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Outline 

A.  Background in DFT 

B.  Connection to semiclassics 

C.  Our work in (a little) detail, and cry for help 
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A. The electronic structure problem Hamiltonian
Hamiltonian for N electrons in the presence of external potential v(r):

Ĥ = T̂ + V̂
ee

+ V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1
Ò2

i , V̂
ee

=
1
2

Nÿ

i=1

Nÿ

j ”=i

1
|ri ≠ rj |

,

and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1
v(ri)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
Kieron (UC Irvine) Basics of DFT CAMD12 7 / 66
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I. INTRODUCTION

ˆH =

ˆT +

ˆVee +
ˆV (1)

T [n] =
3(3⇡)2/3

10

Z
d3r n5/3

(r) (2)

U [n] =
1

2

Z
d3r

Z
d3r0

n(r)n(r0)

|r� r

0| (3)

V [n] =

Z
d3r n(r) v(r) (4)

ˆH| i = E| i (5)

E = min

 
h | ˆH| i (6)

2

I. INTRODUCTION

ˆH =

ˆT +

ˆVee +
ˆV (1)

T [n] =
3(3⇡)2/3

10

Z
d3r n5/3

(r) (2)

U [n] =
1

2

Z
d3r

Z
d3r0

n(r)n(r0)

|r� r

0| (3)

V [n] =

Z
d3r n(r) v(r) (4)

ˆH| i = E| i (5)

E = min

 
h | ˆH| i (6)

2



Thomas/Fermi Theory 1927 
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ˆVee +
ˆV (1)

T [n] ⇡ T LDA
S [n] =

3(3⇡)2/3

10

Z
d3r n5/3

(r) (2)

Vee[n] ⇡ U [n] =
1

2

Z
d3r

Z
d3r0

n(r)n(r0)

|r� r

0| (3)
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Z
d3r n(r) v(r) (4)
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n
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T [n] + U [n] +

Z
d3r v(r)n(r)

�
(7)
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d3r n(r) v(r) (4)

ˆH| i = E| i (5)

E = min

 
h | ˆH| i (6)

ETF
= min

n

⇢
T LDA

S [n] + U [n] +

Z
d3r v(r)n(r)

�
(7)

EGGA
XC =

Z
d3r eGGA

XC (n(r), |rn(r)|) (8)

Ehyb
XC = a (EX � EGGA

X ) + EGGA
XC (9)

Z
dx

p
2(E � v(x)) = ⇡ (j +

1

2

) (10)

2



Walter Kohn (1923-2016) 

Feb	13,	2017	 QCTMBS17	 5	



Hohenberg-Kohn theorem (1965) 
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n

min

 !n
h | ˆH| i

o
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n

⇢

min

 !n
h | ˆT +

ˆVee| i+
Z

d3r n(r) v(r)

�

= min

n

⇢

F [n] +

Z
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�
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KS equations (1965) 
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„
j

(r) = ‘
j

„
j

(r),
Nÿ

j=1
|„

j

(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d3r n(rÕ)

|r ≠ r

Õ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 14 / 39

KS potential of He atom

n(r)

!2 !1 0 1 2

!4

!2

0

v(r)

vS(r)

≠2
r

z

Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a

Accurate exchange-correlation

potentials and total-energy components for

the helium isoelectronic series, C. J.
Umrigar and X. Gonze, Phys. Rev. A 50,
3827 (1994).

Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 15 / 39
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Today’s commonly-used functionals 
•  Local density approximation (LDA) 

–  Uses only n(r) at a point. 

•  Generalized gradient approx 
(GGA)  
–  Uses both n(r) and |∇n(r)| 
–  Should be more accurate, corrects 

overbinding of LDA 
–  Examples are PBE and BLYP 

•  Hybrid: 
–  Mixes some fraction of HF with GGA 
–  Examples are B3LYP and PBE0  

Feb	13,	2017	 QCTMBS17	 8	
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Applications 

•  Computers, codes, algorithms always improving 
•  Making bona fide predictions 
•  E.g., a new better catalyst for Haber-Bosch process 

(‘fixing’ ammonia from air) was predicted after about 
25,000 failed experiments (Jens Norskov’s group) 

•  Now scanning chemical and materials spaces using big 
data methods for materials design (materials genome 
project). 

•  World’s hottest superconductor (203K) is hydrogen 
sulfide, predicted by DFT calculations, made in 2015. 

•  Latest generation of intel chips (needed for Mac 
airbook) is half-size and Pb-free with help of DFT calcs. 

•  Can also extract excitations via time-dependent DFT. 
Dec	8,	2016	 KITP	Kohn	Science	Symposium	 9	



Elephant 
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DFT papers 
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DFT:	A	Theory	Full	of	Holes,		Aurora	Pribram-Jones,	David	A.	Gross,	Kieron	Burke,	
Annual	Review	of	Physical	Chemistry	(2014).	
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Important points 

•  DFT ‘works’ for both molecules and materials 
•  There are too many different approximations 

on the market. 
•  The ‘best’ ones are made by Perdew and 

Becke. 
•  Always starts with local approximations 
–  In TF theory, local approx for kinetic energy 
–  In KS method, local approx for XC energy 

Feb	13,	2017	 QCTMBS17	 12	



Message: 

•  This is a very bizarre way to do quantum 
mechanics. 
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B. How is DFT related to semiclassics? 
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Important quote 

•  In any event, the result is extraordinarily powerful, for it 
enables us to calculate (approximate) allowed energies 
without ever solving the Schrödinger equation, by 
simply evaluating one integral. The wave function itself 
has dropped out of sight.  

•  Griffiths, Quantum Mechanics, about semiclassical approximations.  

Feb	13,	2017	 QCTMBS17	 15	
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Semiclassical connection to DFT 

•  Relevance of the Slowly Varying Electron Gas to Atoms, Molecules, 
and Solids John P. Perdew, Lucian A. Constantin, Espen Sagvolden, 
Kieron Burke, Phys. Rev. Lett. 97, 223002 (2006)  

•  Semiclassical Origins of Density Functionals Peter Elliott, 
Donghyung Lee, Attila Cangi, Kieron Burke, Phys. Rev. Lett. 100, 
256406 (2008).  

•  Electronic Structure via Potential Functional Approximations Attila 
Cangi, Donghyung Lee, Peter Elliott, Kieron Burke, E. K. U. Gross, 
Phys. Rev. Lett. 106, 236404 (2011).  

•  Potential functionals versus density functionals Attila Cangi, E. K. 
U. Gross, Kieron Burke, Phys. Rev. A 88, 062505 (2013).  
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Original KS idea: Simple metals 
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v(x) v(x)v(x)

µ

v(x)	

v(x) v(x)v(x)

n(x)	

WKB	for	one	level=>sum	over	many=>TF	theory	
Correc]ons	to	WKB	=>	sum	over	many	=>	gradient	expansion			
As	Ћ		->	0,	TF	becomes	rela]vely	exact	(asympto]c	expansion)	



1d TF for no interaction 
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Rough sums

n(x) ⇡
Z EF

�1

dE
⇡~ |�E (x)|2 =

kF(x)

⇡
, k(x) = p(x)/~ ,

t(x) ⇡
Z EF

�1

dE
⇡~ [E � v(x)] |�E (x)|2 =

~2k3
F(x)

6⇡
.

Both n(x) and t(x) are determined solely by v(x) and EF, i.e., local
approximation in v(x).
Global condition to get EF is normalization of n(x):

Z
dx n(x) = N or ✓F(1) = N⇡ .

Kieron (UC Irvine) Reconnecting... IMA 8 / 48



Lieb-Simon limit 

Outline Density functional theory Semiclassical analysis of DFT Toy model: SNIFs Closing

Semiclassical analysis and density functional theory

Consider scaling to continuum limit:

v ⇣(r) = ⇣1+1/d v(⇣1/d r) , N ! ⇣N.

where d is spatial dimension.

Lieb and Simon (1973) proved that Thomas-Fermi theory is
relatively exact as ⇣ ! 1, i.e.,

ETF � E0

E0
! 0

Equivalent to changing Z = N for neutral atoms.

Schwinger and Englert showed LDA exchange is relatively
exact for atoms as Z ! 1

8 / 19Feb	13,	2017	 QCTMBS17	 19	



v(x)

Chemistry and most materials 
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•  TF	theory	STILL	rela]vely	exact	in	limit	Ћ	->	0.	
•  Leading	correc]ons	come	from	turning	points,	yielding	quantum	

oscilla]ons.	

µ

v(x)	

n(x)	



KS version of Lieb-Simon statement 

Outline Density functional theory Semiclassical analysis of DFT Toy model: SNIFs Closing

Conjecture on KS-DFT Exc

Almost certain that

ELDA
xc is relatively exact in the ⇣ ! 1 limit

lim
⇣!1

�ELDA

xc

EXC

=
ELDA

xc � Exc

EXC

= 0

Kieron’s instinct:

Success of simple local-type approximations is because they
are crude attempts to capture leading corrections to
asymptotic limit (LDA)

9 / 19
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Atomic	correla8on	energies	and	the	generalized	gradient	approxima8on,	Kieron	
Burke,	Antonio	Cancio,	Tim	Gould,	Stefano	Pi2alis,	J	Chem	Phys,	2016.	



1d derivations 

•  Almost exact exchange at almost no computational cost in 
electronic structure Peter Elliott, Attila Cangi, Stefano 
Pittalis, E. K. U. Gross, Kieron Burke, Phys. Rev. A 92, 022513 
(2015)  

•  Corrections to Thomas-Fermi Densities at Turning Points 
and Beyond Raphael F. Ribeiro, Donghyung Lee, Attila 
Cangi, Peter Elliott, Kieron Burke, Phys. Rev. Lett. 114, 
050401 (2015).  

•  Uniform semiclassical approximations for one-dimensional 
fermionic systems Raphael F. Ribeiro, Kieron Burke, 
submitted and ArXiv:1510.05676 (2015). 

•  Leading corrections to local density approximations II: The 
case with turning points Raphael F. Ribeiro, Kieron Burke, to 
appear in Phys Rev B. and arXiv:1611.00881. 
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C. Recent work in 1d 
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Performance of uniform approximations 
Numerical 

Comparisons
• Quartic oscillator densities 

!

!

• Harmonic Oscillator kinetic energy errors 

!

!
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Raphael	Ribeiro	

Correc]ons	to	Thomas-Fermi	Densi]es	at	
Turning	Points	and	Beyond	Raphael	F.	Ribeiro,	
Donghyung	Lee,	Abla	Cangi,	Peter	Ellio2,	
Kieron	Burke,	Phys.	Rev.	Le2.	114,	050401	
(2015).	



Turning points 
Building Uniform 
Approximations

• “The Poisson sum formula seems to be the 
appropriate mathematical device to use in 
problems involving sums over discrete values of a 
variable which classically can assume any 
value” (MV Berry, 66) 

!

• Airy uniform approximation: 

!

• WKB density of states 

n(x,N) =
N�1X

j=0

|�j(x)|2 =
1X

m=�1

Z N�1/2

�1/2
|��(x)|2e2⇡im�d�

�

�

(x) = 2
!

�

⇣
3/(2~)

R
x

x�
p

�

(x0)dx0
⌘2/3

p

�

(x)
Ai

"
�
✓

3

2~
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x

x�
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�

(x0)dx0
◆2/3

#
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2

◆
~
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Leading corrections 
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Corrections to Thomas-Fermi densities at turning points and beyond

Raphael F. Ribeiro,1 Donghyung Lee,2 Attila Cangi,3 Peter Elliott,3 and Kieron Burke1

1Department of Chemistry, University of California, Irvine, CA 92697
2Samsung SDI Inc., SMRC, Samsung-ro 130, Yeongtong-gu,

Suwon-si, Gyeonggi-do, Republic of Korea, 443-803
3Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale),Germany

(Dated: February 26, 2015)

Uniform semiclassical approximations for the number and kinetic-energy densities are derived for
many non-interacting fermions in one-dimensional potentials with two turning points. The resulting
simple, closed-form expressions contain the leading corrections to Thomas-Fermi theory, involve
neither sums nor derivatives, are spatially uniform approximations, and are exceedingly accurate.

PACS numbers: 03.65.Sq 05.30.Fk 31.15.xg 71.15.Mb

Semiclassical approximations are both ubiquitous in
physics [1, 2] and notoriously di�cult to improve upon.
Most of us will recall the chapter on WKB in our quan-
tum textbook[3], yielding a simple and elegant result for
the eigenvalues of a particle in a one-dimensional poten-
tial. The more sensitive will have recoiled at the surgical
need to stitch together various regions (allowed, turning
point, and forbidden) to find the semiclassical eigenfunc-
tion. Summing the probability densities in the allowed
region yields the dominant contribution to the density,
but what are the leading corrections?

A little later, we should have learned Thomas-Fermi
(TF) theory[4, 5]. Thomas derived what we now call
the TF equation in 1926, without using Schrödinger’s
equation[6]. He calculated the energies of atoms, finding
results accurate to within about 10%. TF theory has
since been applied in almost all areas of physics[7]. For
the electronic structure of everyday matter, TF theory is
insu�ciently accurate for most purposes, but gave rise to
modern density functional theory (DFT)[8]. The heart
of TF theory is a local approximation, and the success of
semilocal approximations in modern DFT calculations of

electronic structure can be traced to the exactness of TF
in the semiclassical limit[9, 10]. So, what are the leading
corrections?
Despite decades of development in quantum theory,

the above questions, which are intimately related, remain
unanswered. Both the WKB and the TF approximations
can be derived from any formulation of non-relativistic
quantum mechanics, but none yields an obvious proce-
dure for finding the leading corrections. Mathematical
di�culties arise because ~ multiplies the highest deriva-
tive in the Schrodinger equation. Physically, the problem
is at the dark heart of the relation between quantum and
classical mechanics.
Here we derive a definitive solution to both these ques-

tions in a limited context: Non-interacting fermions in
one dimension. Researchers from solid-state, nuclear,
and chemical physics have sought this result for over 50
years [11–21]. The TF density for the lowest N occupied
orbitals is

n

TF(x) = pF(x)/(~⇡), pF(x) � 0 (1)
where pF(x) is the classical momentum at the Fermi en-
ergy, EF, chosen to ensure normalization, and vanishes
elsewhere. This becomes

n

sc(x) =
pF(x)

~

" 
p
zAi2(�z) +

Ai
0
2(�z)p
z

!
+

✓
~!

F

csc[↵
F

(x)]

p

2

F(x)
� 1

2z3/2

◆
Ai(�z) Ai0(�z)

#
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, (2)

where pF(x) is analytically continued into evanescent re-
gions, !F is the classical frequency at EF, and zF(x) and
↵F(x) are related to the classical action from the nearest
turning point, and Ai and Ai0 are the Airy function and
its derivative (details within). Eq. (2) contains the lead-
ing corrections to Eq. (1) for every value of x, without
butchery at the turning points. The primary importance
of this work is the existence of Eq. (2) and its deriva-
tion. A secondary point is the sheer accuracy of Eq. (2):
For N > 1, its result is usually indistinguishable (to the

eye) from exact, as in Fig. 1. Generalization of Eq. (2)
could prove invaluable in any field using semiclassics or
in orbital-free DFT[22].

The crucial step in the derivation is the use of the Pois-
son summation formula[23, 24]. While long-known[24–
26] for the description of semiclassical phenomena, it has
been little applied to bound states. Although the bare
result of its application appears quite complicated, each
of the resulting terms, which include contributions from
every closed classical orbit at the EF, can be simplified
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and summed. We assume only that the potential v(x) is
slowly-varying with dynamics lying on a topological cir-
cle. Accuracy improves as the number of particles grows
except when EF is near a critical point of v(x).
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FIG. 1. Thomas-Fermi (dashed) and semiclassical (dotted)
approximations to the density (solid) of 2 particles in a Morse
potential, v(x) = 15(e�x/2 � 2 e�x/4).

To begin, at energy E, the left (x�) and right (x
+

)
classical turning points satisfy v(x±) = E. The action,
measured from the left turning point, is

S(x,E) =

Z
x

x�(E)

dx p(x,E) (3)

where p(x,E) =
p
2m[E � v(x)] is the classical momen-

tum. The WKB quantization condition [2, 25, 27] is then

S [x
+

(E
j

), E
j

] = ⇡~
✓
j +

1

2

◆
, j 2 N. (4)

The accuracy of WKB quantized energies generally im-
prove as either j or m grows, ~ shrinks, or the potential
is stretched such that its rate of change becomes smaller
[2, 28]. But the WKB wavefunction is singular in the
turning point region [2, 27, 29–31]. Langer [32] obtained
a semiclassical wavefunction for the case where turning
points are simple zeroes of the momentum:

�

j

(x) =

s
2m!

j

p

j

(x)
z

1/4

j

(x) Ai [�z

j

(x)] , (5)

where !

j

= ~�1

@E

�

/@�|
�=j

is the frequency of the

corresponding classical orbit, and z

j

= [3S
j

(x)/2~]2/3.
In a classically-forbidden region, �p(x) = �i|p(x)| =
e

3i⇡/2|p(x)|, ensuring continuity through the turning
point. The Langer solution can also be used for prob-
lems with two turning points [33]. In this work we match
Langer functions from each turning point at the mid-
phase point x

j

m

where S

j

(xj

m

) = ~(j + 1/2)⇡/2. This
procedure ensures continuity everywhere.

Our task is to use Langer orbitals to find the asymp-
totic behavior of the density of N occupied orbitals,

n(x) =
N�1X

j=0

|�
j

(x)|2. (6)

We use the Poisson summation formula:

N�1X

j=0

f

j

=
1X

k=�1

Z
N�1/2

�1/2

d� f(�)e2⇡ik�, (7)

where f(�) is essentially any continuous function with
bounded first derivatives (except for a finite number of
points) that matches the f

j

when � 2 N [23, 24, 34].
Write

n(x) = n

0

(x) + n

1

(x), (8)

where n

0

(x) is the contribution from k = 0, and n

1

(x) is
all the rest. Then, for m = 1,

n
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(x) = 2
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N�1/2
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d�
!

�

p
z

�

(x)

p

�

(x)
Ai2[�z

�

(x)]. (9)

The lower bound of the integral corresponds to the stable
fixed point of the potential well, and the upper bound
defines E

F

as that obtained by solving Eq. (4) for j =
N�1/2, whereN is the number of particles in the system.
Hereinafter, a subscript F denotes evaluation at EF, and
x is treated as a parameter. For instance, to approximate
the integral in Eq. 9 we employ the transformation � !
p

�

(x). Integrating by parts, using the Airy di↵erential
equation [35], changing variables, and neglecting higher-
order terms from the lower-bound of the integral in Eq.
9, we find:

n

0

(x) ⇠ ~�1

pF(x) g+[zF(x)] +

Z
zF (x)

z�1/2(x)

dz
p
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(10)
where

g±(z) = z

1/2 Ai2(�z)± z

�1/2 Ai0
2

(�z) (11)

f(z) = p(z)/
p
z, and Ai0(z) = dAi(z)/dz.

Eq. (10) is useful for the extraction of the domi-
nant terms in an asymptotic expansion for n

0

(x). As
N grows, the coe�cients

p
z@f/@z become ever more

slowly-varying functions of the energy. Integrating by
parts, ignoring the remaining higher-order contribution,
and using

@f
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����
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). We find
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where A

0

(z) = Ai(�z)Ai0(�z).
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Leading corrections to local approximations. II. The case with turning points2
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Quantum corrections to Thomas-Fermi (TF) theory are investigated for noninteracting one-dimensional
fermions with known uniform semiclassical approximations to the density and kinetic energy. Their structure is
analyzed, and contributions from distinct phase space regions (classically-allowed versus forbidden at the Fermi
energy) are derived analytically. Universal formulas are derived for both particle numbers and energy components
in each region. For example, in the semiclassical limit, exactly (6π

√
3)−1 of a particle leaks into the evanescent

region beyond a turning point. The correct normalization of semiclassical densities is proven analytically in
the semiclassical limit. Energies and densities are tested numerically in a variety of one-dimensional potentials,
especially in the limit where TF theory becomes exact. The subtle relation between the pointwise accuracy of the
semiclassical approximation and integrated expectation values is explored. The limitations of the semiclassical
formulas are also investigated when the potential varies too rapidly. The approximations are shown to work
for multiple wells, except right at the mid-phase point of the evanescent regions. The implications for density
functional approximations are discussed.
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I. INTRODUCTION21

While the popularity of density functional theory (DFT) has22

never been higher [1], the lack of a systematic approach to the23

construction of approximate exchange-correlation functionals24

or even orbital-free kinetic energy functionals remains an25

outstanding issue confronted by practitioners and developers26

of the theory alike. The closest to a systematic approach27

might be the decades-long work of Perdew and co-workers,28

which recently yielded a highly promising metageneralized29

gradient approximation called SCAN, but only after 20 years of30

research, and including norms which are used to fix parameters31

in the approximation [2].32

Semiclassical approximations have inspired the develop-33

ment of density functional methods from the start. The first34

density functional approximation is given by Thomas-Fermi35

(TF) theory [3,4]. It may be regarded as a classical limit36

of quantum mechanics. As such, it has been proved to be a37

universal limit for the quantum mechanics of nonrelativistic38

matter [5]. More recently, it has been conjectured that the39

analogous statement in Kohn-Sham DFT, that the local density40

approximation for is both exchange and correlation, also1 41

becomes relatively exact in this limit [6]. Therefore, it is unsur-42

prising the most successful density functional approximations43

reduce to local density approximations in the limit where the44

predictions according to the latter become exact.45

Over the past decade [6–14], our group has pursued46

the connection between semiclassical approximations and47

DFT. Much of the work can be classified as being in one48

of two camps: They are either limited to one dimension49

or have a general scope. The advantage of one dimension50

is that semiclassical approximations to wave functions are51

long known [15–18]. Thus more explicit progress, including52

analytic results, is possible in 1D and suggests both the greatest53

power and limitations of this approach more generally. Earlier54

work made an even greater simplification, by employing55

box boundary conditions to avoid the singularities associated56

with turning points [10]. More recently, at least in the case 57

of densities and kinetic energy densities, a semiclassical 58

approximation was derived [13] which is uniformly asymptotic 59

in space, i.e., suffers no singularities, while capturing the 60

leading corrections to TF results at every point. A brief account 61

appeared in Ref. [13], while a more detailed mathematical 62

derivation is under review [14]. In the current work, we test 63

the recently-derived approximations numerically in a variety 64

of situations of relevance to atomic and molecular systems. 65

We show that, even when TF theory is surprisingly accurate 66

for quantities integrated over the entire system (such as the 67

total energy or its components), the uniform semiclassical 68

approximations capture the leading corrections within a given 69

region of space. We use the pointwise formulas to derive 70

analytic corrections to the TF energies and confirm these 71

numerically on a class of potentials. But we also find that many 72

such contributions cancel exactly between classically-allowed 73

and forbidden regions, which leads to high accuracy of 74

TF theory for integrated quantities, despite poor pointwise 75

behavior. 76

To illustrate the main ideas of this paper, in Fig. 1 we plot a 77

sequence of densities for same-spin fermions in a harmonic 78

well, v(x) = x2/2. In each curve, we replace h̄ by γh̄,N 79

by N/γ , and n(x) by γn(x), where γ is made successively 80

smaller. In the limit γ → 0, the exact quantum curve weakly 81

approaches the TF density. The uniform semiclassical approx- 82

imation is so accurate as to be indistinguishable from the exact 83

curves here, even for N = 1, although it only includes the 84

leading corrections to TF as γ → 0. By any pointwise measure, 85

it is vastly superior to TF. Results within this paper demonstrate 86

this for several different potentials. 87

But DFT cares almost solely about energies [19]. To 88

connect the pointwise success of the uniform approximation 89

with these, we calculate the integrated densities and energy 90

densities in forbidden and allowed regions separately. The 91

semiclassical approximations allow us to derive leading 92

corrections to TF in each region analytically and check the 93
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In three dimensions 

Recent 
application 
to FATS 
from Attila 
Cangi 

Feb	13,	2017	 QCTMBS17	 29	
Attila Cangi — Max Planck Institute of Microstructure Physics
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Summary 

•  Underlying success of DFT approximations is 
because they are semiclassical. 

•  I defy you to find this specific semiclassical 
approximations in your many-body book. 

•  Very difficult to generate general forms: 
–  Standard methods often useful only in 1d 
–  Often fail in presence of Coulomb potentials 
–  Can reverse-engineer to deduce forms, but very difficult. 
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Holy grail? 

•  What formulation of QM might directly yield 
expressions for density functionals? 

•  Within such a formulation, it should be natural 
to show LDA exact in Lieb-Simon limit. 

•  It should be possible to isolate leading 
corrections. 

•  It may be possible to capture essential features 
with simple density functionals. 
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A few open semiclassical questions 

•  Can we construct an explicit functional (of 
potential or of density) that yields the leading 
correction to local approximation as Ћ ->0 for 
bound problems? 

•  Examples of other problems 
–  1d band structure from WKB? 
–  Generalization to 3d 
–  Changes for Coulomb interactions 
–  Application to exchange energy: generalize to 

density matrices 
–  Path integral formulation 
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How different theorists fail differently 

•  Electronic structure theorists: 
–  Physics, chemistry, materials science 
–  Excellent at computation, useless at derivation 

•  Many-body theorists in condensed matter: 
–  Do not care about high accuracy numbers or materials-

specific properties 
•  Quantum chemists 

–  Cannot stand this DFT stuff 
•  Applied mathematicians 

–  Don’t have a strong feeling for quantum mechanics 
•  Mathematical physicsists: 

–  Need to prove things, not derive them. 
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Summary 

•  Introduction 
•  DFT incredibly successful in terms of applications 
•  DFT incredibly annoying in terms of derivations 

•  Connection to semiclassics 
•  TF theory becomes relatively exact in Lieb-Simon limit 
•  Relation is obscured by KS scheme 

•  My perspective 
•  We are missing the semiclassical chapter in our quantum 

many-body books. 
•  I could use help on the derivations 
•  Maybe there’s another way to formulate QM? 
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