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2Outline

• Classification of steady sediment transport

• Pressure-driven collisional suspensions

• Transition to turbulent-collisional suspensions

• Gravity-driven suspensions

• Effective fluid shear viscosity in collisional
suspensions
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3Sediment transport

Too many ingredients: 

motion regimes, polydispersity, grain shape, type of bed…
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4Simplification

(ordinary) Bed Load

suspension

Transport of monosized spheres over an 

horizontal bed of flowing-like particles by a 

steady, shearing, turbulent fluid

Dimensionless units using particle diameter d, 

particle density rp and reduced gravity g(s-1)/s, 

with s ratio of particle to fluid density

In dimensionless units, the fluid shear stress is

the Shields parameter q

no motion

intermittent motion continuing saltation
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5Collisional suspensions: experiments

Plastic cylinders and water (Capart and Fraccarollo, GRL 2011)
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6Flow stratification

Steady, horizontal, collisional sediment transport over an 

erodible bed in a turbulent fluid (Berzi, JHE 2011, 2013)

T is granular temperature; 

n is solid volume fraction; 

e is coefficient of collisional restitution; 

u is particle x-velocity
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7Governing Equations
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8BCs at interfaces
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9Key assumptions

• s+Sq (boundary layer)

• concentration and velocity linearly distributed in the
layers

• turbulence suppressed in the dense layer (S0)

• algebraic balance between production and
dissipation of fluctuation energy

• yielding at the bed (s/p has a characteristic value )
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10Analytical solution

Layer depths

Velocity

Flow rate

INPUT OUTPUT

Particle properties: , 

Fluid properties: s, R

Flux strength: S* = q (Shields

number)

BLACK(GREEN)BOARD PLEASE
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11Comparisons with experiments

0.7 mm sand in water 
(Nnadi and Wilson, JHE 1992)

3 mm plastic cylinders in 

water (Sumer et al., JHE 1996)
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12Comparisons with experiments

0.7 mm sand in water (Nnadi and Wilson, JHE 1992)
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13Limits

Particle depth (h) 

must be at least 1 

diameter 

(otherwise no 

suspension: 

ordinary bedload)

Minimum value for the 

Shields number (around 0.2 

for sand, i.e. 4 times the 

critical Shields number)

Absence of turbulent 

suspension, i.e., ratio 

of fluid shear velocity 

at the top and single 

particle settling 

velocity less than 1

Maximum value for the 

Shields number (around 1.3 

for 0.7 mm sand)
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14Turbulent-collisional suspension

Steady, horizontal, turbulent-collisional sediment transport 

over an erodible bed in a turbulent fluid (Berzi and Fraccarollo, 

PHF 2016)



D. Berzi

15Governing Equations
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(McTigue, JHD 1981)
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16Comparisons with experiments

0.18 mm glass spheres in water 
(Matousek et al., JHH 2013)

0.37 mm sand in water 
(Matousek, JHE 2009)
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17Comparisons with experiments

0.3 and 0.56 mm sand in water 
(Pugh and Wilson, JHE 1999)

0.37 mm sand in water 
(Matousek, JHE 2009)
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18Limits

h=1
Boundary between bedload 

and collisional suspension

(sq)1/2/w=0.8
Boundary between collisional 

and turbulent-collisional 

suspensions

h=
Boundary between turbulent-

collisional and fully turbulent 

suspensions
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19Regime map 1
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20Inclined, collisional suspension

Steady, inclined, collisional sediment transport over an 

erodible bed in a turbulent fluid (Berzi and Fraccarollo, PHF 

2013)

f
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21Governing Equations
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22Comparisons with experiments

3.35 mm plastic beads in water, f=0.5÷4.5°

(Capart and Fraccarollo, GRL 2011)
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23Limits

h=1
Boundary between bedload 

and collisional suspension

(sS*)1/2/w=0.8
Boundary between collisional 

and turbulent-collisional 

suspensions

h=H Boundary with debris flows
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24Regime map 2
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25Comparisons with experiments

Non-uniform 2 to 10 mm gravel in water (Smart, JHE 1984)
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26Collisional suspensions: local quantities

Profiles of solid volume fraction n, mean particle velocity u and granular

temperature T (intensity of velocity fluctuations)

Plastic cylinders and water (Capart and Fraccarollo, GRL 2011)

Berzi and Fraccarollo, PRL 2015
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27Particle pressure and mixture shear stress

 ) co sp fp g  - -r r n f
Integrating the momentum 

balances  )  )1 sinp fs S g    - - - r n r n f
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28Kinetic theory of dry granular gases
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29Still valid for suspensions?

Particle pressure scales with granular temperature!

(solid line when g0 is given by Torquato, PRE 1995)
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30Fluid shear stress and viscosity

Hence, we can assume that also the particle shear stress is given

by Kinetic Theory
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31Origin of effective fluid viscosity

Three components to the fluid viscosity
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granularlike component: portion 

of fluid stuck with the particle and 

fluctuates with it (added mass, 

Lamb 1932)

v is c tu r b g r a n     

viscous hydrodynamic component

(Boyer et al , PRl 2011): negligible here

 ) 21tu r b f ml u  - r nturbulent hydrodynamic component: 

mixing length approach
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32Granularlike viscosity
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33Turbulent mixing length
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r n

Turbulence is local: it depends on the local value of the volume fraction;

the interparticle distance limits the size of turbulent eddies

Agreement with 

numerical simulations 

(Verberg and Koch, PHF 

2006)
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34Asymptotic cases
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GRANULAR LIMIT

High volume fraction

Fluctuation energy production due to

particle shear stress balanced by

collisional dissipation (Jenkins and

Berzi, Granul. Matt. 2010)
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TURBULENT LIMIT

Low volume fraction

Fluctuation energy production due to

turbulent eddies balanced by

dissipation due to drag (Hsu et al.,

Proc. R. Soc. A 2004)

Granular temperature proportional to

the square of the fluid shear velocity
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35Granular temperature

GRANULAR 

LIMIT

TURBULENT 

LIMIT
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36Fluid shear viscosity

GRANULAR 

LIMIT

TURBULENT 

LIMIT
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37Conclusions

• Two components of effective fluid viscosity in colllisional
suspensions

• Turbulence originates at the surface of the particles

• Local mixing length: bounded by interparticle distance and
decreasing with volume fraction

• Momentum tranfer due to added mass in conjugate motion with
the fluctuating particles

• Granularlike viscosity given by kinetic theory using density of
added mass

• Scaling of the granular temperature in the granular and turbulent
limits

• Transition to non-local turbulence in turbulent-collisional
suspensions?


