

From collisional to turbulent-collisional suspensions

<u>Diego Berzi</u>

Outline

- Classification of steady sediment transport
- Pressure-driven collisional suspensions
- Transition to turbulent-collisional suspensions
- Gravity-driven suspensions
- Effective fluid shear viscosity in collisional suspensions

Sediment transport

Too many ingredients: motion regimes, polydispersity, grain shape, type of bed...

D. Berzi

Simplification

Transport of monosized spheres over an horizontal bed of flowing-like particles by a steady, shearing, turbulent fluid Dimensionless units using particle diameter **d**, particle density ρ_p and reduced gravity $g(\sigma-1)/\sigma$, with σ ratio of particle to fluid density In dimensionless units, the fluid shear stress is the Shields parameter θ

no motion

intermittent motion continuing saltation

suspension

(ordinary) Bed Load

Collisional suspensions: experiments

Plastic cylinders and water (Capart and Fraccarollo, GRL 2011)

D. Berzi

Flow stratification

Steady, horizontal, collisional sediment transport over an erodible bed in a turbulent fluid (Berzi, JHE 2011, 2013)

T is granular temperature;
v is solid volume fraction;
e is coefficient of collisional restitution;
u is particle x-velocity

Governing Equations

Particle y-momentum balance p' = -v $s + S = \theta$ **Boundary layer** $su' = \Gamma$ Algebraic energy balance $p = f_1(v, e)T$ Particle pressure (kinetic theory) $s = f_2(v, e)T^{1/2}u'$ Particle shear stress (kinetic theory) $\Gamma = \frac{f_3(\nu, e)}{T^{3/2}}$ Dissipation rate (kinetic theory)

Lubrication forces damp collisions:

 $e = \varepsilon - 6.9 \frac{1 + \varepsilon}{\mathrm{St}}$

Coefficient of restitution decreases with the Stokes number (Yang and Hunt, PHF 2006) $St \equiv \sigma R T^{1/2}$

BCs at interfaces

Key assumptions

- s+S≈θ (boundary layer)
- concentration and velocity linearly distributed in the layers
- turbulence suppressed in the dense layer (S \approx 0)
- algebraic balance between production and dissipation of fluctuation energy
- yielding at the bed (s/p has a characteristic value α)

INPUT

OUTPUT

Particle properties: ε , α Fluid properties: σ , R Flux strength: $S^* = \theta$ (Shields number) Layer depths Velocity Flow rate

10

BLACK(GREEN)BOARD PLEASE

Comparisons with experiments

0.7 mm sand in water (Nnadi and Wilson, JHE 1992)

3 mm plastic cylinders in water (Sumer et al., JHE 1996)

POLITECNICO DI MILANO

D. Berzi

Comparisons with experiments

POLITECNICO DI MILANO

Limits

Particle depth (h) must be at least 1 diameter (otherwise no suspension: ordinary bedload)

Absence of turbulent suspension, i.e., ratio of fluid shear velocity at the top and single particle settling velocity less than 1

Minimum value for the Shields number (around 0.2 for sand, i.e. 4 times the critical Shields number)

13

Maximum value for the Shields number (around 1.3 for 0.7 mm sand)

Turbulent-collisional suspension

Steady, horizontal, turbulent-collisional sediment transport

14

over an erodible bed in a turbulent fluid (Berzi and Fraccarollo, PHF 2016)

Governing Equations

 $p' = -v - C (\sigma S)^{1/2} l_m v' \qquad \begin{array}{l} \text{Particle y-momentum balance} \\ (\text{McTigue, JHD 1981}) \end{array}$ $s + S = \theta \qquad \qquad \begin{array}{l} \text{Boundary layer (not in the FT layer)} \\ su' = \Gamma \qquad \qquad \begin{array}{l} \text{Algebraic energy balance} \end{array}$

 $p = f_1(v, e)T$ Particle pressure (kinetic theory)

$$s + S = f_{2}(v, e)T^{1/2}u' + \frac{1 - v}{\sigma}l_{m}^{2}u'^{2}$$

Shear stress (kinetic theory+turbulence) Nonlocal mixing length

15

 $\Gamma = \frac{f_3(\nu, e)}{L} T^{3/2}$

Dissipation rate (kinetic theory)

Comparisons with experiments

0.18 mm glass spheres in water (Matousek et al., JHH 2013)

0.37 mm sand in water (Matousek, JHE 2009)

POLITECNICO DI MILANO

16

Comparisons with experiments

0.37 mm sand in water (Matousek, JHE 2009)

0.3 and 0.56 mm sand in water (Pugh and Wilson, JHE 1999)

POLITECNICO DI MILANO

D. Berzi

Limits

18

 \longrightarrow

Boundary between bedload and collisional suspension

h=1

 $h=\Delta$

Boundary between collisional and turbulent-collisional suspensions

Boundary between turbulentcollisional and fully turbulent suspensions

Regime map 1

19

Inclined, collisional suspension

Steady, inclined, collisional sediment transport over an erodible bed in a turbulent fluid (Berzi and Fraccarollo, PHF 2013)

Governing Equations

 $\Gamma = \frac{f_3(v,e)}{T^{3/2}}$

 $p' = -v \cos \phi$ Particle y-momentum balance $s' + S' = -\frac{1 - v + \sigma v}{\sigma - 1} \sin \phi$ x-momentum balance $su' = \Gamma$ Algebraic energy balance

 $p = f_1(v, e)T$ Particle pressure (kinetic theory)

 $s = f_2(v, e)T^{1/2}u'$ Particle shear stress (kinetic theory)

Comparisons with experiments

3.35 mm plastic beads in water, $\phi=0.5 \div 4.5^{\circ}$ (Capart and Fraccarollo, GRL 2011)

22

POLITECNICO DI MILANO

Limits

23

 \rightarrow

Boundary between bedload and collisional suspension

Boundary between collisional and turbulent-collisional suspensions

h=1

Boundary with debris flows

D. Berzi

POLITECNICO DI MILANO

Regime map 2

24

POLITECNICO DI MILANO

Non-uniform 2 to 10 mm gravel in water (Smart, JHE 1984)

25

Collisional suspensions: local quantities

Berzi and Fraccarollo, PRL 2015

Profiles of solid volume fraction v, mean particle velocity u and granular temperature T (intensity of velocity fluctuations)

Plastic cylinders and water (Capart and Fraccarollo, GRL 2011)

D. Berzi

POLITECNICO DI MILANO

Particle pressure and mixture shear stress

27

Integrating the momentum balances

$$p' = -\left(\rho_p - \rho_f\right) v g \cos \phi$$
$$(s + S)' = -\left[\rho_p v - \rho_f\left(1 - v\right)\right] g \sin \phi$$

POLITECNICO DI MILANO

Kinetic theory of dry granular gases

28

e.g., Garzo and Dufty, PRE 1999

$$\frac{p}{\rho_p T} = 4\nu^2 g_0 \left(\frac{1}{4\nu g_0} + \frac{1+e}{2} \right)$$
$$s = \rho_p \frac{8J\nu^2 g_0}{5\pi^{1/2}} dT^{1/2} u'$$

g₀ radial distribution function at contact; **e** coefficient of collisional restitution

Still valid for suspensions?

10² 0 ° 9000000 0 10⁰ $p/(\rho_p^T)$ 800 B 10⁻² • 0.2 0.0 0.4 0.6 ν

Particle pressure scales with granular temperature! (solid line when g_0 is given by Torquato, PRE 1995)

29

Fluid shear stress and viscosity

Hence, we can assume that also the particle shear stress is given by Kinetic Theory

$$\frac{s}{u'} = \rho_p \frac{8Jv^2 g_0}{5\pi^{1/2}} dT^{1/2}$$

<u>**s+S**</u> (from integrating momentum balance) – <u>**s**</u> (from constitutive relation of KT) = <u>**S**</u> (fluid shear stress)

$$\eta = \frac{S}{u'}$$
 Effective fluid shear viscosity

D. Berzi

Origin of effective fluid viscosity

Three components to the fluid viscosity

$$\eta = \eta_{visc} + \eta_{turb} + \eta_{gran}$$

$$\eta_{visc} = \left[1 + \frac{5}{2}\nu\left(1 - \frac{\nu}{\nu_m}\right)^{-1}\right]\eta_{mol}$$
viscous (Boyer et

viscous hydrodynamic component (Boyer et al, PRI 2011): negligible here

turbulent hydrodynamic component: mixing length approach

$$\eta_{turb} = \rho_f \left(1 - \nu\right) l_m^2 u'$$

$$\eta_{gran} = \rho_f \frac{1+2\nu}{2(1-\nu)} \frac{8J\nu^2 g_0}{5\pi^{1/2}} dT^{1/2}$$

granularlike component: portion of fluid stuck with the particle and fluctuates with it (added mass, Lamb 1932)

Granularlike viscosity

$$\eta_{gran} = \rho_f \frac{1+2\nu}{2(1-\nu)} \frac{8J\nu^2 g_0}{5\pi^{1/2}} dT^{1/2}$$

POLITECNICO DI MILANO

D. Berzi

Turbulent mixing length

33

Turbulence is local: it depends on the local value of the volume fraction; the interparticle distance limits the size of turbulent eddies

GRANULAR LIMIT High volume fraction

Fluctuation energy production due to particle shear stress balanced by collisional dissipation (Jenkins and Berzi, Granul. Matt. 2010)

$$\frac{T}{d^2 {u'}^2} = \frac{2J}{15(1-e^2)}$$

TURBULENT LIMIT Low volume fraction

D. Berzi

Fluctuation energy production due to turbulent eddies balanced by dissipation due to drag (Hsu et al., Proc. R. Soc. A 2004)

Granular temperature proportional to the square of the fluid shear velocity $T \propto S / \left[\rho_f (1 - v) \right]$

$$\frac{T}{d^2 u'^2} = 3.5 \left(\frac{l_m}{d}\right)^2$$

POLITECNICO DI MILANO

Granular temperature

GRANULAR

Fluid shear viscosity

Minimum in the viscosity (also in Revil-Baudard et al., JFM 2015)

D. Berzi

POLITECNICO DI MILANO

Conclusions

• Two components of effective fluid viscosity in collisional suspensions

- Turbulence originates at the surface of the particles
- Local mixing length: bounded by interparticle distance and decreasing with volume fraction
- Momentum tranfer due to added mass in conjugate motion with the fluctuating particles
- Granularlike viscosity given by kinetic theory using density of added mass
- Scaling of the granular temperature in the granular and turbulent limits
- Transition to non-local turbulence in turbulent-collisional suspensions?