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Abstract

The reaction path is a central subject in theoretical chemistry. It
is a pathway imagined on the potential energy surface (PES). It
provides a one-dimensional description of a chemical reaction in
an N-dimensional configuration space. There are a variety of
reaction path models. Each type of reaction path has
advantages and inconvenients in the description of the process.
We present the variational nature of the most widely used
models, namely, Intrinsic Reaction Coordinate, Newton
Trajectory, Gradient Extremal, and Gentles Ascent Dymanic

Path. Extensions of the Reaction Path model is also discussed.
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1.- The Reaction Path Model.



The Reaction Path Model.
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A comparison between the Reaction Path described by the Intrinsic Reaction
Coordinate and a representative, long exact classical trajectories. From a
physical point of view any Reaction Path (RP) can be seen as if one envisions
a large cloud of classical trajectories evolving on the PES. Very often the
average trajectory is going to be close to the curve selected for the RP. This
is the physical meaning of the Reaction Path Model. (J. Gonzalez, X.
Giménez, J. M. Bofill, Phys. Chem. Chem. Phys. 4, 2921 (2002))



The Reaction Path Model.

The model of Reaction Path: R.A. Marcus, J. Chem. Phys. 49, 2610, 2617
(1968) and K. Fukui, J. Phys. Chem. 74, 4161 (1970).
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There is different type of curves satisfying the definition of Reaction
Path.

Brief and incomplete chronology of the most widely used curves:

The Steepest Descent Curve (Intrinsic Reaction Coordinate)
K. Fukui, J. Phys. Chem. 74, 4161 (1970)

Gradient Extremal
J. Pancir, Collect. Czech. Chem. Commun. 40, 1112 (1975)
M. V. Basilevsky, A. G. Shamov, Chem. Phys. 60, 347 (1981)

Newton Trajectory (Distinguished Reaction Coordinate)

M. J. Rothman, L. L. Lohr, Chem. Phys. Lett. 70, 405 (1980);

W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comput. Chem. 19, 1087 (1998);

J. M. Anglada, E. Besalu, J. M. Bofill, R. Crehuet, J. Comput. Chem. 22, 387 (2001)

Gentlest Ascent Dynamics

W. E, X. Zhou, Nonlinearity 24, 1831 (2011); J. M. Bofill, W. Quapp, M. Caballero,
Chem. Phys. Lett. 583, 203 (2013)



2.- a) Variational Nature of the Intrinsic Reaction Coordinate
(Steepest Descent Path ).



Variational Nature of Steepest Descent (Intrinsic Reaction Coordinate) Path.
The Intrinsic Reaction Coordinate is the path that follows a gradient curve.

It is also known as Steepest Descent (SD) or Ascent curve (SA).
Introduced by: K. Fukui, J. Phys. Chem. 74, 4161 (1970).

Mathematically is characterized by: tangent curve = t(x)=dx/dt = VXV(X)

Miiller-Brown Potential Energy Surface (PES) _
- On a PES there exists a field of

gradients.

- Except for sationary points, at each
point of the PES only a Steepest

Descent or Steepest Ascent passes
through this point.

- The Intrinic Reaction Coordinate is
the only Steepest Descent or
Steepest Ascent connecting two
minimae through a first order saddle
point (Transition State).

X | T~ The set of vectors indicates
Intrinsic Reaction Coordinate Path the Gradient field




Variational Nature of Steepest Descent (Intrinsic Reaction Coordinate) Path.

A. Tachibana and K. Fukui, Theor. Chim. Acta 57, 81 (1980); K. Fukui, Int. J.
Quantum Chem., Quantum Chem. Symp. 15, 633 (1981).

R. Crehuet, J.M. Bofill, J. Chem. Phys. 122, 234105 (2005).
Using the Theory of Calculus of Variations.

t
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Arc length: d
We take (q,, t' = 0) as 9 >

fixed inital point and

(q, t' = t) as variable Gradient norm: G(q)=(9'(q)g(q)).
end point. Speed Law. Where, g(q), is the gradient vector

of the Potential Energy Surface.
The tangent of the path q(t) that Evaluating the integral , /;,..(d) through the

extremalizes the above variational Steepest Ascent curve, we obtain,
integral, /,,.,(a),is:  da/dt=g(q). Iwsq(d) = V(a,) — V(q,,).
Conclusion: the extremal curve is a

Steepest Descent/ Ascent. At the point (q,, t' = t):

dl\.-,(a)/dt = dV/dt = g'(q)dq/dt=g’(q)g(q),
a total differential form.




Variational Nature of Steepest Descent (Intrinsic Reaction Coordinate) Path.

Impact: a Steepest Ascent or Steepest Descent curve, starts at the point q,,,
propagates through the PES according to the speed law or continuous slowness
model, (G(q))?, arrives at the point d, traveling with the extremal (least)
potential energy variation, /,..(q) = V(q,) - V(q,,). (Fermat Variational
Principle).

Hamilton-Jacobi equation. At the variable end point (q,, t’" = t) we have di,
»¢(a) = dV and from this we derive the Eikonal equation

d/d
(V) (V) i
Speed law G =1 where V, = :
(Gradient Norm) . (q)

d/0q,

Let V(q) a solution of the above equation, then the Steepest Ascent/Descent
curves (extremal curves) transverse the family of equipotential energy surfaces
V(q) = v = constant.

The construction of solutions of the eiconal equation as a set of equipotential
energy surfaces is similar to the Fermat—Huyghens principle for the
construction of wave fronts.

J.M. Bofill, W. Quapp, M. Caballero, J. Chem. Theory Comput. 8, 4856 (2012)




Variational Nature of Steepest Descent (Intrinsic Reaction Coordinate) Path.

Dashed curves are Steepest Ascent/Descent curves
emerging from the minimum located at (0,0). Thin curves,
equipotential energy curves, (V(q) = v = constant) solution

A\ .. of Eikonal equation.
\5 Steepest Ascent/Descent curves (extremal curve).

—» Family of equipotential energy curves, V(q) = v.

R

dq
E - “The like Hamilton canonical
Canonical equations of SA curves: < J equations for the SA extremal curves.”
8
e VqG(q)
| dt

These equations are the basis of many algorithms to compute the Steepest
Ascent/Descent (Intrinsic Reaction Coordinate) reaction path, see e.g. the
review: H. B. Schlegel, J. Comput. Chem. 24, 1514 (2003). One of the most widely
used algorithm to integrate these curves: G. Henkelman, B. P. Uberuaga, and H.
Jonsson, J. Chem. Phys. 113, 9901 (2000).



Variational Nature of Steepest Descent (Intrinsic Reaction Coordinate) Path.

Second order variations. We compare the value of the basic integral, /,, ..(q),
evaluated through an arbitrary curve (AC) and that evaluated through the
Steepest Ascent curve both joining the same initial and final points, namely,
(ay, t'=0) and (q,, t’" = t).

Iy, (ch) —1y., (qSA) =

f JG (@) (da /dr') (dq,/dt')dr'- f JG (a5 )\(day, /dr) (dag, /') dr

Computed through the Arbitrary Curve (AC) that joints the points Computed through the Steepest Ascent Curve (SA) that joints the points
M and q. M and q.

This difference between integrals is the Weierstrass E-function or Error Function, that
in the present case is always positive. The Weierstrass E-function is related with the
second or higher order variation of the tangent argument, dq/dt. The Steepest Ascent
(Descent) curves make positive the Error Function. Nevertheless, this is a necessary
condition but not sufficient to ensure that any Steepest Ascent (Descent) curve
minimizes the functional integral /,, . (q). The sufficient condition is satisfied if and
only if the Steepest Ascent (Descent) curve joining two consecutive minimae does not
contain a point that is second of higher order saddle point. These points are conjugate
points of the starting minima. The Intrinsic Reaction Coordiante Path is the

unique Steepest Descent curve of character minimum.




Variational Nature of Steepest Descent (Intrinsic Reaction Coordinate) Path.

The second order variation: R. Crehuet, J.M. Bofill, . Chem. Phys. 122, 234105
(2005); A. Aguilar-Mogas, R. Crehuet, X. Giménez, J. M. Bofill, Mol. Phys. 105,
2475 (2007); W. Quapp, Theor. Chem. Acc. 121, 227 (2008).
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Conjugate Point: If an extremal curve starting at any point and a second “neighboring”
extremal curve, also starts at the same point, intersects to the first curve in a next
point, then this intersection point is a conjugate point.



Variational Nature of Steepest Descent (Intrinsic Reaction Coordinate) Path.

Applications: Location of an Intrinsic Reaction Coordinate curve between two minima
using the minimization of the Weierstrass E-function:

IM~>q (ch) - IM~>q (qSA) =

, _ , _ Algorithm details: R. Crehuet, J.M. Bofill,
{\/G(ch)\/Mch/dt) (dq,c/dt")dr'~ {\/G(qu)\/(quA/dt) (dqg,/dr")dt J. Chem. PhyS 122’ 234105 (2005)

Computed through the Arbitrary Curve (AC) that joints the points Computed through the Steepest Ascent Curve (SA) that joints the points
and q. M and q.
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The white open dots are the set of 21 points of the
initial guess curve. The dark dots indicate the final
converged position of the 21 points. In this final
position, all points are located in the |Intrinsic
Reaction Coordinate curve.

The dark dots are the set of 21 points of the guess curve. The point R is labeled as 1 and the point P as
21. The bold faced arrows are the gradient vectors of the Weierstrass E-function computed at each
point of the guess curve. See also A.B. Birkholz, H.B. Schlegel, J. Chem. Phys. 143, 244101 (2015).




2.- b) Variational Nature of Newton Trajectory (Distinguished
Coordinate Path).



The Variational Nature of the Newton Trajectory Reaction Path.

The other curve used as Reaction Path is the Distinguished or Driven Coordinate
Path (DC), (M. J. Rothman and L. L. Lohr, Jr., Chem. Phys. Lett. 70, 405 (1980)) or a
more recent version, the so-called Reduced Gradient Following (RGF),(W. Quapp,
M. Hirsch, O. Imig, D. Heidrich, J. Comput. Chem. 19, 1087 (1998), J. M. Anglada,
E. Besald, J. M. Bofill, R. Crehuet, J. Comput. Chem. 22, 387 (2001)) also labeled as
Newton Path or Newton Trajectory (NT) (W. Quapp, M. Hirsch, D. Heidrich,
Theor. Chem. Acc. 100, 285 (1998)).

The Reduced Gradient Following or Newton Trajectory Reaction Path is

characterized by a curve in the PES such that at each point of this curve, the

gradient vector points at a constant direction.

This can be seen in another way, the Reduced Gradient Following curve crosses
the steepest descent curve at each point so that at the same point the tangent
has the same direction as the constant direction of the prescribed Reduced
Gradient Following direction.

The Reduced Gradient Following or Newton Trajectory Reaction Path possesses
other important features largely studied by Hirsch and Quapp (M. Hirsch, W.
Quapp, J. Math. Chem. 36, 307 (2004)) in their studies on the convexity of the PES
region where the reaction path is located.



The Variational Nature of the Newton Trajectory Reaction Path.
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. , , i _ , The Miiller-Brown potential energy
NN surface, E(x,y). Reduced Gradient
Following or Newton Trajectory
solutions (E, = 0 , E) (dashed
curve) and (E,, E,= 0) (bold curve).
They connect the three minima
with the two saddle points. TP
marks one of the turning points of
the Reduced Gradient Following
or Newton Trajectory curve (E, ,
E,=0).
The concept may be
generalized by the challenge
that any selected gradient
direction is fixed
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== - — - — - where r is the selected unit vector
of the search direction.

W.Quapp, M.Hirsch, O.Imig, D.Heidrich, J.Comput.Chem. 19, 1087 (1998).
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The Variational Nature of the Newton Trajectory Reaction Path.

The Reduced Gradient Following approach or Driven Coordinate method
shows an important analogy to the mathematical theory of Branin, the global
Newton method, that is given by the equation:

g(x)

ﬁ =+A (X) g (X) equivalent behavior to =T.

dt 2 (x)

Where A(x) is the adjoint matrix of the Hessian matrix H(x) and g(x) is the
gradient vector all computed at the position x, r is the predefined unit vector.

The “+" option is used for searching stationary points with odd index
(stationary points with an odd number of negative eigenvalues of the
Hessian), where the “-" option searches for stationary points with even index
(minima, or stationary points with an even number of negative eigenvalues of
the Hessian). (W.Quapp, M.Hirsch, D.Heidrich, Theor. Chem. Acc. 100, 285
(1998)).

Limit points: stationary points (g(x) = 0) and points where g(x) # 0 but A(x)
g(x) = 0. In these points the Newton Trajectory or Reduced Gradient
Following curve bifurcates.




The Variational Nature of the Newton Trajectory Reaction Path.

The Reduced Gradient Following curves or that is the same the Newton
Trajectory curves are extremal curves of the integral functional (J. M. Bofill,
W. Quapp, J. Chem. Phys. 134, 074101 (2011))

—T

I()_()=fxxorcV(x X)dx where X = (X, %, X, Xy )

rc?
rc

rc?

and V(X) is the potential energy surface, x (x XT). 0,

The Euler-Lagrange equation is

1
V- V(xrc,x) 0,, because 0V/dx, =0 then V, V X, /HV V X, H Orc

rc+l
This set of equations determines the reaction path function x = x(x,,
implicitly. Oy

The tangent of this curve is:  dx/dx, = A(x)g(x)=A(x)V V(x).

Where the A(x) matrix is the adjoint of the Hessian matrix.




The Variational Nature of the Newton Trajectory Reaction Path.

The extremal curve x = x(x,.) makes the integral I(E) = f?V(x'rc,g)dx'm
a minimum: If the determinant of the Hessian matrix, V.V, V(x)

projected in the subspace orthogonal to r is positive definited at each point
of the curve, det|S"(V,VIV(x))S| ~ >0; S=[s;-s,,]; S'r=0,.,

X=X(x,.)

V(x,y): The Wolfe-Quapp Potential Energy Surface .

||| |oWton Trajectory
BN TS reaction path.
Because &/ > 0 then

—* this rection path is a
MEP (minimum
energy path).

1]

S 3 == j. -"\, ALV lj'
5 Valley )
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NS EP [/ ]}
X 7 / {11l

+—> Valley-ridge border line where,
| det]S"(VVIV(x))8]=0; S=[s,s, ] SE(x)=0,.,

S Equipotential curves
of the PES.
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The Variational Nature of the Newton Trajectory Reaction Path.
V(x y) The Wolfe Quapp Potentlal Energv Surface

Newton Trajectory
curve is not a
reaction path
—»because is not

monotonically
increasing curve
from minimum to
TS.

VaIIey ridge border

dell(nseT [V.Viv(x)]s)=0

Equipotential curves

~of the PES (red curves).

In the turning point the Newton Trajectory curve has dV/dx,. =0

At each point of the valley-ridge border line the determinant of the Hessian
matrix projected in the subspace orthogonal to the gradient is zero. The matrix S
collects the set of linear independent vectors orthogonal to g(x).



The Variational Nature of the Newton Trajectory Reaction Path.

NT

A Newton Trajectory curve starting in @ minimum minimizes the variational
integral /(x) if the curve does not have a Valley Ridged Inflection point otherwise
no statement can be made. In the former situtation the Newton Trajectory locates
a Transition State and the whole curve is located in a walley. The Newton
Trajectory is a Reaction Path with character Minimum Energy Path. (J. M. Bofill, W.
Quapp, J. Chem. Phys. 134, 074101 (2011)).

Newton Trajectories (dx/dt = A(x)g(x)) locate both stationary points, g(x) = 0
and Valley-Ridged-Inflection points A(x)g(x) = 0. It can be used to locate Conical

Intersections. (W. Quapp, J. M. Bofill, M. Caballero, Chem. Phys. Lett. 541, 122
(2012)).




The Variational Nature of the Newton Trajectory Reaction Path.

The Reduced Gradient Following or Newton Trajectory curves open a
cornucopia of insights into the structure/topography of the Potential Eenergy
Surface. To get this we need to test a somehow greater number of Newton
Trajectory curves.

- For applications see e.g., the topography of cyclopropyl radical (W. Quapp,
J.M. Bofill, J. Aguilar-Mogas, Theor. Chem. Acc. 129, 803 (2011); W. Quapp,
J.M. Bofill, J. Math. Chem. 50, 2061 (2012)); ring opening cyclobutene (W.
Quapp, J.M. Bofill, Int. J. Quantum Chem. 115, 1635 (2015)).

- Other applications to chemical reactivity:
M. Hirsch, W. Quapp, J. Mol. Struct. THEOCHEM 683, 1 (2004).

- Newton Trajectories as basis of a Theory for Mechanochemistry and
Catalysis:

W. Quapp, J.M. Bofill, J. Phys. Chem. B 120, 2644 (2016); W. Quapp, J.M.
Bofill, Theor. Chem. Acc. 135, 113 (2016); W. Quapp, J.M. Bofill, . Comput.
Chem. DOI: 10.1002/jcc.24470, (2016); W. Quapp, J.M. Bofill, J. Ribas-Arifo,
Phys. Chem. Chem. Phys. (submitted). Also the lecture of Dr. W. Quapp in this
meeting.



2.- ¢) Variational Nature of Gradient Extremals Path.



The Variational Nature of Gradient Extremals Path.

The curve where at each point the gradient norm is stationary in the equipotential
surface is called Gradient Extremals.

The curve at each point transverses the equipotential
curve V(q) = v. At this point the norm g’(q)g(q) is
stationary with respect to any displacement whitin the
equipotential curve.. 0.4

g'(a)g(q) stationary — .

0.2
with respect to q in the curve V(q)-v=0 — "
0

0.6

J. Pancir, Collect. Czech. Chem. Commun. 40, 1112 (1975); M.V. Basilevsky, A.G. Shamov, Chem.
Phys. 60, 347 (1981); M.V. Basilevsky, Chem. Phys. 67, 337 (1982); D. K. Hoffman, R.S. Nord, K.
Ruedenberg, Theor. Chim. Acta 69, 265 (1986); P. Jgrgensen, H.J.Aa. Jensen, T. Helgaker, Theor.
Chim. Acta 73, 55 (1988); W. Quapp, Theor. Chim. Acta 75, 447 (1989); H.B. Schlegel, Theor.
Chim. Acta 83, 15 (1991); J.-Q. Sun, K. Ruedenberg, J. Chem. Phys. 98, 9707 (1993); K.
Bondensgard, F. Jensen, J.Chem.Phys. 104, 8025 (1996); J.M. Bofill, W. Quapp, M. Caballero, J.
Chem. Theory Comput. 8, 927 (2012). This curve is not widely used due to their
computation cost. Nevertheless, still is very appropriated as Reaction Path and in
the Theory of the Mechanochemistry (W. Quapp, J. M. Bofill, Theor. Chem. Acc. 135,
113 (2016) Dr. W. Quapp in this meeting).



The Variational Nature of Gradient Extremals Path.
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The resulting Euler-Lagrange equation: Hg — Ag where H is the Hessian matrix

and g is the gradient vector at the point g. At each point of a Gradient Extremal curve
this eigenvalue equation is satisfied.




The Variational Nature of Gradient Extremals Path.

The eigenvalue equation, H(q)g(a) = A(q)g(q), determines the Gradient
Extremal (GE) curve, q = q(t), implicitly. We note that in this case the
boundary values, q, = q(t,) and q; = q(t;), cannot be prescribed arbitrarily if
the problem should have a solutlon The tangent curve was first derived by

J.-Q. Sun, K. Ruedenberg, J. Chem. Phys. 98, 9707 (1993):

T
g8’ Fg)+H’ - & THgH aq _,
g'g g'g dt

Third derivative tensor
of the energy.

Using the perturbation theory applied to the eigenvalue equation, Hg = Ag,
as formulated by McWeeny (R. McWeeny, Phys. Rev. 126, 1028 (1961)) can
be derived this tangent curve equation (J. M. Bofill, W. Quapp, M. Caballero,
J. Chem. Theory Comput. 8,927 (2012)).



The Variational Nature of Gradient Extremals Path.

Special points of the Gradient Extremals (GE) curve.

. The points where the matrix in the
I—gg )[<Fg>+H2_g HgH dq=0 brakets is not invertible are Turning
g'g dt Points or Bifurcation Points of the

Gradient Extremals curve.

Bifurcation Point

K. Bondensgard, F. Jensen, J. Chem. Phys.
104, 8025 (1996); J. M. Bofill, W. Quapp,
and M. Caballero, J. Chem. Theory
Comput. 8,927 (2012)

Turning Point

GE: Gradient Extremals curve



The Variational Nature of Gradient Extremals Path.

The Extremal Sufficient Conditions. Conditioned by the existence of
Conjugate Points in the Gradient Extremal Curves.

Necessary condition, the stationary condition: Hg =Ag.

Sufficient condition, the second variation: &/(q) > 0 minimum (&/(q) < 0 maximum).

6°1(q,p)= ft:pT [<Fg> +H” - )LH]pdt = t:pTCp dt

Where p’g = 0 and p(t,) = 0. If det (C) > 0 along the interval t, <t < t’ then the
Gradient Extremals curve minimizes the variational integral, /(q), otherwise
maximizes /I(q).

If the Gradient Extremals curve from t, to t; the det (C) > 0, but at t, the det (C) = 0 and
from this point until t’ the det (C) < 0 then the Gradient Extremals curve loses the minimum
character. There exists an arbitrary curve joining the the same points q(t,) and q(t’) that

makes the value of the integral /(q) lower with respect to the value of the same integral
computed using the Gradient Extremals curve.

The points where the Gradient Extremals curve have det (C) = 0 are Turning Points or
Bifurcation Points. The Turning Points and Bifurcation Points can be seen as the Conjugate
Points of Gradient Extremals curves.



The Variational Nature of Gradient Extremals Path.
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2.- d) Variational Nature of Gentlest Ascent Dynamics Path.



The Variational Nature of Gentlest Ascent Dynamics Path.

We assume that the system under consideration is defined by a PES, V(x), N is the
number of degrees of freedom. The PES is assumed to be smooth. The g(x) is the
gradient vector and H(x) the Hessian matrix at the point x of V(x). The equations that
govern the gentlest ascent dynamics path (GAD) are as follows:

dx / dt = —[I—2WWT]g<X) = —[I—WWT]g(X)+WWTg(X),
dw/dt=—[I—WWT]H(X)W=—H(X)W+WWTH(X)W, ww=1.

Where | is the unit matrix.

The first equation means that we reverse the components of the gradient vector in the
subspace orthogonal to w(t) and is preserved in the direction of w(t). Thus it walks
towards a saddle point of index-one. The [I — 2ww’] matrix is an orthogonal
transformation, [I — 2ww’][l — 2ww’] = | since w/w = 1.

The second equation defines the dynamics of the descent direction w(t). The first term
on the right hand side ensures that w(t) converges to an eigenvector associated with the
smallest eigenvalue of H(x) matrix. The second term ensures that the length of w is fixed
at 1. Note that w'(t,)w(t,) =1.

GAD curve model was proposed by E and Zhou (W. E, X. Zhou, Nonlinearity 24, 1831
(2011).)



The Variational Nature of Gentlest Ascent Dynamics Path.

Behaviour of the GAD curve on the
Wolfe-Quapp PES. The GAD curve starts
at the point near the minimum Min. The
curve evolution ends at the TS point. The
curve achieves the highest energy at the
point TP (turning point). The curve leaves
the valley where the starting minimum is
located. The set of w-vectors generated
during the search are indicated by the
set of bold arrows.
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The turning point (TP) occurs at the point of the GAD curve where the gradient vector,
g(x), and the w-vector forms an angle equal to /4 radians. (J.M. Bofill, W. Quapp, M.
Caballero, Chem. Phys. Lett. 583, 203 (2013))




The Variational Nature of Gentlest Ascent Dynamics Path.

The GAD curve is the counterpart of well-known classical navigation problem posed
and solved by Zermelo an optimal control problem (E. Zermelo, Z. Angew. Math.
Mech. 11, 114 (1931); C. Carathéodory, Variationsrechnung und partielle
Differentialgleichungen erster Ordnung. B. G. Teubner, Berlin (1935)):

Classical navigation problem: it is given the present location of a ship in the sea, with a
given current distribution characterized by a location dependent vector field. One
desires to find the optimal control of the ship so as to reach the destination in the
shortest possible time.

Back to GAD curve: the gradient vector field of the PES function can be thought of as
representing the current of the sea, which we cannot change, whereas the normalized
vector w determines the control. The destination is the next Stationary Point of the
PES.

In a more precise way, the GAD model consists of the determination of the minimum
of the t-parameter, J[x.{(w(t¢))] = t; - t, in which a controlled point can be evolved
from a given minimum point of the PES, x,,,, = X(t,), to a final transition state of this
PES, X5 = X(t;), boundary conditions, g(x(t,)) = g(x(tf)) = 0. The evolution of the test
point is described by the system of ordinary differential equations: dx/dt = — [l —
2ww’]g(x), where w(t) is a normalized N-dimensional vector of the control parameters.
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Since t, is fixed, the required minimum t; is merely the minimization of the functional J
[xs(w(t))] that depends on the chosen w(t)-control normalized vector. Thus the GAD
curve model is a t-parameter-optimal control problem and can be considered as a
particular instance of the Mayer problem of the Theory of Calculus of Variations. Also
the GAD, as a case of an optimal control problem, must satisfy the Pontryagin Maximum
Principle. (J.M. Bofill, W. Quapp, Theor. Chem. Acc. 135, 11 (2016); J.M. Bofill, W. Quapp,
An Application of the Maximum Principle in Chemistry: A Method to Locate Transition

States, Apple Academic Press, New Jersey (2016)).

Applying a device due to Zermelo (see also Carathéodory), the GAD Hamiltonian of this
type Mayer variational problem is:

2H(x,y)= (ZWTg(X))2 (yTy) - (1 + yTg(X))2 =0 wherey is the conjugate variable
of x related with w through the relation W(l + yTg(X)) = (ZWTg(X))y.

The two canonical equations associated to this Hamiltonian are the GAD system of ordinary
differential equations, namely, dx/dt = — [| — 2ww’]g(x) and dw/dt = — [| - ww']H(x)w, where
w’w=1, (dw/dt related with dy/dt) . The minimum or maximum character of GAD extremal
curve is analyzed through the positivity or negativity value of the Weierstrass error function,
E(x, dx/dt, dx’/dt ) = 2[1 — (w'W’)(g"(x)wW’)/(g"(x)w)]. This is an indirect proof of Pontryagin
Maximum Principle. (J.M. Bofill, W. Quapp, Theor. Chem. Acc. 135, 11 (2016)).
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The turning point (TP) occurs at the
point of the GAD curve where the
gradient vector, g(x), and the w(t)-
control vector forms an angle equal
to m/4 radians.

A GAD curve (blue) by Eq. dx/dt = -[I-2ww’]g on a
two-dimensional toy potential. The control
vector, w(t), is throughout the first eigenvector,

/1 calculated by Eq. dw/dt = -[l-ww']JHw. The

surface is a modified Neria-Fischer-Karplus case
[M. Hirsch, W. Quapp, Chem. Phys. Lett. 395, 150
(2004)]. The asterisk (*) marks a quasi-shoulder,

and the thin dashes mark the borderline between

valleys and ridges. TP is the turning point of the

GAD curve. For comparisons are given: the valley

Gradient Extremal (GE) by a bold faced black

=771 curve, the Intrinsic Reaction Coordinate (IRC) by a

red curve, and a Newton Trajectory (NT) by a
dashed black curve. Note that the IRC starts near
the SP of index one, but the GAD starts near the
Min.

In this case GAD does not satisfy the Reaction
Path requirements. It goes over the borderline
between valley and ridge.
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Proposed Reaction Path curves based on the model of Zermelo’s problem. It is
proposed a generic type curve where its general tangent is given by the expression:

dx/dt=-g(x)+ f(¢.x,w)w, ww=I.

Where w is the control vector. The function f(¢, x, w) is a continuous and differentiable
function with respect to x and ¢ is a constant. Taking f(¢, x, w) =¢ w’g(x) with ¢ larger
that one. The dw/dt is given by the expression:

dw / dt = —[I—WWT](VXf(¢,X,W)—H(X)W) = —(¢—1)[I—WWT]H(X)W.

Curves (blue with ¢ > 2, red with ¢ = (2)¥2) of the Eq.
dx/dt with fl¢,x,w) = ¢ w'g(x). Start is at minimum.
The bold blue curve is the GAD curve with ¢ = 2, the
other blue curves are to ¢ = 3, 4, and 10. The control
vector is calculated by Eq. dw/dt . The asterisk (*)
marks a quasi-shoulder, and the thin dashes mark
the borderline between valleys and ridges. For
comparison, the GE is given (thick black curve) which
is here the valley floor pathway between SP and
Min. (J.M.Bofill, W.Quapp, Theor. Chem. Acc. 135, 11
X (2016)).
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The extension of GAD to a kind of molecular dynamics. It was proposed by Samanta and E
(A. Samanta, W. E, J. Chem. Phys. 136, 124104 (2012); J. M. Bofill, W. Quapp, E. Bernuz, J.
Math. Chem. 53, 41 (2015)). The dynamical equations are:

dx/dt=p, -
dp/di=-[1-2ww" |g(x), 20
dw / dt = —[I - WWT]H(X)W, w w=l1. 1
':‘\t\ o i ‘\'{1
. . . ~"“:\‘l’\'\“\ - i ‘
MD-GAD trajectory, depicted in red color, i o Tag il
) ) > 0 w”)\ e @AX e
but starting at the point (x, y, p,, p,, W,, W,) Il || I !
i '

MM
=(1.1,-1.4,0, 0, 0, 1). The initial w vector is Jﬁ?‘
the second column of the unit matrix. The 1) 1’,",';;'[“'1
)

\

i
regions marked by a black square contain a ;&L
Turning Point of the trajectory. The
trajectory also shows ’‘some chaotic’ k
behavior in the region where TS1, TS3 and
MAX stationary points are located. X
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An MD-GAD trajectory in red color,
starting at the point (x, y, p, , Py, Wy,
w,) = (1.1,-1.4, 0, 0, 0.982,-0.189).
The initial control vector, w, is the
eigenvector of the second
eigenvalue of the Hessian matrix
evaluated at the starting point. The
black arrows are the momentum or
tangent vectors of the trajectory,
dx/dt = p, the green arrows are the
control w-vectors while the arrows
in magenta are the gradient vectors
of the PES, g(x). The regions marked
by a black square are where a
Turning Point of the trajectory
occurs. This trajectory here does
not show any ‘chaotic’ behavior.

(J. M. Bofill, W. Quapp, E. Bernuz, J. Math. Chem. 53, 41 (2015))
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