

Lessons from applications of multi-scale techniques to analysis of the permeation and selectivity in KcsA ion channel

Igor Khovanov

School of Engineering and Centre for Scientific Computing

Warwick Centre for Predictive Modelling

University of Warwick, Coventry,

United Kingdom

i.khovanov@warwick.ac.uk

Collaborators

Michael Allen

Salvatore Cosseddu

Mark Rodger

<u>Support</u>

EPSRC Engineering and Physical Sciences Research Council

My expertise (a part)

Most probable (optimal) path in non-equilibrium systems (Advances in Chemical Physics 119:469 - 524 2001)

Large Fluctuation and Energy-minimal Deterministic Control (PhysRevLet 85(10):2100-3 2000, PhysRev E 67(5 Pt 1):051102 2003)

Non-Gaussian noise escape problem (PhysRevB 89(8) 085419 2014)

Escape in excitable systems (systems without saddle point) (PhysRevE 87(3) 032116 · 2013)

Bayesian inference of stochastic dynamics

(PhysRevE 77 061106 - 2008)

 $\mathbf{O}(\mathbf{x})$

. . .

$\dot{\mathbf{x}} = \mathbf{K}(\mathbf{x}, t) + \mathbf{Q}(\mathbf{x})\boldsymbol{\xi}(t)$

 $\mathbf{K}(\mathbf{x},t)$ Deterministic dissipative vector function

Stochastic term

 Molecular Dynamics (MD) simulations of ion channels, biased methods

 Permeation in KcsA, the knock-on mechanism and the height of the barrier

- Issues in free energy calculations
- Ion permeation in KcsA

Outline

Molecular Dynamics (MD) simulations of ion channels, biased methods

• Permeation in KcsA, the knock-on mechanism and the height of the barrier

- Issues in free energy calculations
- Ion permeation in KcsA

MD simulations of KcsA

Main steps in line with the tutorial: <u>http://www.ks.uiuc.edu/Research/smd_imd/kcsa/</u>

1. Building the full protein using the information available from the x-ray structure from MacKinnon group, 2.0 A resolution, Y. Zhou, J. H. Morais-Cabral, A. Kaufman, and R. MacKinnon, "Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution," Nature, vol. 414, pp. 43–48, Nov. 2001.

- 2. Building a phospholipid bilayer;
- 3. Inserting the protein in the membrane;
- 4. Solvating of the entire system.
- 5. Relaxing the membrane to envelop the protein and to let it assume a natural conformation.

Software and

Computational resources

MD simulations of KcsA

Molecular Dynamics is the *solution* of the classical (Newtonian) equations of motion for a set of molecules.

Within the Born-Oppheneimer approximation, the Hamiltonian of a system can be expressed as a function of the nuclear coordinates \mathbf{q}_i and momenta \mathbf{p}_i .

For Cartesian coordinates:

$$\dot{\mathbf{r}}_i = \mathbf{p}_i / m_i$$

 $\dot{\mathbf{p}}_i = -\nabla \mathcal{V}_i(\mathbf{r}_i)$

Empirical CHARMM Force Field, VMD, NMAD

$$V(r) = \sum_{bonds} K_b (b - b_0)^2 + \sum_{angles} K_\theta (\theta - \theta_0) + \sum_{dihedrals} K_\phi [1 + \cos(n\phi - \phi_0)] + \sum_{impropers} k_\psi (\psi - \psi_0)^2 + \sum_{i,j} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \sum_{Urey-Bradley} K_u (u - u_0)^2 + \sum_{i,j} \frac{q_i q_j}{\epsilon_D r_{ij}}$$

From MD to Experiments via BD

Both permeation (conductivity) and selectivity can be discussed via the Free Energy or the Potential of Mean Force (PMF), thermodynamics description

The main idea: If there is PMF F(z), then time scale of diffusion through the channel can be estimated via Kramers rate. The coordinate *z* describes the transition. (T. W. Allen, PNAS, vol. 108, no 44, 17963-17968, 2011)

$$rate = \frac{D\sqrt{K_b K_w}}{2\pi k_b T} \exp(-\Delta F / k_b T)$$

Unknown:

D – diffusion constant;

F(z) - PMF, ΔF is a barrier;

T is assumed to be as in the bulk

PMF via special approach as

Umbrella Sampling (US)

$$F(z) = -\frac{1}{k_b T} \ln P(z) - Bias(z)$$

P(z) is distribution from MD trajectories Bias(z) – is an external biased potential

or others (MetaDynamics)

From MD to Experiments via BD

All-Atom Molecular Dynamics (MD)

Hamiltonian Equation:

$$H = \sum_{k=1}^{N} \frac{\mathbf{p}_{k} \cdot \mathbf{p}_{k}}{2m_{k}} + U(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots \mathbf{r}_{N})$$

$$\frac{d\mathbf{r}_{i}}{dt} = \frac{\partial H}{\partial \mathbf{p}_{i}} \equiv \frac{\mathbf{p}_{i}}{m_{i}}, \quad \frac{d\mathbf{p}_{i}}{dt} = -\frac{\partial H}{\partial \mathbf{r}_{i}} \equiv -\nabla_{\mathbf{r}_{i}}U$$
$$N \sim 10^{6} - 10^{7}$$

One-Atom Brownian Dynamics (BD)

Overdamped Langevin Equation:

$$\dot{\mathbf{r}}_{i}(t) = -\frac{1}{m_{i}\gamma(\mathbf{r}_{i})}\frac{\partial V(\mathbf{r}_{i})}{\partial \mathbf{r}_{i}} + \sqrt{\frac{2k_{B}T}{m_{i}\gamma(\mathbf{r}_{i})}}\boldsymbol{\xi}(t)$$

 $\gamma(\mathbf{r}_i)$ damping coefficient $\xi(t)$ white Gaussian noise

Potential of mean force (PMF), Free Energy Biased simulations

 $H_{h}(\mathbf{r},\mathbf{p}) = H_{0}(\mathbf{r},\mathbf{p}) + U(\mathbf{z}) \implies V(\mathbf{z})$

Biasing Potential

Resulting PMF

Assumptions:

"... the underlying system's dynamics **must be**

Markovian and

Ergodic

for any bias..."

MetaDynamics

- reconstruct of free energy surfaces;
- force the system to escape from minima;
- based on a small number of collective variables (CVs) able to describe the relevant transitions; CVs correspond to transition coordinates z
- a history-dependent potential is created as a sum of Gaussians centred along the trajectory of the CVs.
- In the simpler case of standard MetaDynamics and one CV, the biasing potential is given by

$$V(S(\mathbf{z}),t) = w \sum_{t=\tau,2\tau,\dots} \exp\left[-\frac{(S(\mathbf{z}) - s(t))^2}{2\delta s^2}\right]$$

where

 $S(\mathbf{z})$ is the chosen CV function of the coordinates \mathbf{z} and

s(t) its value at the time t;

w and δ are the Gaussian height and width;

au is the deposition interval time.

Outline

• Molecular Dynamics (MD) simulations of ion channels, biased methods

Permeation in KcsA, the knock-on mechanism and the height of the barrier

- Issues in free energy calculations
- Ion permeation in KcsA

Potassium channel KcsA

Potassium channel KcsA

KcsA is a tetramer composed of four identical subunits

Main features: Permeation Selectivity Gating

Experimental data, KscA

A typical single-channel Recording:

from Cordero-Morales et al., Nat. Struct. & Mol. Biol. 13 (2006).

Main features: Permeation and Gating

Permeation in KcsA

Binding sites S0, S1, S2, S3, S4 are observed experimentally and in MD simulations.

A permeation event corresponds to transition of ion(s) from one site to another.

Two-ions in the selectivity filter is a conductive configuration.

lons activation dynamics in MD unbiased simulations

Collective variables for biased calculations

Collective variables z_{K12} and z_{K3} describe ions' permeation.

z_{K12}: the position of centre of mass of ion K1 and ion K2 along channel axis.

 z_{K3} : the position of ion K3 along channel axis.

 xy_{K3} : radial distance of ion K3 with respect of channel axis

The classic theory for conduction is the **knock-on mechanism**, firstly proposed by Hodgkin and Keynes (1955): the driving factor is an incoming ion that 'knocks on' ions already bound within the selectivity filter. **Knock-on assumes zero barrier.**

Difference in PMF

2-dimensional Umbrella Sampling Berneche and Roux, Nature 2001 Our calculations, MetaDynamics

Barrier 6-7 kcal/mol

Barrier 2-3 kcal/mol, order of noise intensity

Difference in PMF

2-dimensional Umbrella Sampling Berneche and Roux, Nature 2001

Piccinini etal, J. Chem. Theory Comput. 2008, MetaDynamics

Barrier 9-10 kcal/mol

Barrier 2-3 kcal/mol, order of noise intensity

Ion permeation and PMF. State of the art

From P.W. Fowler et al J Chem Theory Comput **2013**, 9, 5176-5189.

Abstract. "... the heights of the kinetic barriers for potassium ions to move through the selectivity filter are, in nearly all cases, *too high to predict conductances in line with experiment*. This implies it is **not** currently feasible to predict the conductance of potassium ion channels, but other simpler channels may be more tractable."

Outline

• Molecular Dynamics (MD) simulations of ion channels, biased methods

• Permeation in KcsA, the knock-on mechanism and the height of the barrier

Issues in free energy calculations

Ion permeation in KcsA

Example: 1-dimensional PMF. Umbrella sampling

A single ion transition between sites S2 - S1. Both sites are metastable states for an ion.

Permeation and inactivation as orthogonal degree of freedom

KcsA channel can easily switch into an inactive state in experiment.

Biased CVs

An applied bias switch the channel into an inactive state in simulation.

State A is a conducting state State I is a non-conducting state

A bias leads to an exploration of an **irrelevant** state.

Let me stress that the transition to an inactive state (inactivation) has a **different** mechanism.

Orthogonal degree of freedom State I State A

An ideal Umbrella sampling

Legend

Starting point of the window
 Displacements to initialise
 the following window

Sampled region

Usually we just hope to see such picture.

Pitfalls of biased methods

Issues in the initialisation

Pitfalls of biased methods

Trapping and sampling an irrelevant state

Pitfalls of biased methods

Improper sampling

Outline

• Molecular Dynamics (MD) simulations of ion channels, biased methods

• Permeation in KcsA, the knock-on mechanism and the height of the barrier

- Issues in free energy calculations
- Ion permeation in KcsA

Our solution

Understand quite well the whole system: dynamics of ions and side chains, study all properties conductivity, inactivation and selectivity together.

Keep the protein in a conductive conformation during biased MD simulation

Ion permeation in KcsA

Permeation in a conductive conformation. Results of well-tempered MetaDynamics (3D)

Lessons of KcsA channel

Advantage of MD technique

provide a bridge from the structure to functions

Pitfalls of MD technique

high degree of uncertainty in each step of the technique "standard" approaches are not reliable for a formal implementation

require "experience" in the use of MD and understanding of studied systems

Further issues:

Non-Markovian effects and ergodicity

Assumptions:

"... the underlying system's dynamics **must be**

Markovian and Ergodic

for any bias..."

Easy to check!

(see The European Physical Journal Special Topics 222(10) ·2595-2605 2013; wrap.warwick.ac.uk/57511)

Potential of mean force (PMF) from MD simulations

All-Atom Molecular Dynamics (MD)

One-Atom Brownian Dynamics (BD). Generalized Langevin Equation:

$$m_{i}\dot{\mathbf{v}}_{i}(t) = -\frac{\partial V(\mathbf{r}_{i})}{\partial \mathbf{r}_{i}} - \int_{0}^{t} \mathbf{M}(t-\tau)\mathbf{v}_{i}(\tau)d\tau + \mathbf{R}(t)$$
$$\mathbf{M}(t) = \frac{1}{k_{B}T} \langle \mathbf{R}(0)\mathbf{R}(t) \rangle \quad \text{Memory kernel}$$
35

Markovian vs Non-Markovian Dynamics

Typical assumption (See B. Roux, M. Karplus, J. of Chem. Phys., Vol 95, 4856, 1991)

Overdapmed Markovian diffusion:

$$\dot{\mathbf{r}}_{i}(t) = -\frac{1}{m_{i}\gamma(\mathbf{r}_{i})}\frac{\partial V(\mathbf{r}_{i})}{\partial \mathbf{r}_{i}} + \sqrt{\frac{2k_{B}T}{m_{i}\gamma(\mathbf{r}_{i})}}\boldsymbol{\xi}(t)$$

 $\gamma(\mathbf{r}_i)$ damping coefficient

 $\xi(t)$ white Gaussian noise

Ion dynamics in the steady state, metastable state

Ion demonstrates 1/f noise component:

Fractional Kernel M(t) and fractional noise R(t) in the Generalized Langevin Equation

$$m_i \dot{\mathbf{v}}_i(t) = -\frac{\partial V(\mathbf{r}_i)}{\partial \mathbf{r}_i} - \int_0^t \mathbf{M}(t-\tau) \mathbf{v}_i(\tau) d\tau + \mathbf{R}(t),$$

1/f component indicates a strong influence of side-chains on ion states

Ion dynamics in the steady state, metastable state

Auto-correlation

lon demonstrates the longrange (power-law) correlation

What is time-scale for averaging?

Summary of un-biased simulations

1/f component indicates a strong influence of side-chains on ion states

Ion dynamics is under-damped

Brownian dynamics model has the following form:

$$m_{i}\dot{\mathbf{v}}_{i}(t) = -\frac{\partial V(\mathbf{r}_{i})}{\partial \mathbf{r}_{i}} - \int_{0}^{t} \mathbf{M}(t-\tau)\mathbf{v}_{i}(\tau)d\tau + \mathbf{R}(t)$$
$$\mathbf{M}(t) = \frac{1}{k_{B}T} \left\langle \mathbf{R}(0)\mathbf{R}(t) \right\rangle \propto t^{\gamma-1}$$

ESSENTIAL, check the underlying assumption