Meaningful timescales from Monte Carlo simulations of molecular systems: the case of hard disks

Liborio I. Costa

brits-2016 MPI-PKS – 12-15.09.2016

Meaningful timescales from Monte Carlo simulations of molecular systems: the case of hard disks particle

Costa and Storti, *Journal of Polymer Science*, 2010, 48, 529 Costa et al., *Macromolecular Reaction Engineering*, 2012, 6, 24 Costa et al, *Macromolecular Rapid Comm*, 2008, 29, 1609 Costa et al., *Macromolecules*, 2011, 44, 4038

Introduction: molecular simulations

Given initial positions, r_i , and velocities, v_i , at time t_0

Molecular dynamics

Newtonian trajectories

Metropolis Monte Carlo

 Stochastic (unphysical) trajectories

 \Box r_i and v_i at any time t

- Static properties
- Dynamics

□ *r_i* at "MC time"

- Easier to implement
- Fast convergence to Eq.
- Static properties
- no dynamics, no velocities

MC = no time!

Bal and Neyts, *Journal of Chemical Physics*, 2014, 141, 204104 Baumgartner, *Journal of Chemical Physics*, 1980, 72, 871 Landau and Binder, *A guide to MC simulations in Stat. Phys.*, 2015

0.8

Introduction: molecular simulations

Given initial positions, r_i , and velocities, v_i , at time t_0

Molecular dynamics Given the Carlo

Newtonian trajectories

 \Box r_i and v_i at any time t

- Static properties
- Dynamics

$$\frac{\partial P(t,i)}{\partial t} = \sum_{j} a_{ji} P(t,j) - \sum_{j} a_{ij} P(t,i)$$

Fichthorn and Weinberg, *Journal of Chemical Physics*, 1991, 95, 1090 Voter in Radiation Effects in Solids, Springer, 2005 Henkelman and Jonsson, *The Journal of Chemical Physics*, 2001, 115, 9657.

Introduction: molecular simulations

Given initial positions, r_i , and velocities, v_i , at time t_0

Molecular dynamics

Newtonian trajectories

 \Box r_i and v_i at any time t

- Static properties
- Dynamics

• Needs discrete N[#] of states

□ Kinetic Monte Carlo

MD, or MMC → no time! Is it necessarily true?

Bernard and Krauth, Physical Review Letters, 2011, 107, 155704.

This work

□ Question: can one construct a MC algorithm providing the «correct» dynamics of a molecular system, e.g., which includes a physically *meaningful timescale*?

□ Easy to generalize to «soft» potentials

0

 2σ

distance d_{ii}

Proctor et al., WIREs Computational Molecular Science, 2011, 1, 80 (DMD)

Back to basics

Equation of motion for non interacting disks (no collisions)

- displacement of disk $i : l_i$
- velocity of disk $i : v_i$

$$\frac{dl_i}{dt} = v_i$$

- \square Let us define a unit of displacement δ
 - displacement: $n_i = l_i / \delta$
 - velocity: $a_i = v_i / \delta$

$$\frac{dn_i}{dt} = a_i$$

 \Box By discretizing the space, the equations of motion can be written equivalently in terms of numbers n_i of steps δ

Motion ≈ Chemical reaction network

Describes the motion of hard disks

$$\frac{dn_i}{dt} = a_i$$

□ Describes the dynamics of a chemical reaction network (*N* species) with external source type reactions

□ Probability evolution given by the Chemical Master Equation:

$$\frac{\partial P(t, n_1, ..., n_N)}{\partial t} = \sum_i a_i \left[P(t, n_1, ..., n_i - 1, ..., n_N) - P(t, n_1, ..., n_i, ..., n_N) \right]$$

Solution of the CME: Stochastic Simulation Algorithm = Kinetic Monte Carlo

- propensities (transition probabilities)
- time step

$$a_i - v_i o$$

< $\tau > = 1/\sum a_i = \delta/\sum v_i$

 $a - v/\delta$

Gillespie, Journal of Computational Physics, 1976, 22, 403

Two non interacting disks: deterministic approach

SSA-Algorithm

SSA-Algorithm

 $\begin{cases} \frac{dn_1}{dt} = a_1 \\ \frac{dn_2}{dt} = a_2 \end{cases}$ while *t*<*t*_{end} draw a random numbers r_1 propensities $a_i \leftarrow v_i / \delta$ sample the disk μ to be displaced with probability = a_i $\sum_{i=1}^{\mu-1} a_i < r_1 \sum_{i=1}^{N} a_i \le \sum_{i=1}^{\mu} a_i$ update: $n_{\mu} \leftarrow n_{\mu} + 1$ time step = $\tau = \left(\sum_{i=1}^{N} a_i\right)^{-1}$ $t \longleftarrow t + \tau$

SSA-Algorithm

 $\begin{cases} \frac{dn_1}{dt} = a_1 \\ \frac{dn_2}{dt} = a_2 \end{cases}$ while *t*<*t*_{end} draw a random numbers r_1 propensities $a_i \leftarrow v_i / \delta$ sample the disk μ to be displaced with probability = a_i $\sum_{i=1}^{\mu-1} a_i < r_1 \sum_{i=1}^{N} a_i \le \sum_{i=1}^{\mu} a_i$ update: $n_{\mu} \leftarrow n_{\mu} + 1$ time step = $\tau = \left(\sum_{i=1}^{N} a_i\right)^{-1}$ $t \longleftarrow t + \tau$

Distribution probability for $l_i(t^*) = \delta n_i(t^*)$

□ for $\delta \rightarrow 0$ • $l_i(t^*)$ converges to the deterministic solution

In short:

□ A MCMC algorithm can be constructed as a KMC with:

- propensities ~ v_i
- particle displacements parallel to their velocities

- established a link between MC time step au and physical time

- convergence to deterministic dynamics as $\delta \longrightarrow 0$

Stochastic counterpart of MD: Monte Carlo Molecular Dynamics (MCMD)

• What is missing?

- Avoiding the space discretization (fixed δ)
- Taking collision events into account

while $t < t_{end}$ draw two random numbers r_1 , r_2 step size $\leftarrow r_1 \delta$ Propensities $a_i \leftarrow v_i / r_1 \delta$ sample the disk μ to be displaced $\leftarrow \sum_{i=1}^{\mu-1} a_i < r_2 \sum_{i=1}^{N} a_i \le \sum_{i=i}^{\mu} a_i$

Sampling

Displacement

"Kill" the Markov Chain

Time advance

Simulations

□ Microcanonical ensemble (NVE)

N = 64 in a rigid square box (m = 1)
□ density η = 0.3 (liquid)
□ E_k/N = 10⁻⁴

Compare runs with MD and MCMD

Each run starts from

square lattice (non-equilibrium)

- velocities sampled from uniform distr. (non-eq.)

□ Equilibration > 200 τ_R □ Sampling every $\Delta t = 1$ for > 1000 τ_R

Validation vs. MD: Static properties

Validation vs. MD: Static properties

Position probability distributions

- Excluded volume (depletion interactions)
- Non-uniform distribution
- (δ = 10⁻³, 1 run for > 35000 τ_{R})

Validation vs. MD: Static properties

Velocity distribution

- Matches Maxwell distribution
- Not accessible from standard MC (req. independent sampling)

Validation vs. MD: Dynamics

Validation vs. MD: Dynamics

Validation: Non Equilibrium Dynamics

□ *N* = 64

□ density η = 0.72 (region of sol-liq transition) □ $E_k/N = 10^{-5}$

□ A First-Passage time Problem

Validation: Non Equilibrium Dynamics

First passage time

Good agreement with MD (at comparable computational time)

Summary

□ For hard-core interactions:

□ Atom sampling proportional to *v* and displacement parallel to *v*

- Access to velocity distribution (as output)
- The algorithm is as simple as a basic MC, but is «velocity driven»

Costa, Journal of computational physics, accepted; ArXiv: 1603.07015

Summary

Future work:

- validation at larger number of particles (pbc)
- «soft» potentials

• *«event chain»* with $\langle \tau \rangle = 1/\sum a_i$

Bernard et al, Phys. Rev. E, 80, 2009

polymers

<u>Acknowledgments</u>: Prof. W. Krauth and his team at ENS for efficient code snippets