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Semiclassical description of multiphoton processes
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We analyze strong field atomic dynamics semiclassically, based on a full time-dependent description with
the Hermann-Kluk propagator. From the properties of the exact classical trajectories, in particular the accu-
mulation of action in time, the prominent features of above-threshold ionization and higher-harmonic genera-
tion are proven to be interference phenomena. They are reproduced quantitatively in the semiclassical approxi-
mation. Moreover, the behavior of the action of the classical trajectories supports the so called strong field
approximation which has been devised and postulated for strong field dynamics.

PACS numbes): 32.80.Fb, 03.65.Sq, 42.65.Ky

I. INTRODUCTION i.e., by interference of classical trajectories alone, remains
unanswered. It is astonishing that no direct semiclassical in-
In the last two decades multiphoton processes have beerestigation of the Hamiltonian Ed1) has been performed
studied intensively, experimentally as well as theoreticallywhile a number of classical as well as quantum calculations
The inherently time-dependent nature of an atomic or mofor Eq. (1) have been published. However, only recently has
lecular excitation process induced by a short laser pulse rem semiclassical propagation method been formulated that can
ders a theoretical description problematic in two respectsbe implemented with reasonable numerical effort. This is
First, a full quantum calculation in three dimensions requiresrery important for the seemingly simple Hamiltonian ED.
a large computational effort. For this reason, quantum calcuwhose classical dynamics is mixed and in some phase space
lations have been restricted to one active electron in mogegions highly chaotic, which requires efficient computation
caseq1,2]. Secondly, an intuitive understanding of an ex-to achieve convergence. Equipped with these semiclassical
plicitly time-dependent process seems to be notoriously diftools we have studied multiphoton phenomena semiclassi-
ficult, exemplified by pertinent discussions about stabiliza-cally in the framework of Eq(1). In comparison to the exact
tion in intense laser fields3—5]. Many studies have been quantum solution, we will work out those features of the
carried out to gain an intuitive understanding of the two mosintense field dynamics that can be understood in terms of
prominent strong field phenomena, namely, high-harmoniinterference of classical trajectories.
generation(HHG) and above-threshold ionizatig@Tl). In The plan of the paper is as follows. In Sec. Il we provide
the well established early analytical formulation by Keldysh,the tools for the calculation of a semiclassical, time-
Faisal, and Reiss the atomic potential is treated as a pertudependent wave function. In Sec. Ill we discuss above-
bation of the motion of the electron in a strong laser fl@ll  threshold ionization and work out the classical quantities that
This picture is still used in more recent models, where thestructure the relevant observables semiclassically. In Sec. IV
classical dynamics of the electron in the laser field is explicwe use this knowledge for the description of higher-
itly considered, e.g., in Corkum’s rescattering model, whichharmonic generation. Section V concludes the paper with a
can explain the cutoff observed in HHG for linearly polar- comparison of HHG and ATI from a semiclassical perspec-
ized laser light in one spatial dimensipn|. The correspond- tive, and a short summary.
ing Hamiltonian read$8]

_ Il. CALCULATION OF THE SEMICLASSICAL WAVE
H=Hg+Eof(t)xsin(wot+ 9), (1) FUNCTION

whereHy= 1p2+V(x) is the atomic Hamiltoniarf(t) is the A (multidimensiongl wave functionW 5(x,t) can be ex-

time profile of the laser pulse with maximum amplituflg, ~ Pressed as

andw is the laser frequency. The interaction of the electron

with the atom is specified by the potential W(x,t)= Jtdx’K(x,x’,t)\P(x’). 2
Lewensteinet al. extended Corkum'’s rescattering idea to 0

a quasiclassical model that contains dmelevani bound

state not influenced by the laser field on the one hand anHere, ¥ (x’) is the initial wave function att=0 and

electrons that experience only the laser field on the otheiK(x,x’,t) denotes the propagator. We will not use the well-

hand [9]. This simple model, sometimes also called theknown semiclassical Van Vleck—Gutzwill&/\VVG) propaga-

“simple man’s model”[10], well explains qualitatively the tor, which is inconvenient for several reasons. First, one has

features of HHG. The same is also true for an alternativéo deal with caustics, i.e., singularities of the propagator, and,

model, where the electron is bound by a zero-range potentialecondly, it was originally formulated as a boundary value

[11]. However, the basic question if and to what extent thes@roblem. For numerical applications the so called Herman-

multiphoton processes can be understood semiclassicalliKluk (HK) propagator is much better suitéahd for analyti-
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cal considerations not worgehis is a uniformized propaga- I ' ' ' ' '
tor in initial value representatiofil2,13, which reads in a .
2n-dimensional phase space

)

[

1 i Ih ;

KHK(x,x’ )= J' f dpquqp(t)e'qu(t) g
(2mh)" %

X g,(X;q(t),p(t) g% (X', p) 3) ©

with

Y n/4 Y i
gy(X:q.p)=(;) exn( - E(X—q)qu(x—q)) 4)
FIG. 1. Quantum-mechanicddotted ling and semiclassical
and (solid line) ATI spectra for the Hamiltonian of Eql) with Eg
=0.15 a.u.,wy=0.148 a.u., and the soft-core potential Etjl).
12

(5) Ill. ABOVE-THRESHOLD IONIZATION

1 ) 1
qu(t): ‘E Qq+ Pp—lfi’yQp— WPCJ

) . ) . We start from Eq.(1) with =0 and use a rectangular
Each phase space poirg, () in the integrand of Eq(3) i pyise shape (t) which lasts for 4.25 optical cycles. This
the starting point of a classical trajectory with actig(t). setting is very similar to the one used [ib6].

The termsX, in the weight factorC,(t) are the four ele- The energy spectrum of the electrons can be expressed by

ments of the monodromy matriX,= dx,/dy. The square the Fourier transform of the autocorrelation function after the
root in Eq.(5) has to be calculated in such a manner thaty|se, j.e., for times>t;,

Cqp(t) is a continuous function df The integrand in Eq3)

is—depending on the system—highly oscillatory. Although w

the formulation presented is in the full dimensional space (T(w)zRef e (W (1) Wy)dt, ©
and there are no major obstacles to carrying out the calcula- 't

tion, we have restricted ourselves for this explorative stud
to one spatial dimensiofsee Eq.(1)] since the numerical
effort is considerabléfor the one-dimensional case the num-
ber of trajectories necessary for numerical convergence can |\I,(t)>:eiHo(t7tf)/h|\I,f> (10)
already reach 10. We note in passing that an integration by

the stationary phase approximation over momentum and cqs calculated by propagating’; for some time with the
ordinate variables reduces the HK propagator to the VVGatomic HamiltonianH, only after the laser has been

propagatoff 14]. switched off.
In all calculations presented here we have used a Gauss-

ian wave packet as initial wave function,

XNhere\Iff=\If(tf) is the wave function after the pulse and
correspondingly

A. Quantum-mechanical and semiclassical spectra for ATI

ex (6) cidate the dependence of the semiclassical approximation on

4 p(ﬂ( , )2) We will present results for two types of potential to elu-
2
the form of the potential.

\Ifﬁ(x’)Z(g

With this choice, the overlap
1. Soft-core potential

fyB(q'p)Ef g% (x";0,p) W 4(x")dx’ (7) First we apply the widely used softcore potenfiab,17|
can be calculated analytically and E@) reads, together V(X)=— ! (11)
with Eq. (3), x°+a
HK 4yB Yhg (S (O/h with a=1 and with an ionization potenti&}=0.670 a.u. We
Vi) =| —- mf fdpdqé aptCq (1) have checked that the correlation function differs little if cal-
@ culated with the exact ground state or with the ground state
Xg,(x;a(t),p(H)f,z(a,p) (8  wave function approximated by the Gaussian of ).

where3=0.431 a.u. and|;=0. However, the semiclassical
with a=y+ B. For all results presented here we have takercalculation is considerably simplified with a Gaussian as ini-
v=B. tial state as can be seen from E(®~(8). Therefore we use
For comparison with our semiclassical calculations wethis initial state and obtain the propagated semiclassical
determined the quantum-mechanical wave function usingvave function in the closed form, E(B). In Fig. 1 the quan-
standard fast-Fourier-transform split-operator metHdds. tum and semiclassical results at a frequengy= 0.148 a.u.
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and a field strengthEy=0.15 a.u. are compared. The ' ' ' ' ' '
guantum-mechanical calculatigdotted ling shows a typi- i ]
cal ATI spectrum. Intensity maxima with a separation in en- ‘
ergy of fAwg are clearly visible. The first maximum has the
highest intensity while the second maximum is suppressed.
The semiclassical resulsolid line) is ambiguous: On the
one hand there are clear ATI maxima with a separation of
fhiwg. All peaks but the first one have roughly the correct
magnitude. Again the second maximum is missing. On the
other hand we see a constant stigbout 0.02 a.u.of the _
spectrum toward higher energies. Therefore, a quantitative 1 ' > 3 4 5 ' 6 7
semiclassical description is impossible, at least with the
present parameters and the soft-core potential. As it has
turned out, in the time interval before ionization the bound F|G. 2. Quantum-mechanicdtotted ling and semiclassical
electron wave packet evolves quite differently in the soft-(solid line) ATI spectra for the Hamiltonian of Eq1) with Eq
core potential under quantum and semiclassical propagatios:0.049 a.u.wo=0.09 a.u., and the Gaussian potential E).
We will demonstrate that indeed the bound state dynamics is
primarily responsible for the shift in the spectrum. This will e()=p(t)2/2+V(q(1)) (13)
be done by considering a different potential, which behaves

almost harmonically for the lower bound states, implying a i t timeand . tive. i
similar evolution of the wave packet under quantum an(pecomes positive at some trgand remains posiive, 1.e.,

semiclassical propagation and thus eliminating this source (ﬁ(t)>0 for t>1, . Typically, _the trajectories ionize around
error. an extremum of the laser field. Tunneling cannot be very

important, otherwise the agreement between quantum me-
2. Gaussian potential chanics and semiclassics would be much worse.

. . An obvious criterion for the classification of the trajecto-
A potential suitable for our purpose has been used t?ie

model the “single bound state” situation mentioned in the s is the time interval of the laser cycle into which their
Introduction[18]. It is of Gaussian form, individual ionization timet, falls (see Fig. 3. Typically ion-

ization of trajectory happens aroung= (2n—1)T/4 when
V(x)=—V, exp(— ox?). (12) the force induced by the laser reaches a maximum. Hence,
) _ the ionized trajectories can be attached to time interijals
With our choice of parameterg,=0.6 a.u. andr=0.025  —[(n—1)T/2nT/2]. In Fig. 3 we have plotted four trajecto-
a.u.,.the potential contains six bound states and can be aBes from the intervald; to I, that end up with an energy
proximated, at least in the lower-energy part, by a harmonig— g 36 a.u. After ionization each trajectory shows a quiver
potential for which semiclassical calculations are exactygtion around a mean momentupn [19]. One can distin-
Hence, the semiclassical ATI spectrum with this potentialyish two groups of intervals, namely, those with trajectories
should be more accuraifethe d|screpa_nC|es in Fig. 1 are due jgnized with positive momenturp; (the intervald ;) and
to the potential a}nd .not tq the Igser mteractlo_n. The grounghose with trajectories with negative (the intervalsl ).
state wave function itself is again well approximated by therpese two groups contribute separately and incoherently to
Gaussian Eq(6) with =0.154 a.u. andj;=0. The laser s energy spectrum, as one might expect since the electrons

has a frequency»,=0.09 a.u., a field strengtfo=0.049 e easily distinguishable. One can see this directly from the
a.u., and a pulse duration of 4.25 cycles. The Keldysh pa-

rameter has the value 1.87. 1
We obtain a quantum-mechanical ATI spectridotted
line in Fig. 2 with six distinct maxima. The semiclassical
spectrum (solid line) is not shifted; the locations of the
maxima agree with quantum mechanics. Hence one can cor,,
clude that the soft-core potential is responsible for the shift. 2
The height of the third maximum is clearly underestimated =
and the details of the spectrum are exaggerated by the sem®
classical calculation. Apart from these deviations the agree-
ment is good enough to use this type of calculation as a basi
for a semiclassical understanding of ATI.

o(w) [arb. units.]

w/w,

> A

B. Semiclassical interpretation of the ATI spectrum

1. Classification and coherence of trajectories .
FIG. 3. Energye(t) from Eq. (13) for some representative tra-

With the chosen parameters most of the trajectories ionizgctories ionized in the intervals (solid line), 1, (dashed ling |5
during the pulse £92%). We consider a trajectory as ion- (dash-dotted ling andl, (dotted ling, respectively. For compari-
ized if the energy of the atom son, the laser field is plotted in arbitrary unithick dashed ling
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mphasesi)(t).

W/,

FIG. 4. (@) Semiclassical spectrum as an incoherent su
04(w)+o0_(w) (dash-dotted linecompared with the full semi- ] o ) ] o
classical spectrunisolid line). (b) Semiclassical spectrumr, () This artificially incoherent suniFig. 4(b)] shows similarity

constructed with trajectories from the intervals 1,, I, andlg  neither witho (w) nor with any kind of ATI spectrum.

(dotted compared to the incoherent stm. of spectra that belong
to the intervald , to | g (solid line). 2. Classical signature of bound and continuum motion

in the laser field

definition Eq.(9) of the electron energy spectrum. For rela-  The great advantage of a initio semiclassical descrip-
tive high energied o the (short-ranggpotential may be ne- tion lies in the possibility of making dynamical behavior
glected in the Hamiltoniaf , and we get transparent based on classical trajectories, particularly in the
case of explicitly time-dependent problems where our intu-
o _ ition is not as well trained as in the case of conservative
o(w)= Rej el W e Hot =t ) dt Hamiltonian systems. The classical quantities enter semiclas-
t sically mostly through the phase factor

~ F ot —ip2t/2n _ _

ReJO e (Wyle |¥y)dt expli[ Sqp(t) — p(t)a(t) 1/} =exi®/#] (15)

_ |- S(w— D224 W 24 that each trajectory contributes to the wave function (By.
ﬁw (0=p ¥ (p)l*dp Although the prefactolC,(t) in Eg. (8) may be complex

itself, the major contribution to the time dependence of the

=[|Wi(—2hw)|*+|¥((V2ho)[?](h12w)"? phase comes from the effective actinin the exponent of
_ Eq. (15). Figure 5 shows the energy of the atom and the
=0-(0)t o (w). (14 accumulated phasé. One can recognize a clear distinction
between a quasifree oscillation in the laser field after the
Hence, to this approximation, the ATI spectrum is indeedjonization and the quasibound motion in the potential. The
given by the incoherent sum of two terms belonging to dif-jatter is characterized by an almost constant averaged bound
ferent signs of the momenta of electrons ionized in differenbnergy<8(t)> [Fig. 5a)] of the individual trajectory, giving
time intervals as described above. ~ rise to an averaged linear increase of the pH&sg. 5(b)].

Figure 4a) shows that Eq(14) is a good approximation.  After ionization the phase decreases linearly with an oscilla-
Only for smallw do the spectra not agree, where the kinetictory modulation superimposed by the laser field. The almost
energy is comparable with th@eglected potential energy. |inear increase ofb without strong modulation of the laser

Quantum-mechanically, all contributions from trajectoriesfie|d during the bound motion of the electron is remarkable,
that lead to the same momentymof the electron are indis-  particularly considering the laser induced modulations of the
tinguishable and must be summed coherently. To doublgound energy seen in Fig(#. The averaged slope of the
check that the interference from different interv&LSis re- phase(positive for bound motion, negative for continuum
SponSible for the ATI peaks, we can art|f|C|a”y create a SpeCmotion) Corresponds vid®/dt=—E to an averaged energy.
trum by anincoherentsuperpositionr, =o,+0,+0g+0og  The behavior can be understood by a closer inspection of the
of contributions from trajectories ionized in the intervajs. action
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D (t)=Sgp(t) —p(t)a(t) py thg full classical Qyngmics, i.e., the behavior of the tra-
jectories, as shown in Fig. 5. There, we saw that each clas-
[t . . sical bound motion leads to the characteristic linear increase
B fo[ZT H=p(7)a(7)=a(7)p(7)]d7=qp. of the phase. If the entire phase space corresponding to the

initial (ground statewave function is probed with many tra-
jectories of different energy, the dominant contribution will
appear at the bound state energy, which implies

(16)

Here, T=p?(t)/2 refers to the kinetic energy arid to the
entire Hamiltonian of Eq(1), the overdot indicates a deriva- Dy(t)~1 .t (21)
tive with respect to time, and=q(t=0). With the help of b P

Hamilton’s equations and a little algebr@, from Eq.(16)  wherel,, is the ionization potential. The time for which a

can be simplified to trajectory does not fall into one of the two classes, bound or
. dv continuum, is very shortFig. 5. Hence, we can approxi-
D(t)= _f (8(7)_q(7) —)dr (17) mately compose the true pha@ez ®p+d.. However, we
0 dqg do not know for an electron with mean momentprwhen it

was ionized. Hence, we have to sum over all trajectories with
wheree is the atomic energy Eq13). With Eq.(17) we can  different ionization timesr but equal final momentunp
quantitatively explain the slope @b in Fig. 5b). For the  =p;, which leads to the propagated wave function
low energies considered the potential Efj2) can be ap-

) : ¢
proximated harmonically, \I’f(t,p)~ft drexpli/A[Dp(7) + Dy(t) — De(7) ]}
0

V(q)=~—Vy+ Voo (18
E U t
Averaging® over some time then yield® (t) ~V,t for any ~> ., sz Jm(—p)f dre' ™mn’t - (22)
bound energy of a classical trajectory, since for an oscillator n,m ) 200/ Jto

averaged kinetic and potential energy are equal. Indeed, the o
numerical value for the positive slope in Fighbis 0.6 a.u.  Where the phasa is given by

in agreement with the value for,. _ 2/5_
For the ionized part of the trajectories we may assume Amn=lptUpt p2=(n+2mfiwo. @3

that the potential vanishes. The _corresponding so_Iutions foErom Eq.(23) and Eq.(22) it follows that ATl peaks appear
electron .momentunp(t) follow directly from Hamilton's 4 integer multiplesiti w, of the laser frequency, when

equationp= — Eq sin wt, )

Eo ID7=nhwo—lp—up. (24
p(t)= w_OCOS(th)+pv (19
One can also see from E@2) that the ATI maxima become
wherep is the mean momentum. Without potential the phasesharper with each optical cycle that supplies ionizing trajec-
from Eq.(17) reduces tab(t) = — [p?(7)/2d r and we obtain  tories. Of course, this effect is weakened by the spreading of
with Eq. (19) the wave packet hidden in the prefactor of each trajectory
contribution[see Eq(8)] and not considered here.

U, . Eop . 5 Trajectories that are ionized during different laser cycles
P(t)=— 5 —sin(2wet) ——5-sinwet — (U +p7/2)t T accumulate a specific mean phase difference. The phase
0 “o (20) difference depends on the numbeof laser cycles passed

between the two ionization processes:

with the ponderomotive potenti&) ,=E3/4w3. We note in
passing that Eq20) is identical to the time-dependent phase AD(p)=kT
in the Volkov state(see the Appendix

p2
Ip+7+up). (25

3. Semiclassical model for ATI The trajectories interfere constructively if

2

The clear distinction between classical bound and con- p
A(D(p)=277|:>7:

tinuum motion in the laser field as demonstrated by Fig. 5
and illuminated in the last section allows one to derive easily
the peak positions of the ATI spectrum. Moreover, this dis-If an energy spectrum is calculated exclusively with trajec-
tinction also supports the so called strong field approximatories from two intervals separated kycycles there should
tion (e.g.,[9,20])) where electron dynamics in the laser field be additional maxima in the ATI spectrum with a separation
is modeled by one bound state and the continuum. While thig wq /K.

is postulated if9] as an approximation and justifiedpos- As a test for this semiclassical interpretation of the ATI
teriori by the results, the corresponding approximation ismechanism we have calculated three spectra with trajectories
suggested in the present context of a semiclassical analysighere the mean time delay between ionizing events is given

|
fiwo=1,=Up. (26)
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0 ] 5 3 4 5 5 higher harmonics according to E®9).
/o, makes contact with the tunneling process often referred to in
the literature, since the complex time can be interpreted as
m[unneling at a complex “transition” energy.
Clearly, our semiclassical analysis as described here sup-
ports the picture that has been sketchefRit] interpreting a
we have used exclusively trajectories from the intervals quantum caIcuIation. The authors assume that wave packets
are emitted every time the laser reaches an extremum. The

and I.4 (At=T). O'.‘e can see b road. maxima separated bB{nterference of the different wave packets gives rise to the
fhwg in energy. Trajectories from the intervdlsandl g [see ATI peaks

Fig. 8(b)] form a spectrum where the maxima are separated In the following we will discuss the process of higher-
ggff‘g ?/ i:iifﬁgﬁg if:';ts_ g;}&%a\,rﬂogg‘ thte ;ep?ra— harmonic generation, which is closely related to ATI. In fact,

. AN asp Tajectonies rom y,q separation into a bound and continuum part of the elec-
the intervalsl, andlg is given by wg/3 [Fig. &(c)]. The ron description is constitutive for HHG as well; the promi-
interference of trajectories ionized in many subsequenﬁem features, such as cutoff and peak locations, can be de-
cycles suppresses the noninteger maxima and ultimately the ed from thé same phase properties E2Q) as fér AT

well-known ATI results emerge. Th's can be u_nderstoo However, there is a characteristic differendeow these
from the way the number of realizations of a certain ratio phases enter

grows when the numbde of cycles grows. Since the integer
[ is unlimited a certain integdris realized by more combi-
nations ofl/n, n<k, than some rational fraction j1/This IV. HIGH-HARMONIC GENERATION

discrepancy grows with increasirigand, as a consequence,  irst we briefly recapitulate the findings f22], where
fractional ATI peaks are suppressed with respect to integefe calculated the harmonic spectrum with the soft-core po-
peaks for a large number of laser cycles. On the other hangaig Eq.(11). With our choice ofa=2 the ionization po-

if the field strength is high enough the atom is completelyyoiq| js given byl ,=0.5 a.u. The laser field has a strength
ionized during the first cycle. The opportunity for interfer- E,=0.1 au, a frepquency>0=0.0378 a.u., and a phase
ence gets lost and we end up with an unstructured energy =12. The ir’1itial wave packet with a Widti‘] @=0.05 a.u.

spectrum. is located atjz= Eolw?): 70 a.u. Note that the cutoff energy

In_an extreme semiclassical approximation we WOUIdE in such a symmetric laser scattering experiment is given
have evaluated the integral in E@2) by stationary phase. b;/: y 9 exp 9

The condition

FIG. 6. Semiclassical spectra calculated with trajectories fro
the intervalsl, andl, (a), I, andlg (b), andl, andlg (c).

by At=T, At=2T, andAt=3T. For the spectrum Fig.(8)

(dIdT)[@p(7) = D(7)]=1,+pA(D)2=0  (27) Ec=1,+2U,. (28)

leads to complex ionization timeg whose real part is peri- From the dipole acceleratiosee Fig.
odic and allows for two ionizing events per laser cycle, close
to the extrema of the laser amplitude. The derivation is d(t)=—<\If(t)‘
simple but technical; therefore we do not carry it out explic-
itly here. However, it explains the observation that ionization
occurs close to the extrema of the laser field and it alsdollows by Fourier transform

dV(x)
dx

‘I’(t)>. (29
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harmonics according to E¢30).

wherec+#0 is a(so fap arbitrary constant. In principleg

i =c(t); however, its change in time is much slower than that
U("’):J d(t)expliwt)dt (830 of the optical oscillations of the phaséxt), hence we may
approximatec by a constant. The bound and continuum
the harmonic power spectrufeee Fig. & phases®;, and ®. are defined in Eq(21) and Eq.(20),

Clearly, our semiclassical approach represents a good apespectively. Fod, we havep=0, since this is the domi-
proximation. The dipole acceleration shows the characteristibant contribution from the center of the wave packet that was
feature that fast oscillationgvhich are responsible for the initially at rest. The result is shown in Fig. 10. Indeed, the
high harmonics in Fourier spacshow up only after some plateau with the harmonics is generated; however, the initial
time, here aftet=T. This is the first time that trajectories exponential decrease is missing since we have neglected all
are trapped. Trapping can occur onlyiif t,=nT/2, (ii) the  prefactors of the semiclassical wave function that describe
trajectories reach a turning poifite., p(t,)=0], and(iii) at  the dispersion of the wave packet.
this time the electron is close to the nucl¢agt,)~0]. The Consequently, one can evaluate E§1) in stationary
trapped trajectories constitute a partially bound state whictPhase approximation. The integrand of E2fl) becomes sta-
can interfere with the main part of the wave packeajec-  tionary if
torieg still bouncing back and forward over the nucleus
driven by the Iz_iser. '_I'he group of briefly_ bou(_ic_b., tra_pped E{ﬁwtt[(pb(t)_q)c(t)]}:o, (32)
or strandeg trajectories can be clearly identified, either by dt
their small excursion in spadé&ig. 9a)] or by the positive
slope of their actionFig. Ab)], as was the case for ATI
(compare with Fig. & By artificially discarding the initial
conditions in the semiclassical propagator that lead to
trapped trajectories, one can convincingly demonstrate thatrom Eq.(33) we derive the cutoff law
the plateau in HHG generation is a simple interference effect
[22]. Here, we are interested first in linking ATl to HHG by ' '
using the same separation in bound and continuum parts of
the dynamics already worked out for ATI. Secondly, we
want to go one step further and construct a wave function
based on this principle.

Semiclassically, we have to look first at the phases of the
observable. Therefore, we define a linear combination for the
wave function from the respective phase factors for bound
and continuum motion. Considering only terms in the expo-
nent the harmonic spectrum E@O) reads simply

which happens at

ﬁw=2Upsin2(wt)+lp. (33

o(w) [arb. units]

0 40 80 120
0(w)~J' dtexp(i wt)|exgi®(t)/2]+cexdid,(t)/7]|?, Harmonic Order

(31 FIG. 10. Harmonic spectrum according to Eg1).
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A second point refers to the fact that the characteristic
phase differenc@(t) — d.(t) already appears in the wave
function Eq.(22) for ATI, while for HHG it occurs only in
the expectation value Eq29). However, this difference is
artificial, since the expectation value, or, better, its Fourier
transform the power spectrum, is not the observable of

. . . higher-harmonic radiation. The correct expression is the
10 0 40 80 120 dipole-dipole correlation functioR, which can be approxi-
Harmonic Order mated asRx|o(w)|? under single atom conditions or in the

case of an ensemble of independent atoms that radiate

FIG. 11.. Harmonic spectrum generated from the wave functior[ll,zgj_ Hence, in both ATl and HHG the peak structure
Eq. (37) with ¢=0.025 and3=0.05 a.u. already appears on the level of the quantum amplitiete
wave function and is amplified in the true observable.

oma=2Up+ 1, (34)

as expected for laser assisted electron ion scatt¢@ag B. Summary

Using the same expansion into Bessel functions as in Eq. We have given a time-dependent fully semiclassical de-

(22) we obtain for the spectrum E¢B1) scription of multiphoton processes. The prominent ATI and
) HHG features emerge naturally from properties of the clas-
f dtexp{l—((ﬁw—u O )t+ﬁsin(2w t)” sical trajectories whose contributions to the semiclassical

h PP 2wg 0 wave function interfere semiclassically. Any effect of this

. semiclassical interference can be double checked by disre-
=3 f dteit(hwUpIp+2kﬁ,w0)/ﬁJk( Up ) garding' the phases. This lea@éth the same trajectorigso '
W a classical observable. As we have seen, to a good approxi-
mation the classical action for an individual trajectory can be
(35 composed of one pafb,, for the time the electron is bound
(disregarding the laser fieléind another pad .. for the time
the electron is in the continuurtdisregarding the atomic
hog=Up+1,— 2kwy. (36) potentia). The relevant phase differenck,—® leads in
both ATl and HHG to prominent harmonic structures in
We can go one step further and construct a full time-terms of the laser enerdyw,. Finally, we have been able to
dependent wave function from this semiclassical approximaconstruct a simple wave function for higher harmonics gen-
tion, namely, erated in laser assisted scattering. Its key element is an ex-
c , plicitly time-dependent wave packet of the electron under the
V(XD =P5(x,1)+cPo(x)explitl, /7). (37 influence of the laser field. Starting from an initial Gaussian
distribution localized in space the wave packet disperses in
time, providing the correct decrease of the intensity of the
lower harmonics and in turn the correct height of the plateau.

Zﬁwo

Therefore, we see maxima in the harmonic spectrum for

Here, W o(x)exp(l t/72) is the time-dependent ground state
wave function(without the laser field and W3°(x,t) is a
(semiclassicalwave packein the laser field but without po-
tential. Calculating the dipole acceleration and the resulting
harmonic spectrum with this wave function leads to a re-
markably good approximation of the true quantum spectrum  Financial support from the DFG under the Gerhard Hess-

(compare Fig. 8 with Fig. 11 The dispersion of the wave Programm and the SFB 276 is gratefully acknowledged.
packet leads to a lower plateau compared to Fig. 10.
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V. CONCLUSIONS APPENDIX

A. Semiclassical comparison between ATl and HHG We want to calculate the semiclassical wave function of a

Clearly. th . h he ol q free particle in a laser field according to E§). A particle in
early, the main structures, such as the plateau and cuf; |ger fieldV, (x,t) = E, sin(wt) moves with

off (HHG), and the occurrence of peaks and their separation
in energy(ATIl and HHG), are properties of the difference of
the classical time-dependent actiofig(t)—®.(t) alone. Eo o~

However, the HHG power spectrum E@O) is an integral p()=p+ ;cos{wt)=p+p(t), (A1)
over all the time for which the electron wave packet is ex-

posed to the laser field. In contrast, the ATI spectrum is

obtained in the long-time limit— o after the laser has been Eo . ~

switched off. This difference may explain why the HHG re- q()=g+pt+ Esm(wt)Equ pt+q(t).  (A2)
sults tend to be better than the ATI results semiclassically:

Any semiclassical approximatiofwhich is not exadt be-

come worse for large times. The weight factorC,(t) is given by
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whereo(t) is given by

|ﬁ’y 1/2
qu(t):(l_Tt) . (A3)
— 25242
For the phase factds,(t) —p(t)q(t) we get o(t)=1+ """ (ALD)
Sgp(t) —p(Hg(t) =~ %Sin(z‘”t) The determingnt of the second derivatived sfill has to be
calculated. With
P> -
—Upt=St—a)p—ap. (Ad)
7t y2yB P e 1
Evaluating Eq.(8) with the stationary phase approximation, 99> a ' gp2  h T R
which is exact for quadratic potentials, leads to the condition
that
. ) 5 AR (A12)
_L O O o qop ha T
f(a.p)= 2| xp(t) = S t=q(t)p——ap——dsp q7p
i Liaqp- M
24 2a 47
(A5) Pt 5*f
must have an extremum. With dq>  999p 2y . .
de =—[(1—iyht/2)(1+iBAt)].
i Pt o*f ha
of vB i or
gq = 0= x-a]-(a-dp— ¢ (A6) piq  ap?
(A13)
o o= ix-a]t——
p—— el X_ —_——
p X hia P The factory cancels, as it should, and we are left with
[ ~ Yy B
s U= NT1onat
we find T 1+iapt
i~ U
Xx—a(t)+i% Bt Xexp{— p(t)x——psin(Zwt)—U t”
a= q( ) B Q,B, (A8) A 20 p
1+iapBt
i ﬁZBZ ~ 5
ihB N Xex %m[x—q(t)—qﬁ] t
pfm[X—Q(t)—qB]- (A9)
— e _ 2
After some algebra we arrive at the stationary exponent ><exp( 20(t) [X=a()~q] ) (Al4)

i~ ~
f(s.Ps) = 7-xp(t) — 2(l+hﬂt)[x_q(t)_qﬁ]2

[ i h?p?

- 8 -
=gxm0—gzgaﬂx—m0—qﬂz

B -

This semiclassical time-dependent wave packet is quantum-
mechanically exact and corresponds to a superposition of
Volkov solutions according to a Gaussian distribution at time
t=0 [24]. The fact that the semiclassical wave function is
exact is a direct consequence of the Ehrenfest theorem,

i S : : n _
(AL0) which implies that interactionsVex", n=0,1,2, have

quantum-mechanically exact semiclassical solutions.
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