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Cell must eat via fusion and fission

To make itself alive, cell must exchange materials

between intracellular compartments or the outside of % 9
the cell. fusion fission
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Membrane fusion and fission
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Membrane fusion and fission are mediated by proteins, e.g. SNAREs for fusion, and
dynamin for fission. 4



Protein-mediated membrane fission

Membrane fission: A process by which a bud separates from a lipid membrane, and which is
mostly mediated by (dynamin-family) proteins.
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Self-assembly of dynamin around the neck of a budding vesicle

a Dynamin assembly b Dimer structure What we know:
Qo Qo <> Existence as tetramer in solution
< Self-assembly (into rings/helices)
¢ 10nm¢
- o < Inner diameter of helices independent
20nm 20nm from membrane template.
In solution On membrane . )
templates <> Membrane tube is constricted by
PH domain insertion of dynamin
50 nm .
— rings.
C Helix of dimers <> Constriction is necessary, but

insufficient for completing fission.

>
20 nm Nat. Rev. Mol. Cell Biol. 5, 133 (2004)
On membrane In vivo Annu. Rev. Cell Dev. Biol. 27, 79 (2011)
Btf\gﬁg'ate& * Annu. Rev. Biochem. 81, 407 (2012)
omains

Annu. Rev. Biophys. 42, 629 (2013)

Questions: 1. Role of dynamin’s constriction.
2. Pathway and free energy landscapes of fission process.

Goals: Study and understand dynamin’s role in membrane fission via
computer simulation. ’



Characteristic length and time scales in soft matter
Muller, Katsov, Schick, Phys. Rep. 434, 113 (2006)
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A soft, solvent-free model for lipid membrane

1 Coarse-grained model for lipid membrane

hydrophilic lipid bilayer density distribution
particles g 7 25— T T . . . .
(Head) S e T G A ool 1
Lo M % . > J"!&«fi'o?l’ - )
hydrophobic | * ' BRI e Q ok - Eﬁiiiiiﬁﬁi‘? -
particles % SRR O B 1
(Tail) S B | / \\ ]
9 ST 5 0 05 1 13
H="Hpy+H e
— T nb Homberg and Miiller, J. Chem. Phys. 132, 155104 (2010)
» Harmonic springs and bending angle potentials
Hb ks 2
ij—T = ; ?(I'?H_l — I',L’) + z’b: kb(l — COS 91)
» “density-functional theory”-based description for H,,
Hop / dr . [’Uag WayBry » Capabilities of the model
= | =5 Pall) | ——p2s(Tr)+ 033(T)pP3~ (T }
- <> Self-assembly of lipids
Palr) = 7 ;5(” ~ )ai) Vo Wapy * thermodynamic properties < Mechanical properties
R3 . . ¢ . . .
() = 122 S (1~ 2l)barc W, * local structures (packing) Main phase transitions

» Particle-based simulation Implementation: MD, MC, DPD, ... 8



Two coarse-grained descriptions for dynamin

d A very crude model for dynamin constriction
constriction by dynamin coating ——> constriction by a cuff potential
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Ford et al., Nature, 477, 561 (2011)
d A more realistic model of dynamin (constriction + PH domain insertion)
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Dynamin’s constriction as a cuff potential

© no tension
o tension

non-leaky fission through formation of a
worm-like micelle (hemi-fission) intermediate

very high free-energy cost (about 150 kgT)
for the constriction.

two free-energy barriers involved: (i)
formation of the worm-like micelle; (ii)
rupture of the micelle. 11



Hemi-fission from a model with two double-dynamin rings
Q0 Model of dynamin

HEMI-FISSION

1 Two double-rings coating

independent
orientation

0.45nm

no hemi-fission intermediate formation -
only thinning of membrane tube Nature 524, 109 (2015}



Completion of fission via rupture of the hemi-fission intermediate

FISSION

Stable hemi-fission
intermediates

disassembly

axial force
constrained unconstrained

l 3000/ 100\ 1007

The hemi-fission state is (meta)stable, i.e., rupture of hemi-fission state
requires external effects. Nature 524, 109 (2015)



Part Il: Pathway and free-energy landscape of
rupturing the hemi-fission state
(Stability of the hemi-fission state)

transition state ?
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E? 14



Free energy calculations: with explicit reaction coordinates

15



Free energy calculations: with explicit reaction coordinates
F(&) = —kBTln/dr”e_H({rn})/’“BTﬂé — & = —kpTInP(¢) — kgTIn Z(n,V,T)

f: reaction coordinate

16



Free energy calculations: with explicit reaction coordinates
F(§) = —kgTn

. . : : reaction coordinate
O Direct sampling in a conventional ensemble §

t P(&) ~ e FO/kaT

drme  HU"N/keT§1¢é _ ¢] = —kgTIn P(€) — kgTIn Z(n,V, T)
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Free energy calculations: with explicit reaction coordinates
F(§) = —kgTIn

O Direct sampling in a conventional ensemble
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f: reaction coordinate
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Free energy calculations: with explicit reaction coordinates
F(§) = —kgTn
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Free energy calculations: with explicit reaction coordinates
F(§) = —kgTn

O Direct sampling in a conventional ensemble

t P(&) ~ e FO/kaT

~
»<

Nk
3

A

b/

/dr”e_H({rn})/’“BTd[é — & = —kgTInP(¢) —kgTIn Z(n,V,T)

f: reaction coordinate

Sampling problem in rare event

non-ergodic in a case with
large free energy barrier (>

5 kgT).
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Free energy calculations: with explicit reaction coordinates
F(§) = —kgTIn

O Direct sampling in a conventional ensemble

4 P(&) ~ e~ F(&)/ksT
=
-
§
a

Hus(r") = H(x") + W[E(x")]

~
»<

A

Nk
3

drme  HU"N/keT§1¢é _ ¢] = —kgTIn P(€) — kgTIn Z(n,V, T)

f: reaction coordinate

Sampling problem in rare event

non-ergodic in a case with
large free energy barrier (>

5 kgT).

Biased sampling in an extended ensemble

—>  F(¢)

f ->

Umbrella sampling: enhancing sampling over the reaction coordinate by biasing the Hamiltonian

—kpT In Py (&) — W () + const.
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Free energy calculations: with explicit reaction coordinates
F(§) = —kgTn

O Direct sampling in a conventional ensemble
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non-ergodic in a case with
large free energy barrier (>

5 kgT).

Biased sampling in an extended ensemble

—>  F(¢)

f ->

Umbrella sampling: enhancing sampling over the reaction coordinate by biasing the Hamiltonian

—kpT In Py (&) — W () + const.
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Free energy calculations: with explicit reaction coordinates
F(§) = —kgTIn

drme  HU"N/keT§1¢é _ ¢] = —kgTIn P(€) — kgTIn Z(n,V, T)

O Direct sampling in a conventional ensemble §: reaction coordinate
_ A
A P(f) ~ € F(f)/kBT

~ Sampling problem in rare event

G » £

R, 5 non-ergodic in a case with
= large free energy barrier (>

5 kgT).
e —> ->

§

O Biased sampling in an extended ensemble
Umbrella sampling: enhancing sampling over the reaction coordinate by biasing the Hamiltonian
Hys(x™) = H(x™) + WE(r™)] =——> F(§) = —kgTIn Py (&) — W () + const.
Flat-histogram method: when the biased potential is the free energy
Ph(e) ~ [ dure = g g

~ e  F)/kBT JF(&)/kBT _ 0(50)

23



Free energy calculations: with explicit reaction coordinates

F(&) = —kBTln/dr”e_H({rn})/’“BTﬂé — & = —kpTInP(¢) — kgTIn Z(n,V,T)

O Direct sampling in a conventional ensemble

t P(&) ~ e FO/kaT A
~
< _
- 5
g
>

3 §

O Biased sampling in an extended ensemble

f: reaction coordinate

Sampling problem in rare event

non-ergodic in a case with
large free energy barrier
(e.g. > 5 kgT).

Umbrella sampling: enhancing sampling over the reaction coordinate by biasing the Hamiltonian

Hys(x™) = H(x™) + WE(r™)] =——> F(§) = —kgTIn Py (&) — W () + const.

» Flat-histogram method: when the biased potential is the free energy

Pan(€) ~ / gl H O RRT g12 _ g

A
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Free energy calculations: with explicit reaction coordinates

F(&) = —kBTln/dr”e_H({rn})/’“BTﬂé — & = —kpTInP(¢) — kgTIn Z(n,V,T)

O Direct sampling in a conventional ensemble

t P(&) ~ e FO/kaT A
~
< _
- 5
g
>

3 §

O Biased sampling in an extended ensemble

f: reaction coordinate

Sampling problem in rare event

non-ergodic in a case with
large free energy barrier
(e.g. > 5 kgT).

Umbrella sampling: enhancing sampling over the reaction coordinate by biasing the Hamiltonian

Hys(x™) = H(x™) + WE(r™)] =——> F(§) = —kgTIn Py (&) — W () + const.

» Flat-histogram method: when the biased potential is the free energy

Pan(€) ~ / gl H O RRT g12 _ g

<> Goal of the method is to obtain F(£) by realizing a flat-histogram of P(€).

A

S 25



Free energy calculations: with explicit reaction coordinates
F(&) = —kBTln/dr”e_H({rn})/’“BTﬂé — & = —kpTInP(¢) — kgTIn Z(n,V,T)

O Direct sampling in a conventional ensemble

t P(&) ~ e FO/kaT A
~
< » s
- 5
g
—> ->

3 §

O Biased sampling in an extended ensemble

» Umbrella sampling: enhancing sampling over the reaction coordinate by

f: reaction coordinate

Sampling problem in rare event

non-ergodic in a case with
large free energy barrier
(e.g. > 5 kgT).

biasing the Hamiltonian

Hys(x™) = H(x™) + WE(r™)] =——> F(§) = —kgTIn Py (&) — W () + const.

» Flat-histogram method: when the biased potential is the free energy

A
P, o | drrel HOMHFOI/ksT g1é _ o
i (¢) / rie € —¢] :
Wang-Landau (WL) sampling Metadynamics
Monte Carlo simulation molecular dynamics simulation

i . -
convenient for any ensembles not easy for grand-canonical ensembles S -



A practical recipe for Wang-Landau sampling

Goal: to derive a Metropolis acceptance criterion in Wang-Landau sampling in a general sense.
Wang and Landau, Phys. Rev. Lett. 86, 2050 (2001)

Methodology: Ganzenmueller and Camp, J. Chem. Phys. 127, 154594 (2007)
(1) The microscopic state distribution in Wang-Landau sampling
1=p,, (&)= /pWL(F,f)dl; [': microstate ¢ : reaction coordinate
Po(T,8) | / /po<r,§)
pWLF7 — poz pLF,ng: szl
=2 — 2O = [ 200 5

(2) The acceptance criterion from detailed balance

P (Lo, &o)acc(o = n) = py,, (Tn, &n)ace(n — o)
pWL (Fnagn)]

acc(o — n) = min [1

" P (To, o)
Example: & = FE in canonical ensemble
VNePEo
Po(To, Eo) = NINNQNvr 1
P (F E ) _ pO(F07EO) —
B VNe_BEOQ(N, V., Eo) WL oy LYo p(Eo) Q(N, V, EO)

PE) = NN Qu e
Microcanonical ensemble partition function is

obtained from WL sampling in canozgical
ensemble.

Q(N,V, E,) ]

acc(o — n) = min [1, NV E,)



inhomogeneity of particles along cylindrical axis

|dentification of suitable reaction coordinates

< Grand-canonical ensemble
(under constant membrane tension)

total number of lipids

» Hysteresis occurs if only one order parameter is used.

» One order parameter isn’t sufficient.

» A second order parameter is identified as the inhomogeneity of particles
along the cylindrical axis.

28



Free-energy landscape and transition path

L Projection of an intrinsic high-dimensional free-energy landscape to a two-dimensional one.
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Reaction coordinates

n, : total number of lipids

«¢ : inhomogeneity of particles along
cylinder axis, which is defined as:

_ NP — (Vi)
(N;)?

«

“0

I.rl
N, particles in the i-th slab



Effect of tension on free-energy barriers

120 160 200 20

n

line density of lipid [nm™]

23.3 24.4 25.5 26.6 27.7
; | ; | ; | ;

70} e @ s : :
= S~a - <> The free-energy barrier of rupturing
< IR _ a hemi-fission intermediate is on
k! B % order of tens of k,T, dependent on
g 60 /N 7 tension.

O / N
4 N
> / N
> o o -
GC‘) // \\
/ \ . .
© 501 / N . < Increasing tension reduces the
2 ./ \‘ free-energy barrier of rupturing the
hemi-fission state.

40 ] ) ] ] )

0.71 0.72 0.73 0.74 30

membrane tension [k,T/nm]



Free energy calculations: without explicit reaction coordinates

In general, identifying suitable reaction coordinates is very challenging.
d String method for minimum free-energy path (MFEP)
(1) Theory

<> The MFEP is defined by condition that the

derivative perpendicular to the path vanishes.

dms(r
OF dms(r) fdr&nfir) ds( : L

= dmis(r) N cfs [ dr (dms(r)>2

ds

VJ_./T"[m]

0 N initial string

tangent term :'along the path
< Apath: mg(r),0 < s < 1.

s tangent
< Free energy: F[m] :/ ds/drdms(r) OF lms]
0 ds  Omg(r)

< Transition state: dF[mg]/ds =0

(2) Numerical implementation

< Stepl: Amg(r) = —pu(r|mg)Ac
u(r) = 572;) ~ kg TA(m(r) —in(rl{r}))

<> Step 2: re-parameterization of morphologies such that they are distributed evenly along the
string.

umbrella

E, Ren, Vanden-Eijnden, J. Chem. Phys. 126, 1641033(12007).
Miller, Smirnova, Marelli, Fuhrmans, Shi, Phy. Rev. Lett. 108, 228103 (2012).



Application of string method to membrane fusion
L Model for lipid membrane: MARTINI model

24FPOPC T T ik o -
-—dw=0.65nm

20 -—d =0.69 nm A -

= b 4074nm < Degree of dehydration (thickness of
~ 16| W J . . g
~ 7 f—d=080nm ‘ bilayers) slightly modifies the free-energy
< 12 —4d,7084nm 4 - barriers.
= POPE N N -
5 8k--- d=073ng 0 e M
o R
> 4l . 1 < It significantly affects the stability of the
L‘IL_’ i f/ ] stalk morphology, higher dehyration
0 (c (e)] favors formation of the stalk state.
4} ; -
0.0 0.2 0.4 0.6 0.8 1.0

Smirnova, Miller, manuscript in preparation.
Strlng contour s
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) }
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J Role of dynamin’s constriction in fission

v The constriction model using a cuff potential gives rise to quite large free energy cost
for constriction even before a topological change occurs.

v' The more “realistic” model using double-dynamin rings leads to a formation of the
(meta)stable hemi-fission intermediate.

Nature 524, 109 (2015)
[ Free energy landscape of rupturing a hemi-fission state

v' Two suitable order parameters has been identified. 5

v' Two-dimensional free-energy landscape is
calculated. 05

v’ Increasing membrane tension lowers the free- " T e
energy barrier.
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