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Dune structure

I Consistent sub-cm layering observed

I Significant effect on water permeation

I Arises from slip-face avalanches

10cm
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Granular unjamming transition

I Flowing and static regions can be regarded as two phases

I Unjamming/Jamming as flow starts/stops a phase transition

I Behaviour determined by order of transition
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A first or second-order transition?

I First-order transition:
I Associated with a ‘latent heat’
I Described by ‘static’ and ‘dynamic’ angles of repose
I Gives rise a simple hysteresis and periodicity
I Observed by e.g. Jaeger et al (1989), Evesque (1991)

I Second-order transition:
I Predicted by BTW theory of Self-Organised Criticality
I Local dynamics result in macroscopic power-law behaviour
I Mixed evidence: only for rice/precursors? Not at all?

θstatic

θdynamic
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Apparatus

I Channel 2m long, 5cm wide

I Inclination 32o

I Grains construction sand
d4,3 = 470µm.

I 11cm deep erodible bed developed

I Influx 0.9, 3.3 cm3s−1
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Observed behaviour

Dynamic intermittency observed
between two regimes:

1. Quasi-periodicity:
I Avalanches at approximately

constant intervals
I Propagation consistently to end

of chute

2. Irregularity:
I Intervals between avalanches

highly variable
I Most avalanches stop part-way

down

Matthew Arran University of Cambridge

Dynamic intermittency in discrete erodible-bed avalanches



Motivation Observations Analysis Modelling

Continuous time measurements

I Laser scanner fixed at each of 19 distances downslope

I Flow rate and profile rate constant

I Times detected at which avalanches in field of view

I Avalanche front heights and positions extracted
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Continuous position measurements

For each avalanche:

I Inflow stopped at start of avalanche

I Entire bed profile measured after cessation

I Flow restarted and time until next avalanche measured

From measured profiles:

I Stopped front positions detected

I Avalanches reconstructed
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Avalanche intervals

I Regimes easily distinguished from data

I Results collapse under scaling by flux rate

I Mean interval between avalanches constant/linear with
distance downslope in quasiperiodic/irregular regime

I Implies avalanche length distributions fA(L) = 0 / fA(L) ∼ L−2
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Experimental Summary

Observations indicate two regimes:

I Quasiperiodic regime, non-stopping
- typical of first-order phase transition

I Irregular regime, power-law probability distribution
- typical of second-order phase transition

I Dynamical intermittency between them

Questions:

1. How does power-law behaviour emerge?

2. Why does the system switch between regimes?

3. Why does the system tend to stay in each regime?
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Emergent L−2 behaviour

I Minimal model of stopping avalanches
I For ith avalanche:

I Say ordered stopped fronts at (s
(i)
j )j

I Assign ‘initial length’ l (i)

I While l (i) > s
(i)
1 :

I Stopped front overrun
I (s

(i)
j ) := (s

(i)
2 , s

(i)
3 , ...),

l (i) := l (i) + s
(i)
1

I Avalanche stops, length (i)

I (s
(i+1)
j ) := (l (i), s

(i)
1 , s

(i)
2 , ...)

I Reproduces fA(L) ∼ L−2

I Insensitive to initial length distribution
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Regime switching

I Laser scanner fixed at channel’s top

I Profiles taken over more than 100l of sand drainage

I Note net erosion/deposition in quasiperiodic/irregular regime

I Lower/higher bed angle increases/decreases likelihood of
avalanche stopping
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Regime continuation

I Governed by state of erodible bed
I Avalanches stop when local bed angle sufficiently low

I Role of secondary instabilities?
I In irregular regime, full-length avalanches less frequent
I Therefore larger volume, longer duration
I Therefore roll waves larger amplitude
I Therefore local bed angle more variable?
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Conclusions

Current progress:

I Two regimes of behaviour observed, quasiperiodic and
irregular

I Behaviour in each reproduced by simple models

I Intermittency between them explicable via bed state

Future work:

I Apply depth-averaged continuum model

I Examine effect on and of bed angle mean, variation

I Consider effect on structure via segregation
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Avalanche profiles: top
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Avalanche profiles: bottom
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Front heights & speeds
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