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composed	by	the	flow	and	by	the	bed	(the	container).
Ø A	variety	of	flow-bed	configurations	are	observed,	which	

correspond	to	different	regimes	in	the	space	of	physical	
parameters.

Ø Bifurcation	Theory	provides	a	mathematical	tool	to	determine	
the	regions	of	the	parameter	space	characteristic	of	each	
regime	and	the	corresponding	shape	of	the	bedform.

Ø The	stability	of	a	Base	State	is	studied	with	respect	to	
perturbations	of	the	flow	and	the	bed.	Here,	the	Base	State	is	
represented	by	a	steady	uniform	flow	in	an	infinitely	wide	
channel	with	active	sediment	transport.

Ø Bifurcations	is	the	process	whereby	a	new	solution	takes	over	
(bifurcates)	as	the	boundary	of	a	stable	region	in	the	
parameter	space	is	crossed.
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Flow	and	Sediment	Transport	
Models



• 2D	SHALLOW	WATER FLOW	MODEL

• EMPIRICAL	CLOSURE	FOR	BED	SHEAR	STRESS	(Chézy conductance	coefficient)

• EQUILIBRIUM	MODEL	(Exner)

• BEDLOAD	ONLY	(MPM	bedload	function)

• CORRECTIONS	FOR	SEDIMENT	WEIGHT	(x	– Fredsøe,	y	– Engelund)

FLOW	MODEL

SEDIMENT	TRANSPORT	MODEL
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2D	SW	EQUATIONS	+	CONTINUITY		(dimensionless	with	𝝆,𝑼𝟎∗ ,𝑫𝟎∗)
𝐷𝑈,* + 𝐷𝑈𝑈,, + 𝐷𝑉𝑈,. =

𝑆𝐷
𝐹𝑟3

−
𝐷
𝐹𝑟3

𝐵 + 𝐷 ,, − 𝑇,7 + 𝑇,,8 − 𝑇,,9 𝐷 ,, + 𝑇,.8 − 𝑇,.9 𝐷
,.

𝐷𝑉,* + 𝐷𝑈𝑉,, +𝐷𝑉𝑉,. = 											−
𝐷
𝐹𝑟3

𝐵 + 𝐷 ,. − 𝑇.7+ 𝑇,.8 − 𝑇,.9 𝐷
,,
+ 𝑇..8 − 𝑇..9 𝐷

,.

𝐷,* + 𝑈𝐷,, + 𝑉𝐷,. +𝐷𝑈,, +𝐷𝑈,. = 0

DEPTH-AVERAGING	PROCEDURE	

𝑈 = ; 𝑢𝑑𝜁
?

@
									𝑉 = ; 𝑣𝑑𝜁

?

@

𝜁 =
𝑧 − 𝐵
𝐷

𝑇,,8 = ; 𝜏,,𝑑𝜁
?

@
																								𝑇,.8 = ; 𝜏,.𝑑𝜁																																						

?

@
𝑇..8 = ; 𝜏..𝑑𝜁

?

@

𝑇,7 = 𝜏,D EF@									𝑇.7 = 𝜏.D EF@

𝑇,,9 = ; 𝑢− 𝑈 3𝑑𝜁
?

@
													𝑇,.9 = ; 𝑢 −𝑈 𝑣 −𝑉 𝑑𝜁

?

@
															𝑇..9 = ; 𝑣− 𝑉 3𝑑𝜁

?

@
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𝑧

𝑢 =
𝑈
𝜅𝐶 ln

𝜁 + 𝜁@
𝜁@

𝑧 = 𝐵@ = 𝜁@
𝑧 = 0

𝜈L = 𝜅𝐷
𝑈
𝐶 𝜁 + 𝜁@ 1 − 𝜁

𝐶 =
1
𝜅 ln

11.09
𝑘

𝑈 = ; 𝑢𝑑𝜁
?

@
																				𝜁@ = exp −𝜅𝐶 − 1 = 	

𝑘
30 =

2.5𝑑
30 =

𝑑
12

𝜁 = 0

𝜁 =
𝑧 − 𝐵
𝐷
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𝑇,7 = 𝜏,D EF@ = 𝜈L𝑢,D EF@
=
𝑈3

𝐶3

𝜁 = 0

𝜁 =
𝑧 − 𝐵
𝐷

	𝑇,,8 = ; 𝜏,,𝑑𝜁
?

@
=
2𝑁𝐷𝑈𝑈,,

𝐶3 																	𝑁 =
1
6 𝜅𝐶 +

1
6

𝑇,,9 = ; 𝑢 −𝑈 3𝑑𝜁
?

@
= 	

𝑈3

𝜅3𝐶3

Fl
ow

	a
nd

	se
di
m
en

tt
ra
ns
po

rt
m
od

el



2D	SW	EQUATIONS	+	CONTINUITY		(dimensionless	with	𝝆,𝑼𝟎∗ ,𝑫𝟎∗)

𝐷,* + 𝑈𝐷,, + 𝑉𝐷,. +𝐷𝑈,, +𝐷𝑈,. = 0

DEPTH-AVERAGING	PROCEDURE	

𝑇,,8 =
2𝑁𝐷𝒰𝑈,,

𝐶3
															𝑇,.8 =

𝑁𝐷𝒰 𝑈,. + 𝑉,,
𝐶3

																		𝑇..8 =
2𝑁𝐷𝒰𝑉,.

𝐶3

𝑇,7 =
𝒰𝑈
𝐶3

																												𝑇.7 =
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𝑇,,9 =
𝑈3

𝜅3𝐶3
																								𝑇,.9 =

𝑈𝑉
𝜅3𝐶3

																																						𝑇..9 =
𝑉3

𝜅3𝐶3

Fl
ow

	a
nd

	se
di
m
en

tt
ra
ns
po

rt
m
od

el

𝐷𝑈,* + 𝐷𝑈𝑈,, + 𝐷𝑉𝑈,. =
𝑆𝐷
𝐹𝑟3

−
𝐷
𝐹𝑟3

𝐵 + 𝐷 ,, − 𝑇,7 + 𝑇,,8 − 𝑇,,9 𝐷 ,, + 𝑇,.8 − 𝑇,.9 𝐷
,.

𝐷𝑉,* + 𝐷𝑈𝑉,, +𝐷𝑉𝑉,. = 											−
𝐷
𝐹𝑟3

𝐵 + 𝐷 ,. − 𝑇.7+ 𝑇,.8 − 𝑇,.9 𝐷
,,
+ 𝑇..8 − 𝑇..9 𝐷

,.



2D	SW	EQUATIONS	+	CONTINUITY		(dimensionless	with	𝝆,𝑼𝟎∗ ,𝑫𝟎∗)

𝐷,* + 𝑈𝐷,, + 𝑉𝐷,. +𝐷𝑈,, +𝐷𝑈,. = 0

DEPTH-AVERAGING	PROCEDURE	

𝑇,,8 =
2𝑁𝐷𝒰𝑈,,

𝐶3
															𝑇,.8 =

𝑁𝐷𝒰 𝑈,. + 𝑉,,
𝐶3

																		𝑇..8 =
2𝑁𝐷𝒰𝑉,.

𝐶3

𝑇,7 =
𝒰𝑈
𝐶3

																												𝑇.7 =
𝒰𝑉
𝐶3

																									𝒰 = 𝑈3+ 𝑉3					

𝑇,,9 =
𝑈3

𝜅3𝐶3
																								𝑇,.9 =

𝑈𝑉
𝜅3𝐶3

																																						𝑇..9 =
𝑉3

𝜅3𝐶3

Fl
ow

	a
nd

	se
di
m
en

tt
ra
ns
po

rt
m
od

el

𝐷𝑈,* + 𝐷𝑈𝑈,, + 𝐷𝑉𝑈,. =
𝑆𝐷
𝐹𝑟3

−
𝐷
𝐹𝑟3

𝐵 + 𝐷 ,, − 𝑇,7 + 𝑇,,8 − 𝑇,,9 𝐷 ,, + 𝑇,.8 − 𝑇,.9 𝐷
,.

𝐷𝑉,* + 𝐷𝑈𝑉,, +𝐷𝑉𝑉,. = 											−
𝐷
𝐹𝑟3

𝐵 + 𝐷 ,. − 𝑇.7+ 𝑇,.8 − 𝑇,.9 𝐷
,,
+ 𝑇..8 − 𝑇..9 𝐷

,.



2D	SW	EQUATIONS	+	CONTINUITY		(dimensionless	with	𝝆,𝑼𝟎∗ ,𝑫𝟎∗)
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2D	SEDIMENT	CONTINUITY	(Exner)	

𝜙,, 𝜙. = Φ cos𝛿 , sin 𝛿 															sin 𝛿 =
𝑇.7

𝐶3
−
𝜇.
𝜗
𝐵,.																Φ = 𝐴 𝜗 − 𝜗d

e
3	

𝐵,* + 𝒬 𝜙,,, + 𝜙.,. = 0																																									𝒬 =
𝑠 − 1 𝑔𝑑∗e

𝑈@∗𝐷@∗(1 − 𝑝)
	=

𝑠 − 1 𝑑e

𝐹𝑟(1 − 𝑝)
	

CORRECTIONS	FOR	SEDIMENT	WEIGHT	(x	– Fredsøe,	y	– Engelund)

𝜗 − 𝜗l =
𝒰3𝐹𝑟3

𝑠 − 1 𝑑𝐶3
− 𝜗dm − 𝜇. 𝑆− 𝐵,, 	
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Expansions,	Interactions	&	
Cascade	processes



𝐸o = exp 𝑖𝑝𝑘, 𝑥 −𝜔𝑡 + 𝑖𝑝𝑘.𝑦
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𝐺?? = 𝑔?? exp 𝑖𝑘, 𝑥 − 𝜔𝑡 + 𝑖𝑘.𝑦

𝐷@𝑈??,* +𝐷??𝑈@,* +𝐷@𝑈@𝑈??,, + 𝐷@𝑈??𝑈@,, +𝐷??𝑈@𝑈@,, + 𝐷@𝑉@𝑈??,. + 𝐷@𝑉??𝑈@,. + 𝐷??𝑉@𝑈@,.

−𝑖𝑘,𝜔𝑢??																					+ 𝑖𝑘,𝑢??



• LINEAR	LEVEL:	algebraic	eigenvalue	problem

𝐺ox = 𝑔ox exp 𝑖𝑝𝑘, 𝑥 − 𝜔𝑡 + 𝑖𝑞𝑘.𝑦
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𝑨?? − 𝑘,𝜔𝑰 | 𝒙?? = 0

𝑨?? = 	

𝑎?? 𝑎?3
𝑎3? 𝑎33

𝑎?e 𝑘, 𝐹𝑟3⁄
𝑘. 𝐹𝑟3⁄ 𝑘. 𝐹𝑟3⁄

𝑘, 𝑘.
𝛾𝑎�? 𝛾𝑘.

𝑘, 0
0 							𝛾𝑎��

𝒙?? = 	

𝑢??
𝑣??
𝑑??
𝑏??

where:
𝛾 = 𝒬Φ@ ≪ 1

and		𝑎�� depend	on	the	wavenumbers	and	on	base	flow	quantities
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det 𝑨?? − 𝑘,𝜔𝑰 = 0

det	

𝑎?? − 𝑘,𝜔 𝑎?3
𝑎3? 𝑎33 − 𝑘,𝜔

𝑎?e								 𝑘, 𝐹𝑟3⁄
𝑘. 𝐹𝑟3										⁄ 𝑘. 𝐹𝑟3⁄

𝑘, 														𝑘.
𝛾𝑎�? 															𝛾𝑘.

			𝑘,−𝑘,𝜔 			0
		0 			𝛾𝑎�� − 𝑘,𝜔

= 0

which	provides	a	quartic	polynomial:	 FOUR eigenvalues,	three	for	the	flow,	 one	
for	the	bed;



• LINEAR	LEVEL:	algebraic	eigenvalue	problem

𝐺ox = 𝑔ox exp 𝑖𝑝𝑘, 𝑥 − 𝜔𝑡 + 𝑖𝑞𝑘.𝑦
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det 𝑨?? − 𝑘,𝜔𝑰 = 0

det	

𝑎?? 𝑎?3
𝑎3? 𝑎33

𝑎?e			 𝑘, 𝐹𝑟3⁄
𝑘. 𝐹𝑟3	⁄ 𝑘. 𝐹𝑟3⁄

𝑘, 𝑘.
𝛾𝑎�? 	𝛾𝑘.

	𝑘, 0
		0 			𝛾𝑎�� − 𝑘,𝜔

= 0

which	provides	a	quartic	polynomial:	 FOUR eigenvalues,	three	for	the	flow,	 one	
for	the	bed;
if	the	quasi-steady	hypothesis	 is	made	(no	time	derivatives	in	flow	equations):	
ONE eigenvalue	for	the	bed;	

𝑘,𝜔 = 𝛾 𝑎�?𝑢�?? + 𝑘.𝑣�?? + 𝑎��



• LINEAR	LEVEL:	algebraic	eigenvalue	problem

𝐺ox = 𝑔ox exp 𝑖𝑝𝑘, 𝑥 − 𝜔𝑡 + 𝑖𝑞𝑘.𝑦
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where	𝑢�?? and	𝑣�??are	solutions	 of	the	linear	nonhomogeneous	 reduced	algebraic	
system:

𝑘,𝜔 = 𝛾 𝑎�?𝑢�?? + 𝑘.𝑣�?? + 𝑎��

𝑎?? 𝑎?3 𝑎?e
𝑎3? 𝑎33 𝑘. 𝐹𝑟3⁄
𝑘, 𝑘. 𝑘,

|
𝑢�??
𝑣�??
𝑑�??

= −
𝑘, 𝐹𝑟3⁄
𝑘. 𝐹𝑟3⁄

0
Obtained	from	the	previous	eigensystem by	eliminating	 the	last	row	(Exner equation)	
and	by	moving	 the	last	column	 (proportional	 to	𝑏??)	to	the	right	hand	side.	
The	solution	 of	this	system	provides	 the	flow	response	to	a	bed	perturbation	 of	unitary	
amplitude.



• LINEAR	LEVEL:	algebraic	eigenvalue	problem

Ω = Ω 𝑘,, 𝑘.; 𝐹𝑟, 𝐶 Ω = Ω 𝜆,𝛽; 𝜗, 𝑑

DUNE	FLAVOUR BAR	FLAVOUR

𝜆 =
2𝜋𝑊�

∗

𝐿,∗
= 𝑘, 𝛽			 			𝛽 =

𝑊�
∗
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𝐶 =
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𝜅 ln

11.09
2.5𝑑𝜗 ≅ 0.14

𝐹𝑟3𝑒 d

𝐶3

𝐺ox = 𝑔ox exp 𝑖𝑝𝑘, 𝑥 − 𝜔𝑡 + 𝑖𝑞𝑘.𝑦
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Ω = 𝑘,𝜔� = 𝛾 𝐴@𝑘,
𝑇¡,??7�

𝑇,@7
− 𝑘,

𝜇,
𝜗@

+ 𝑘.
𝑇¡.??7�

𝑇,@7
− 𝑘.

𝜇.
𝜗@

StabilizingDestabilizing



𝜆

𝛽

• LINEAR	LEVEL:	algebraic	eigenvalue	problem

Critical	conditions	- 𝜆d, 𝛽d 	

𝐺 𝑥, 𝑦, 𝑡 = 𝐺@ + 𝜀𝑔? exp 𝑖𝑘, 𝑥 − 𝜔𝑡 + 𝑖𝑘.𝑦 + Ω𝑡 + 𝑐. 𝑐.

Resonant conditions	- 𝜆8, 𝛽8 	

Ω = Ω 𝜆,𝛽; 𝜗, 𝐶 𝜆 =
2𝜋𝑊�

∗

𝐿,∗
= 𝑘, 𝛽 𝛽 =

𝑊�
∗

𝐷∗ =
𝜋
2𝑘.

𝛽d

𝜆d

𝛽 > 𝛽d 𝜗,𝐶

Alternate	Bars	do	not	form	in	a	
narrow	channel
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𝐹𝑟 = 1 𝑑 = 0.025
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WAVELENGTH	OF	MAXIMUM	AMPLIFICATION	



𝜆

𝛽

• LINEAR	LEVEL:	algebraic	eigenvalue	problem
Ω = Ω 𝜆, 𝛽, 𝜗,𝑑 Critical	conditions	- 𝑘d, 𝐹𝑟d 	
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𝛽d

𝜆d

𝛽 > 𝛽d 𝜗,𝐶

𝛽d represents	the	bifurcation	
point:	Alternate	Bars	do	not	
form	below	critical	conditions

𝐺 𝑥, 𝑦, 𝑡 = 𝐺@ + 𝜀𝑔? exp 𝑖𝑘, 𝑥 − 𝜔𝑡 + 𝑖𝑘.𝑦 + Ω𝑡 + 𝑐. 𝑐.



• LINEAR	LEVEL:	differential	eigenvalue	problem

𝐺 𝑥, 𝑧, 𝑡 = 𝐺@ 𝑧 + 𝜀𝑔? 𝑧 exp 𝑖𝑘 𝑥 − 𝜔𝑡 + Ω𝑡 + 𝑐. 𝑐.

Ω = Ω 𝑘, 𝐹𝑟, 𝐶 Critical	conditions	- 𝑘d, 𝐹𝑟d 	
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There	are	several	critical	values	𝐹𝑟d that	represent	different	bifurcation	
points	for	Dunes,	Antidunes and	Roll	Waves



WNL Analysis
Ø WNL	analysis	provides	a	tool	to	investigate	the	neighbourhood	 of	the	

critical	points;

Ø The	perturbation	parameter	is	expanded	as	𝛽 = 𝛽d 1 + 𝜀3 ;

Ø A	slow time	scale	𝑇 = 𝜀3𝑡	is	introduced;	
Ø The	amplitude	of	the	perturbation	evolves	on	the	slow	time	scale	due	to	

the	fact	that	we	slightly	exceed	the	bifurcation	point,	where	the	growth	
rate	of	the	perturbation	vanishes;
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𝒜𝒜∗ 𝑔3@𝐸@ 𝒜3 𝑔33𝐸3 𝒜∗3 𝑔33∗ 𝐸w3	
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𝐸o = exp 𝑖𝑝𝑘, 𝑥 −𝜔𝑡 + 𝑖𝑝𝑘.𝑦
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Secular	terms



Nonlinearity	gives	rise	to	interactions	between	the	fundamental	and	itself	
which	lead	to	the	generation	of	higher	harmonics	both	 in	the	longitudinal	
and	in	the	transverse	directions.	Following	 this		cascade	process	one	finds	
that	the	fundamental	 is	reproduced	at	third	order,	which	leads	to	the	
generation	of	 secular	terms.	

In	order	 to	prevent	their	occurrence	the	slow time	dependence	of	 the	
amplitude	of	the	fundamental	must	also	be	forced	to	produce	a	
contribution	 at	third	order.	

This	provides	a	solvability	condition	 that	yields	the	Landau-Stuart
amplitude	equation

WNL	Analysis:	Landau-Stuart	

𝑑𝒜
𝑑𝑇 = 𝛼?𝒜 + 𝛼3𝒜3𝒜∗



WNL	Analysis:	Landau-Stuart	
𝑑𝒜
𝑑𝑇 = 𝛼?𝒜 + 𝛼3𝒜3𝒜∗

𝑑 𝒜 3

𝑑𝑇 = 2𝛼?§ 𝒜 3+ 2𝛼3§ 𝒜 �

𝛼?§ is	always	positive	 (related	to	the	fact	that	the	growth	 rate	increases	as	𝛽 > 𝛽d;
If		𝛼3§ is	negative	the	bifurcation	is	supercritical;
If		𝛼3§ is	positive	the	bifurcation	is	subcritical;



WNL	Analysis:	Landau-Stuart	
𝑑 𝒜 3

𝑑𝑇 = 2𝛼?§ 𝒜 3+ 2𝛼3§ 𝒜 � = 0

𝒜¨
3 = −

𝛼?§

𝛼3§
𝛼?§ is	always	positive	 (related	to	the	fact	that	the	growth	 rate	increases	as	𝛽 > 𝛽d;
If		𝛼3§ is	negative	the	bifurcation	is	supercritical;
If		𝛼3§ is	positive	the	bifurcation	is	subcritical;
An	equilibrium	 amplitude	 is	reached	only	if	the	bifurcation	is	supercritical
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DUNES: EQUILIBRIUM SOLUTION
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BARS: EQUILIBRIUM SOLUTION

Finite-amplitude alternate bars 229 
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FIGURE 8. The maximum scour qM calculated for the values of ( 9 , d , )  corresponding to the 
experiments referred to in figure 5 is plotted versus the maximum bar height HBM. The average 
dependence detected by Ikeda (1982) is represented by the solid line. 

FIGURE 9. An overall prospectic view of bed topography of alternate bars as predicted by the 
present model accurate to O(E). 

to emerge, namely the formation of diagonal fronts and the increased steepness of 
the bottom downstream of the fronts. It may help the reader to present the values 
attained by the amplitudes of each second-order harmonic for the bottom elevation 
in the case plotted in figure 9: we find 

1AeI2 (Ch22-d2.J = (7.66 x lo-', 0.24), IAe12 (e hzo-d20) = (0.15) 
I A , ~  ( p O 2 - d o 2 )  = (7.81 x 10-4,8.76 x 10-4). 



Invitation	to	river	stability	phenomena
Gary	Parker
Summer	school	on	stability	of	river	and	coastal	forms	– Perugia,	 Italy	September	3-14,	1990	

Leave nature to its devices and it composes its own poetry. Simple rules 
interact to give rise to a hierarchy of structures, each nevertheless 
possessing, manifest or hidden, an internal symmetry that reveals itself to 
that part of the human mind capable of recognizing beauty. To be a scientist 
is to listen to the song of nature. To experience the instant when a mist of 
dissonance lifts to reveal the harmony of a heretofore unexplained 
phenomenon is to watch the sun rise on a clear day from the top of a 
mountain.


