqp(t) is given by

n

3-8
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Cqp~ t !5S 12
i\g

2
t D 1/2

. ~A3!

For the phase factorSqp(t)2p(t)q(t) we get

Sqp~ t !2p~ t !q~ t !52
Up

2v
sin~2vt !

2Upt2
p2

2
t2q̃~ t !p2qp. ~A4!

Evaluating Eq.~8! with the stationary phase approximatio
which is exact for quadratic potentials, leads to the condit
that

f ~q,p!5
i

\ S xp~ t !2
p2

2
t2q̃~ t !p2

g

a
qp2

b

a
qbpD

2
g

2
@x2q~ t !#22

gb

2a
~q2qb!22

1

2\2a
p2

~A5!

must have an extremum. With

] f

]q
505g@x2q~ t !#2

gb

a
~q2qb!2

i

\

g

a
p, ~A6!

] f

]p
505g@x2q~ t !#t2

1

\2a
p

1
i

\ S x2pt2q̃~ t !2
g

a
q2

b

a
qbD , ~A7!

we find

qs5
x2q̃~ t !1 i\btqb

11 i\bt
, ~A8!

ps5
i\b

11 i\bt
@x2q̃~ t !2qb#. ~A9!

After some algebra we arrive at the stationary exponent

f ~qs ,ps!5
i

\
xp̃~ t !2

b

2~11 i\bt !
@x2q̃~ t !2qb#2

5
i

\
xp̃~ t !2

i

\

\2b2t

2s~ t !
@x2q̃~ t !2qb#2

2
b

2s~ t !
@x2q̃~ t !2qb#2, ~A10!
t.,

g

05340
n

wheres(t) is given by

s~ t !511b2\2t2. ~A11!

The determinant of the second derivatives off still has to be
calculated. With

]2f

]q2
52

g412gb

a
,

]2f

]p2
52

i

\
t2gt22

1

\2a
,

]2f

]q]p
52

i

\

g

a
2gt, ~A12!

we get

detS ]2f

]q2

]2f

]q]p

]2f

]p]q

]2f

]p2

D 5
2g

\2a
@~12 ig\t/2!~11 ib\t !#.

~A13!

The factorg cancels, as it should, and we are left with

Cb
sc~x,t !5S b

p D 1/4A 1

11 i\bt

3expF i

\ S p̃~ t !x2
Up

2v
sin~2vt !2Upt D G

3expS i

\

\2b2

2s~ t !
@x2q̃~ t !2qb#2t D

3expS 2
b

2s~ t !
@x2q̃~ t !2qb#2D . ~A14!

This semiclassical time-dependent wave packet is quant
mechanically exact and corresponds to a superposition
Volkov solutions according to a Gaussian distribution at tim
t50 @24#. The fact that the semiclassical wave function
exact is a direct consequence of the Ehrenfest theor
which implies that interactionsV}xn, n50,1,2, have
quantum-mechanically exact semiclassical solutions.
ev.
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