Bust of Max Planck

Highlights

Publication Highlights

Uninformed Individuals Promote Democratic Consensus in Animal Groups

Conflicting interests among group members are common when making collective decisions, yet failure to achieve consensus can be costly. Under these circumstances individuals may be susceptible to manipulation by a strongly opinionated, or extremist, minority. It has previously been argued, for humans and animals, that social groups containing individuals who are uninformed, or exhibit weak preferences, are particularly vulnerable to such manipulative agents. Here, we use theory and experiment to demonstrate that, for a wide range of conditions, a strongly opinionated minority can dictate group choice, but the presence of uninformed individuals spontaneously inhibits this process, returning control to the numerical majority. Our results emphasize the role of uninformed individuals in achieving democratic consensus amid internal group conflict and informational constraints. Iain D. Couzin, Christos C. Ioannou, Güven Demirel, Thilo Gross, Colin J. Torney, Andrew Hartnett, Larissa Conradt, Simon A. Levin, Naomi E. Leonard Science 334, 1578 (2011)
weiterlesen
Publication Highlights

A Homonuclear Molecule with a Permanent Electric Dipole Moment

Permanent electric dipole moments in molecules require a breaking of parity symmetry. Conventionally, this symmetry breaking relies on the presence of heteronuclear constituents. We report the observation of a permanent electric dipole moment in a homonuclear molecule in which the binding is based on asymmetric electronic excitation between the atoms. These exotic molecules consist of a ground-state rubidium (Rb) atom bound inside a second Rb atom electronically excited to a high-lying Rydberg state. Detailed calculations predict appreciable dipole moments on the order of 1 Debye, in excellent agreement with the observations. Weibin Li, Thomas Pohl, Jan-Michael Rost, Seth T. Rittenhouse, Hossein R. Sadeghpour, Johannes Nipper, Bjoern Butscher, Jonathan Balweski, Vera Bendowsky, Robert Löw, Tilman Pfau Science 334, 1110 (2011)
weiterlesen
Publication Highlights

Polarization of PAR Proteins by Advective Triggering of a Pattern-Forming System

In the Caenorhabditis elegans zygote, a conserved network of partitioning defective 4 (PAR) polarity proteins segregate into an anterior and a posterior domain, facilitated by flows of the cortical actomyosin meshwork. The physical mechanisms by which stable asymmetric PAR distributions arise from transient cortical flows remain unclear. We present evidence that PAR polarity arises from coupling of advective transport by the flowing cell cortex to a multistable PAR reaction-diffusion system. By inducing transient PAR segregation, advection serves as a mechanical trigger for the formation of a PAR pattern within an otherwise stably unpolarized system. We suggest that passive advective transport in an active and flowing material may be a general mechanism for mechanochemical pattern formation in developmental systems. W. Goehring, Philipp Khuc Trong, Justin S. Bois, Debanjan Chowdhury, Ernesto M. Nicola, Anthony A. Hyman, Stephan W. Grill Science 334, 1137 (2011)
weiterlesen
Publication Highlights

The weak password problem: chaos, criticality, and encrypted p-CAPTCHAs

Vulnerabilities related to weak passwords are a pressing global economic and security issue. We report a novel, simple, and effective approach to address the weak password problem. Building upon chaotic dynamics, criticality at phase transitions, CAPTCHA recognition, and computational round-off errors we design an algorithm that strengthens security of passwords. The core idea of our method is to split a long and secure password into two components. The first component is memorized by the user. The second component is transformed into a CAPTCHA image and then protected using evolution of a two-dimensional dynamical system close to a phase transition, in such a way that standard brute-force attacks become ineffective. We expect our approach to have wide applications for authentication and encryption technologies. T.V.Laptyeva, S. Flach, K. Kladko arXiv:1103.6219v1 (2011)
weiterlesen
Publication Highlights

Dynamics of Dpp Signaling and Proliferation Control

Morphogens, such as Decapentaplegic (Dpp) in the fly imaginal discs, form graded concentration profiles that control patterning and growth of developing organs. In the imaginal discs, proliferative growth is homogeneous in space, posing the conundrum of how morphogen concentration gradients could control position-independent growth. To understand the mechanism of proliferation control by the Dpp gradient, we quantified Dpp concentration and signaling levels during wing disc growth. Both Dpp concentration and signaling gradients scale with tissue size during development. On average, cells divide when Dpp signaling levels have increased by 50%. Our observations are consistent with a growth control mechanism based on temporal changes of cellular morphogen signaling levels. For a scaling gradient, this mechanism generates position-independent growth rates. O. Wartlick, P. Mumcu, A. Kicheva, T. Bittig, C. Seum, F. Jülicher, M. González-Gaitán Science 331, 1154 (2011)
weiterlesen
Publication Highlights

Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh$_2$Si$_2$

The entanglement of quantum states is both a central concept in fundamental physics and a potential tool for realizing advanced materials and applications. The quantum superpositions underlying entanglement are at the heart of the intricate interplay of localized spin states and itinerant electronic states that gives rise to the Kondo effect in certain dilute magnetic alloys. In systems where the density of localized spin states is sufficiently high, they can no longer be treated as non-interacting; if they form a dense periodic array, a Kondo lattice may be established1. Such a Kondo lattice gives rise to the emergence of charge carriers with enhanced effective masses, but the precise nature of the coherent Kondo state responsible for the generation of these heavy fermions remains highly debated. Here we use atomic-resolution tunnelling spectroscopy to investigate the low-energy excitations of a generic Kondo lattice system, YbRh$_2$Si$_2$. We find that the hybridization of the conduction electrons with the localized 4f electrons results in a decrease in the tunnelling conductance at the Fermi energy. In addition, we observe unambiguously the crystal-field excitations of the Yb$^{3+}$ ions. A strongly temperature-dependent peak in the tunnelling conductance is attributed to the Fano resonance resulting from tunnelling into the coherent heavy-fermion states that emerge at low temperature. Taken together, these features reveal how quantum coherence develops in heavy 4f-electron Kondo lattices. Our results demonstrate the efficiency of real-space electronic structure imaging for the investigation of strong electronic correlations, specifically with respect to coherence phenomena, phase coexistence and quantum criticality. S. Ernst, S. Kirchner, C. Krellner, C. Geibel, G. Zwicknagel, F. Steglich & S. Wirth Nature 474, 362 (2011)
weiterlesen
Publication Highlights

Coupling a sensory hair-cell bundle to cyber clones enhances nonlinear amplification

The vertebrate ear benefits from nonlinear mechanical amplification to operate over a vast range of sound intensities. The amplificatory process is thought to emerge from active force production by sensory hair cells. The mechano-sensory hair bundle that protrudes from the apical surface of each hair cell can oscillate spontaneously and function as a frequency-selective, nonlinear amplifier. Intrinsic fluctuations, however, jostle the response of a single hair bundle to weak stimuli and seriously limit amplification. Most hair bundles are mechanically coupled by overlying gelatinous structures. Here, we assayed the effects of mechanical coupling on the hair-bundle amplifier by combining dynamic force clamp of a hair bundle from the bullfrog’s saccule with real-time stochastic simulations of hair-bundle mechanics. This setup couples the hair bundle to two virtual hair bundles, called cyber clones, and mimics a situation in which the hair bundle is elastically linked to two neighbors with similar characteristics. We found that coupling increased the coherence of spontaneous hair-bundle oscillations. By effectively reducing noise, the synergic interplay between the hair bundle and its cyber clones also enhanced amplification of sinusoidal stimuli. All observed effects of coupling were in quantitative agreement with simulations. We argue that the auditory amplifier relies on hair-bundle cooperation to overcome intrinsic noise limitations and achieve high sensitivity and sharp frequency selectivity. Jérémie Barral, Kai Dierkes, Benjamin Lindner, Frank Jülicher, Pascal Martin PNAS 107 (18), 8079 (2010)
weiterlesen
Publication Highlights

Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows

Asymmetric cell divisions are essential for the development of multicellular organisms. To proceed, they require an initially symmetric cell to polarize. In Caenorhabditis elegans zygotes, anteroposterior polarization is facilitated by a large-scale flow of the actomyosin cortex, which directs the asymmetry of the first mitotic division. Cortical flows appear in many contexts of development5, but their underlying forces and physical principles remain poorly understood. How actomyosin contractility and cortical tension interact to generate large-scale flow is unclear. Here we report on the subcellular distribution of cortical tension in the polarizing C. elegans zygote, which we determined using position- and direction-sensitive laser ablation. We demonstrate that cortical flow is associated with anisotropies in cortical tension and is not driven by gradients in cortical tension, which contradicts previous proposals5. These experiments, in conjunction with a theoretical description of active cortical mechanics, identify two prerequisites for large-scale cortical flow: a gradient in actomyosin contractility to drive flow and a sufficiently large viscosity of the cortex to allow flow to be long-ranged. We thus reveal the physical requirements of large-scale intracellular cortical flow that ensure the efficient polarization of the C. elegans zygote. M. Mayer, M. Depken, J.S. Bois, F. Jülicher & S.W. Grill Nature 467, 617 (2010)
weiterlesen
Publication Highlights

Magnetically driven superconductivity in CeCu$_2$Si$_2$

The origin of unconventional superconductivity, including high-temperature and heavy-fermion superconductivity, is still a matter of controversy. Spin excitations instead of phonons are thought to be responsible for the formation of Cooper pairs. Using inelastic neutron scattering, we present the first in-depth study of the magnetic excitation spectrum in momentum and energy space in the superconducting and the normal states of CeCu$_2$Si$_2$. A clear spin excitation gap is observed in the superconducting state. We determine a lowering of the magnetic exchange energy in the superconducting state, in an amount considerably larger than the superconducting condensation energy. Our findings identify the antiferromagnetic excitations as the main driving force for superconducting pairing in this prototypical heavy-fermion compound located near an antiferromagnetic quantum critical point. O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H.S. Jeevan, S. Kirchner, M. Loewenhaupt. K. Schmalz, W. Schmidt, Q. Si & F. Steglich Nature Physics 7, 119 (2010)
weiterlesen
Publication Highlights

Dirac Strings and Magnetic Monopoles in Spin Ice Dy$_2$Ti$_2$O$_7$

While sources of magnetic fields—magnetic monopoles—have so far proven elusive as elementary particles, several scenarios have been proposed recently in condensed matter physics of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin ice state is argued to be well-described by networks of aligned dipoles resembling solenoidal tubes—classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defect looks like a magnetic monopole. We demonstrate, by diffuse neutron scattering, the presence of such strings in the spin ice Dy$_2$Ti$_2$O$_7$. This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction. D. J. P. Morris, D. A. Tennant , S. A. Grigera , B. Klemke , C. Castelnovo , R. Moessner , C. Czternasty , M. Meissner , K. C. Rule , J.-U. Hoffmann , K. Kiefer , S. Gerischer , D. Slobinsky, R. S. Perry Science 326, 411 (2009)
weiterlesen