Motivation	Observations	Analysis	Modelling

Dynamic intermittency in discrete erodible-bed avalanches

Matthew Arran, Nathalie Vriend

Geoflo16, 14th March 2016

Matthew Arran

University of Cambridge

E SQQ

< D > < P > < P > < P >

Motivation	Observations	Analysis	Modelling
Outline			

Motivation

Observations

Analysis

Modelling

シック・ 正則 スポッスポット 御き ろくの

Matthew Arran

University of Cambridge

Dune structure

- Consistent sub-cm layering observed
- Significant effect on water permeation
- Arises from slip-face avalanches

・ロ・・聞・・聞・・聞・・ 四・

University of Cambridge

Matthew Arran

Granular unjamming transition

- Flowing and static regions can be regarded as two phases
- Unjamming/Jamming as flow starts/stops a phase transition
- Behaviour determined by order of transition

Matthew Arran

University of Cambridge

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 = < ○ < ○

A first or second-order transition?

- First-order transition:
 - Associated with a 'latent heat'
 - Described by 'static' and 'dynamic' angles of repose
 - Gives rise a simple hysteresis and periodicity
 - ► Observed by e.g. Jaeger et al (1989), Evesque (1991)
- Second-order transition:
 - Predicted by BTW theory of Self-Organised Criticality
 - Local dynamics result in macroscopic power-law behaviour
 - Mixed evidence: only for rice/precursors? Not at all?

Matthew Arran

University of Cambridge

Apparatus

- Channel 2m long, 5cm wide
- Inclination 32^o
- ► Grains construction sand d_{4,3} = 470µm.
- ► 11cm deep erodible bed developed
- ▶ Influx 0.9, 3.3 cm³s⁻¹

University of Cambridge

Matthew Arran

Observed behaviour

Dynamic intermittency observed between two regimes:

- 1. Quasi-periodicity:
 - Avalanches at approximately constant intervals
 - Propagation consistently to end of chute
- 2. Irregularity:
 - Intervals between avalanches highly variable
 - Most avalanches stop part-way down

< □ > < □ > < □ > < □ > < □ >

University of Cambridge

EL NOR

Matthew Arran

Continuous time measurements

- Laser scanner fixed at each of 19 distances downslope
- Flow rate and profile rate constant
- Times detected at which avalanches in field of view
- Avalanche front heights and positions extracted

Matthew Arran

University of Cambridge

Continuous position measurements

For each avalanche:

- Inflow stopped at start of avalanche
- Entire bed profile measured after cessation
- ► Flow restarted and time until next avalanche measured From measured profiles:
 - Stopped front positions detected
 - Avalanches reconstructed

Matthew Arran

University of Cambridge

Avalanche intervals

- Regimes easily distinguished from data
- Results collapse under scaling by flux rate
- Mean interval between avalanches constant/linear with distance downslope in quasiperiodic/irregular regime
- ▶ Implies avalanche length distributions $f_A(L) = 0 / f_A(L) \sim L^{-2}$

Matthew Arran

University of Cambridge

Experimental Summary

Observations indicate two regimes:

- Quasiperiodic regime, non-stopping
 - typical of first-order phase transition
- Irregular regime, power-law probability distribution
 - typical of second-order phase transition
- Dynamical intermittency between them

Questions:

- 1. How does power-law behaviour emerge?
- 2. Why does the system switch between regimes?
- 3. Why does the system tend to stay in each regime?

Emergent L^{-2} behaviour

- Minimal model of stopping avalanches
- For ith avalanche:
 - ► Say ordered stopped fronts at (s_i⁽ⁱ⁾)_j
 - Assign 'initial length' I⁽ⁱ⁾
 - While $I^{(i)} > s_1^{(i)}$:
 - ► Stopped front overrun ► $(s_j^{(i)}) := (s_2^{(i)}, s_3^{(i)}, ...),$ $I^{(i)} := I^{(i)} + s_1^{(i)}$
 - Avalanche stops, length ⁽ⁱ⁾
 - $(s_j^{(i+1)}) := (I^{(i)}, s_1^{(i)}, s_2^{(i)}, ...)$
- ▶ Reproduces f_A(L) ~ L⁻²
- Insensitive to initial length distribution

University of Cambridge

Matthew Arran

Regime switching

- Laser scanner fixed at channel's top
- Profiles taken over more than 100l of sand drainage
- ► Note net erosion/deposition in quasiperiodic/irregular regime
- Lower/higher bed angle increases/decreases likelihood of avalanche stopping

Matthew Arran

University of Cambridge

Regime continuation

- Governed by state of erodible bed
 - Avalanches stop when local bed angle sufficiently low
- Role of secondary instabilities?
 - ► In irregular regime, full-length avalanches less frequent
 - Therefore larger volume, longer duration
 - Therefore roll waves larger amplitude
 - Therefore local bed angle more variable?

Matthew Arran

University of Cambridge

Conclusions

Current progress:

- Two regimes of behaviour observed, quasiperiodic and irregular
- Behaviour in each reproduced by simple models
- Intermittency between them explicable via bed state Future work:
 - Apply depth-averaged continuum model
 - Examine effect on and of bed angle mean, variation
 - Consider effect on structure via segregation

Avalanche profiles: top

Matthew Arran

1 University of Cambridge

ъ

Э

3

5990

Avalanche profiles: bottom

Matthew Arran

I University of Cambridge

-

Э

f¶ ▶ Э 5990

Front heights & speeds

Matthew Arran

1 University of Cambridge

ъ

э

<ロト <回ト < 回ト