Bust of Max Planck

Highlights

Awards and Honors

Carlsberg Foundation Young Researcher Fellowship for Anne E. B. Nielsen

Anne E. B. Nielsen receives 670 thousand euro from the Carlsberg Foundation to search for and investigate new types of non-thermal behaviors in strongly correlated quantum many-body systems. The Carlsberg Foundation Young Researcher Fellowships are three-year grants that allow the grantee to establish an independent research group working on a research topic within natural science, social science, or the humanities.
weiterlesen
Publication Highlights

Protein condensates as aging Maxwell fluids

Cells organize their biochemistry by forming liquid-like condensates of biomolecules that can act as tiny reactors to localize chemical reactions. Researchers from the Physics of Complex Systems together with with colleagues of the MPI of molecular cell biology and genetics in Dresden investigate the physical nature and material properties of protein condensates using microrheology techniques. They find that many protein condensates increase their viscosity with time and slow their dynamics, while always remaining soft and liquid-like. This is suggestive of glassy behaviors and could have important implications for cellular dynamics.

Jawerth et al. Science 370, 1317 (2020)
weiterlesen
Publication Highlights

The surprising mise en abyme of a Rydberg molecule

We predict a new class of Rydberg molecules, comprised of a Rydberg atom and a ground state atom, whose energy spectrum conforms to a certain mise en abyme: nested within successive levels of the infinite electronic Rydberg series lie several finite vibrational Rydberg series. These intertwined series arise from Coulomb potentials in the electronic and nuclear degrees of freedom. The emergence of nuclear Coulomb interaction in a Rydberg molecule is surprising because it is otherwise found only in a heavy Bohr atom, consisting of a cation and an anion. We establish a connection between heavy Bohr atoms and Rydberg molecules via a dressed ion-pair model. In this new perspective, the low-energy scattering of the Rydberg electron off of the ground state atom dresses the neutral atom with a fractional negative charge. Coulomb forces between this dressed anion and the Rydberg cation lead to the formation of Rydberg molecules. In the class of Rydberg molecules we predict, this charge is nearly independent of the internuclear distance, yielding a Coulombic potential. Although this property and the effective ion-pair binding mechanism are very unusual, these molecules need not be: our work shows that these are generic, and can be formed from a Rydberg atom and any neutral polarizable object.

P. Giannakeas et al., Phys. Rev. Lett. 125, 123401 (2020)
weiterlesen
Publication Highlights

Power-law population heterogeneity governs epidemic waves

Differences between individuals reduce the number of infections required for herd immunity

In rapidly spreading epidemics such as the current coronavirus pandemic, it is usually expected that a majority of the population will be infected before herd immunity is achieved and the epidemic abates. The estimate of when the threshold for this is reached is usually based on models that assume all individuals in a population are identical. Researchers at the Max Planck Institute for the Physics of Complex Systems in Dresden have used a new model to demonstrate that herd immunity can be achieved at a lower threshold if some individuals are more easily infected than others.

J. Neipel et al., PLoS ONE 15(10): e0239678 (2020).
weiterlesen
Institute's News

New Research Group Correlations and Topology

A warm welcome to Ashley Cook who joined us from the University of California in Berkeley and heads the new research group on correlations and topology! The research will focus on the effects of correlations and topology in condensed matter systems, with special emphasis on searching for novel phases of matter and exploration of mechanisms for experimental realization of exotic phases of matter. This group aims to accelerate the process of transitioning from introduction of novel phases of matter into the literature to experimental realization and finally applications, merging what have previously been more disparate areas of expertise. While the research group focuses on theoretical condensed matter physics, it will work in close collaboration with experimental groups, in particular those at MPI-CPfS.
weiterlesen
Institute's News

Call for Distinguished PKS Postdoctoral Fellowship 2021 now open!

Application deadline: 25 November 2020. Distinguished PKS postdoctoral fellows appear personally along with the departments and groups on the main research page of the institute and are expected to have at least one year of postdoctoral experience at an institution other than the one at which their PhD was awarded. Applications for this fellowship directly after completion of the PhD might be considered in exceptional cases. Please click on the link- button to see the full advertisement!
weiterlesen
Publication Highlights

Interaction-Induced Transparency for Strong-Coupling Polaritons

The propagation of light in strongly coupled atomic media takes place through the formation of polaritons—hybrid quasiparticles resulting from a superposition of an atomic and a photonic excitation. Here we consider the propagation under the condition of electromagnetically induced transparency and show that a novel many-body phenomenon can appear due to strong, dissipative interactions between the polaritons. Upon increasing the photon-pump strength, we find a first-order transition between an opaque phase with strongly broadened polaritons and a transparent phase where a long-lived polariton branch with highly tunable occupation emerges. Across this nonequilibrium phase transition, the transparency window is reconstructed via nonlinear interference effects induced by the dissipative polariton interactions. Our predictions are based on a systematic diagrammatic expansion of the nonequilibrium Dyson equations which can be controlled, even in the nonperturbative regime of large single-atom cooperativities, provided the polariton interactions are sufficiently long-ranged. Such a regime can be reached in photonic crystal waveguides thanks to the tunability of interactions, allowing us to observe the interaction-induced transparency transition even at low polariton densities.

J. Lang et al., Phys. Rev. Lett. 125, 133604 (2020)
weiterlesen
Awards and Honors

ERC Starting grant for Christoph Weber

The European Research Council (ERC) has selected 436 early-career top researchers from 40 nationalities across Europe in the 2020 'Starting Grant' competition. The prestigious grants enable the best young researchers in Europe to build their own teams and to conduct pioneering research across all disciplines. Among the awardees is Christoph Weber, research group leader at the MPI-PKS and the Center for Systems Biology Dresden. With his project „FuelledLife”, Christoph and his group want to understand how living cells regulate phase separation and to unveil the role of phase separation for the emergence of life. "Living cells rely on the compartmentalisation of thousands of different molecules and their chemical reactions,” Christoph explains. “Remarkably, many of such compartments form by phase separation of polymers and are controlled by sequence-specific interactions but also cellular fuel driving the system away from thermodynamic equilibrium. If we knew how such polymers evolve in time and compartmentalise in multi-component mixtures, we would better understand the role of phase separation in living cells and how prebiotic cells could have emerged at the origin of life. My team and I will develop a theory for phase separation and chemical reactions in multi-component mixtures that are driven by irreversible, fuel-driven reactions. Our theoretical studies will let us understand how living cells regulate phase separation at the origin of life and determine the prerequisites of a protocell to divide, replicate and undergo selection." Christoph will receive 1.5 million Euros over a period of five years. Congratulations to the Weber group!
weiterlesen
Publication Highlights

Quantum many-body dynamics in two dimensions with artificial neural networks

In the last two decades the field of nonequilibrium quantum many-body systems has seen a rapid development driven, in particular, by the remarkable progress in quantum simulators, which provide access to dynamics in quantum matter with an unprecedented control. However, the efficient numerical simulation of nonequilibrium real-time evolution in isolated quantum matter remains a key challenge for current computational methods especially beyond one spatial dimension. In this work we present a versatile and efficient machine learning inspired approach based on a recently introduced artificial neural network encoding of quantum many-body wave functions. We identify and resolve key challenges for the simulation of real-time evolution, which previously imposed significant limitations on the accurate description of large systems and long-time dynamics. As a concrete example, we study the dynamics of the paradigmatic two-dimensional transverse field Ising model, where we observe collapse and revival oscillations of ferromagnetic order and demonstrate that the reached time scales are comparable to or exceed the capabilities of state-of-the-art tensor network methods.

M. Schmitt and M. Heyl, Phys. Rev. Lett. 125, 100503 (2020)
weiterlesen
Awards and Honors

European funding to unravel scientific mysteries

Steffen Rulands receives ERC Starting Grant The prestigious ERC starting grants allow the best young researchers in Europe to build their own teams and to conduct pioneering research across all disciplines. Among this year’s awardees is Steffen Rulands, research group leader at the Max Planck Institute for the Physics of Complex Systems, and the Center for Systems Biology Dresden! With the interdisciplinary project “AHH-OMICS” Steffen and his group aim to apply theoretical methods originally developed in the physics of solids to understand the mechanisms underlying the behaviour of cells during development, regeneration and ageing. Steffen explains, “The recent breakthroughs of single-cell sequencing technologies for the first time give us the opportunity to probe the inner life of cells with unprecedented molecular detail. Biological function, however, relies on how many molecules work together in space and time, which up to now cannot be inferred from these experiments.” The theoretical physicist continues, “It’s like a car, where from detailed knowledge of all car parts we still cannot understand how an engine works. We need methods from statistical physics to do that! The same holds true for the cell – from detailed measurements of molecules we don’t learn about biological function. The theoretical tools that will be developed in my project will bridge this gap.” The ERC project will combine the novel single-cell technologies with methods from statistical and solid-state physics to understand collective processes regulating cellular behaviour. With this conceptually new approach the Rulands group will overcome existing limitations in an emerging technology and pioneer the application of methods from statistical physics to single-cell genomics. Steffen Rulands will receive 1.5 million Euros from the ERC over a period of five years. The European Research Council (ERC) has selected 436 early-career top researchers from 40 nationalities across Europe in their 2020 'Starting Grant' competition. The funding, worth in total €677 million, is part of the EU’s Research and Innovation programme, Horizon 2020. Congratulations to the Rulands group!
weiterlesen